//! The `HirDisplay` trait, which serves two purposes: Turning various bits from //! HIR back into source code, and just displaying them for debugging/testing //! purposes. use std::fmt::{self, Debug}; use chalk_ir::BoundVar; use hir_def::{ body, db::DefDatabase, find_path, generics::TypeParamProvenance, intern::{Internable, Interned}, item_scope::ItemInNs, path::{Path, PathKind}, type_ref::{TraitBoundModifier, TypeBound, TypeRef}, visibility::Visibility, AssocContainerId, Lookup, ModuleId, TraitId, }; use hir_expand::{hygiene::Hygiene, name::Name}; use itertools::Itertools; use crate::{ const_from_placeholder_idx, db::HirDatabase, from_assoc_type_id, from_foreign_def_id, from_placeholder_idx, lt_from_placeholder_idx, mapping::from_chalk, primitive, subst_prefix, to_assoc_type_id, utils::{self, generics}, AdtId, AliasEq, AliasTy, CallableDefId, CallableSig, Const, ConstValue, DomainGoal, GenericArg, ImplTraitId, Interner, Lifetime, LifetimeData, LifetimeOutlives, Mutability, OpaqueTy, ProjectionTy, ProjectionTyExt, QuantifiedWhereClause, Scalar, TraitRef, TraitRefExt, Ty, TyExt, TyKind, WhereClause, }; pub struct HirFormatter<'a> { pub db: &'a dyn HirDatabase, fmt: &'a mut dyn fmt::Write, buf: String, curr_size: usize, pub(crate) max_size: Option, omit_verbose_types: bool, display_target: DisplayTarget, } pub trait HirDisplay { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError>; /// Returns a `Display`able type that is human-readable. fn into_displayable<'a>( &'a self, db: &'a dyn HirDatabase, max_size: Option, omit_verbose_types: bool, display_target: DisplayTarget, ) -> HirDisplayWrapper<'a, Self> where Self: Sized, { assert!( !matches!(display_target, DisplayTarget::SourceCode { .. }), "HirDisplayWrapper cannot fail with DisplaySourceCodeError, use HirDisplay::hir_fmt directly instead" ); HirDisplayWrapper { db, t: self, max_size, omit_verbose_types, display_target } } /// Returns a `Display`able type that is human-readable. /// Use this for showing types to the user (e.g. diagnostics) fn display<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self> where Self: Sized, { HirDisplayWrapper { db, t: self, max_size: None, omit_verbose_types: false, display_target: DisplayTarget::Diagnostics, } } /// Returns a `Display`able type that is human-readable and tries to be succinct. /// Use this for showing types to the user where space is constrained (e.g. doc popups) fn display_truncated<'a>( &'a self, db: &'a dyn HirDatabase, max_size: Option, ) -> HirDisplayWrapper<'a, Self> where Self: Sized, { HirDisplayWrapper { db, t: self, max_size, omit_verbose_types: true, display_target: DisplayTarget::Diagnostics, } } /// Returns a String representation of `self` that can be inserted into the given module. /// Use this when generating code (e.g. assists) fn display_source_code<'a>( &'a self, db: &'a dyn HirDatabase, module_id: ModuleId, ) -> Result { let mut result = String::new(); match self.hir_fmt(&mut HirFormatter { db, fmt: &mut result, buf: String::with_capacity(20), curr_size: 0, max_size: None, omit_verbose_types: false, display_target: DisplayTarget::SourceCode { module_id }, }) { Ok(()) => {} Err(HirDisplayError::FmtError) => panic!("Writing to String can't fail!"), Err(HirDisplayError::DisplaySourceCodeError(e)) => return Err(e), }; Ok(result) } /// Returns a String representation of `self` for test purposes fn display_test<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self> where Self: Sized, { HirDisplayWrapper { db, t: self, max_size: None, omit_verbose_types: false, display_target: DisplayTarget::Test, } } } impl<'a> HirFormatter<'a> { pub fn write_joined( &mut self, iter: impl IntoIterator, sep: &str, ) -> Result<(), HirDisplayError> { let mut first = true; for e in iter { if !first { write!(self, "{}", sep)?; } first = false; e.hir_fmt(self)?; } Ok(()) } /// This allows using the `write!` macro directly with a `HirFormatter`. pub fn write_fmt(&mut self, args: fmt::Arguments) -> Result<(), HirDisplayError> { // We write to a buffer first to track output size self.buf.clear(); fmt::write(&mut self.buf, args)?; self.curr_size += self.buf.len(); // Then we write to the internal formatter from the buffer self.fmt.write_str(&self.buf).map_err(HirDisplayError::from) } pub fn should_truncate(&self) -> bool { if let Some(max_size) = self.max_size { self.curr_size >= max_size } else { false } } pub fn omit_verbose_types(&self) -> bool { self.omit_verbose_types } } #[derive(Clone, Copy)] pub enum DisplayTarget { /// Display types for inlays, doc popups, autocompletion, etc... /// Showing `{unknown}` or not qualifying paths is fine here. /// There's no reason for this to fail. Diagnostics, /// Display types for inserting them in source files. /// The generated code should compile, so paths need to be qualified. SourceCode { module_id: ModuleId }, /// Only for test purpose to keep real types Test, } impl DisplayTarget { fn is_source_code(&self) -> bool { matches!(self, Self::SourceCode { .. }) } fn is_test(&self) -> bool { matches!(self, Self::Test) } } #[derive(Debug)] pub enum DisplaySourceCodeError { PathNotFound, UnknownType, Closure, } pub enum HirDisplayError { /// Errors that can occur when generating source code DisplaySourceCodeError(DisplaySourceCodeError), /// `FmtError` is required to be compatible with std::fmt::Display FmtError, } impl From for HirDisplayError { fn from(_: fmt::Error) -> Self { Self::FmtError } } pub struct HirDisplayWrapper<'a, T> { db: &'a dyn HirDatabase, t: &'a T, max_size: Option, omit_verbose_types: bool, display_target: DisplayTarget, } impl<'a, T> fmt::Display for HirDisplayWrapper<'a, T> where T: HirDisplay, { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.t.hir_fmt(&mut HirFormatter { db: self.db, fmt: f, buf: String::with_capacity(20), curr_size: 0, max_size: self.max_size, omit_verbose_types: self.omit_verbose_types, display_target: self.display_target, }) { Ok(()) => Ok(()), Err(HirDisplayError::FmtError) => Err(fmt::Error), Err(HirDisplayError::DisplaySourceCodeError(_)) => { // This should never happen panic!("HirDisplay::hir_fmt failed with DisplaySourceCodeError when calling Display::fmt!") } } } } const TYPE_HINT_TRUNCATION: &str = "…"; impl HirDisplay for &'_ T { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { HirDisplay::hir_fmt(*self, f) } } impl HirDisplay for Interned { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { HirDisplay::hir_fmt(self.as_ref(), f) } } impl HirDisplay for ProjectionTy { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{}", TYPE_HINT_TRUNCATION); } let trait_ = f.db.trait_data(self.trait_(f.db)); write!(f, "<")?; self.self_type_parameter(&Interner).hir_fmt(f)?; write!(f, " as {}", trait_.name)?; if self.substitution.len(&Interner) > 1 { write!(f, "<")?; f.write_joined(&self.substitution.as_slice(&Interner)[1..], ", ")?; write!(f, ">")?; } write!(f, ">::{}", f.db.type_alias_data(from_assoc_type_id(self.associated_ty_id)).name)?; Ok(()) } } impl HirDisplay for OpaqueTy { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{}", TYPE_HINT_TRUNCATION); } self.substitution.at(&Interner, 0).hir_fmt(f) } } impl HirDisplay for GenericArg { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { match self.interned() { crate::GenericArgData::Ty(ty) => ty.hir_fmt(f), crate::GenericArgData::Lifetime(lt) => lt.hir_fmt(f), crate::GenericArgData::Const(c) => c.hir_fmt(f), } } } impl HirDisplay for Const { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { let data = self.interned(); match data.value { ConstValue::BoundVar(idx) => idx.hir_fmt(f), ConstValue::InferenceVar(..) => write!(f, "_"), ConstValue::Placeholder(idx) => { let id = const_from_placeholder_idx(f.db, idx); let generics = generics(f.db.upcast(), id.parent); let param_data = &generics.params.consts[id.local_id]; write!(f, "{}", param_data.name) } ConstValue::Concrete(c) => write!(f, "{}", c.interned), } } } impl HirDisplay for BoundVar { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { write!(f, "?{}.{}", self.debruijn.depth(), self.index) } } impl HirDisplay for Ty { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{}", TYPE_HINT_TRUNCATION); } match self.kind(&Interner) { TyKind::Never => write!(f, "!")?, TyKind::Str => write!(f, "str")?, TyKind::Scalar(Scalar::Bool) => write!(f, "bool")?, TyKind::Scalar(Scalar::Char) => write!(f, "char")?, &TyKind::Scalar(Scalar::Float(t)) => write!(f, "{}", primitive::float_ty_to_string(t))?, &TyKind::Scalar(Scalar::Int(t)) => write!(f, "{}", primitive::int_ty_to_string(t))?, &TyKind::Scalar(Scalar::Uint(t)) => write!(f, "{}", primitive::uint_ty_to_string(t))?, TyKind::Slice(t) => { write!(f, "[")?; t.hir_fmt(f)?; write!(f, "]")?; } TyKind::Array(t, c) => { write!(f, "[")?; t.hir_fmt(f)?; write!(f, "; ")?; c.hir_fmt(f)?; write!(f, "]")?; } TyKind::Raw(m, t) | TyKind::Ref(m, _, t) => { if matches!(self.kind(&Interner), TyKind::Raw(..)) { write!( f, "*{}", match m { Mutability::Not => "const ", Mutability::Mut => "mut ", } )?; } else { write!( f, "&{}", match m { Mutability::Not => "", Mutability::Mut => "mut ", } )?; } // FIXME: all this just to decide whether to use parentheses... let datas; let predicates: Vec<_> = match t.kind(&Interner) { TyKind::Dyn(dyn_ty) if dyn_ty.bounds.skip_binders().interned().len() > 1 => { dyn_ty.bounds.skip_binders().interned().iter().cloned().collect() } TyKind::Alias(AliasTy::Opaque(OpaqueTy { opaque_ty_id, substitution: parameters, })) | TyKind::OpaqueType(opaque_ty_id, parameters) => { let impl_trait_id = f.db.lookup_intern_impl_trait_id((*opaque_ty_id).into()); if let ImplTraitId::ReturnTypeImplTrait(func, idx) = impl_trait_id { datas = f.db.return_type_impl_traits(func) .expect("impl trait id without data"); let data = (*datas) .as_ref() .map(|rpit| rpit.impl_traits[idx as usize].bounds.clone()); let bounds = data.substitute(&Interner, parameters); bounds.into_value_and_skipped_binders().0 } else { Vec::new() } } _ => Vec::new(), }; if let Some(WhereClause::Implemented(trait_ref)) = predicates.get(0).map(|b| b.skip_binders()) { let trait_ = trait_ref.hir_trait_id(); if fn_traits(f.db.upcast(), trait_).any(|it| it == trait_) && predicates.len() <= 2 { return t.hir_fmt(f); } } if predicates.len() > 1 { write!(f, "(")?; t.hir_fmt(f)?; write!(f, ")")?; } else { t.hir_fmt(f)?; } } TyKind::Tuple(_, substs) => { if substs.len(&Interner) == 1 { write!(f, "(")?; substs.at(&Interner, 0).hir_fmt(f)?; write!(f, ",)")?; } else { write!(f, "(")?; f.write_joined(&*substs.as_slice(&Interner), ", ")?; write!(f, ")")?; } } TyKind::Function(fn_ptr) => { let sig = CallableSig::from_fn_ptr(fn_ptr); sig.hir_fmt(f)?; } TyKind::FnDef(def, parameters) => { let def = from_chalk(f.db, *def); let sig = f.db.callable_item_signature(def).substitute(&Interner, parameters); match def { CallableDefId::FunctionId(ff) => { write!(f, "fn {}", f.db.function_data(ff).name)? } CallableDefId::StructId(s) => write!(f, "{}", f.db.struct_data(s).name)?, CallableDefId::EnumVariantId(e) => { write!(f, "{}", f.db.enum_data(e.parent).variants[e.local_id].name)? } }; if parameters.len(&Interner) > 0 { let generics = generics(f.db.upcast(), def.into()); let (parent_params, self_param, type_params, _impl_trait_params) = generics.provenance_split(); let total_len = parent_params + self_param + type_params; // We print all params except implicit impl Trait params. Still a bit weird; should we leave out parent and self? if total_len > 0 { write!(f, "<")?; f.write_joined(¶meters.as_slice(&Interner)[..total_len], ", ")?; write!(f, ">")?; } } write!(f, "(")?; f.write_joined(sig.params(), ", ")?; write!(f, ")")?; let ret = sig.ret(); if !ret.is_unit() { write!(f, " -> ")?; ret.hir_fmt(f)?; } } TyKind::Adt(AdtId(def_id), parameters) => { match f.display_target { DisplayTarget::Diagnostics | DisplayTarget::Test => { let name = match *def_id { hir_def::AdtId::StructId(it) => f.db.struct_data(it).name.clone(), hir_def::AdtId::UnionId(it) => f.db.union_data(it).name.clone(), hir_def::AdtId::EnumId(it) => f.db.enum_data(it).name.clone(), }; write!(f, "{}", name)?; } DisplayTarget::SourceCode { module_id } => { if let Some(path) = find_path::find_path( f.db.upcast(), ItemInNs::Types((*def_id).into()), module_id, ) { write!(f, "{}", path)?; } else { return Err(HirDisplayError::DisplaySourceCodeError( DisplaySourceCodeError::PathNotFound, )); } } } if parameters.len(&Interner) > 0 { let parameters_to_write = if f.display_target.is_source_code() || f.omit_verbose_types() { match self .as_generic_def(f.db) .map(|generic_def_id| f.db.generic_defaults(generic_def_id)) .filter(|defaults| !defaults.is_empty()) { None => parameters.as_slice(&Interner), Some(default_parameters) => { let mut default_from = 0; for (i, parameter) in parameters.iter(&Interner).enumerate() { match ( parameter.assert_ty_ref(&Interner).kind(&Interner), default_parameters.get(i), ) { (&TyKind::Error, _) | (_, None) => { default_from = i + 1; } (_, Some(default_parameter)) => { let actual_default = default_parameter.clone().substitute( &Interner, &subst_prefix(parameters, i), ); if parameter.assert_ty_ref(&Interner) != &actual_default { default_from = i + 1; } } } } ¶meters.as_slice(&Interner)[0..default_from] } } } else { parameters.as_slice(&Interner) }; if !parameters_to_write.is_empty() { write!(f, "<")?; f.write_joined(parameters_to_write, ", ")?; write!(f, ">")?; } } } TyKind::AssociatedType(assoc_type_id, parameters) => { let type_alias = from_assoc_type_id(*assoc_type_id); let trait_ = match type_alias.lookup(f.db.upcast()).container { AssocContainerId::TraitId(it) => it, _ => panic!("not an associated type"), }; let trait_ = f.db.trait_data(trait_); let type_alias_data = f.db.type_alias_data(type_alias); // Use placeholder associated types when the target is test (https://rust-lang.github.io/chalk/book/clauses/type_equality.html#placeholder-associated-types) if f.display_target.is_test() { write!(f, "{}::{}", trait_.name, type_alias_data.name)?; if parameters.len(&Interner) > 0 { write!(f, "<")?; f.write_joined(&*parameters.as_slice(&Interner), ", ")?; write!(f, ">")?; } } else { let projection_ty = ProjectionTy { associated_ty_id: to_assoc_type_id(type_alias), substitution: parameters.clone(), }; projection_ty.hir_fmt(f)?; } } TyKind::Foreign(type_alias) => { let type_alias = f.db.type_alias_data(from_foreign_def_id(*type_alias)); write!(f, "{}", type_alias.name)?; } TyKind::OpaqueType(opaque_ty_id, parameters) => { let impl_trait_id = f.db.lookup_intern_impl_trait_id((*opaque_ty_id).into()); match impl_trait_id { ImplTraitId::ReturnTypeImplTrait(func, idx) => { let datas = f.db.return_type_impl_traits(func).expect("impl trait id without data"); let data = (*datas) .as_ref() .map(|rpit| rpit.impl_traits[idx as usize].bounds.clone()); let bounds = data.substitute(&Interner, ¶meters); write_bounds_like_dyn_trait_with_prefix( "impl", bounds.skip_binders(), SizedByDefault::Sized, f, )?; // FIXME: it would maybe be good to distinguish this from the alias type (when debug printing), and to show the substitution } ImplTraitId::AsyncBlockTypeImplTrait(..) => { write!(f, "impl Future")?; } } } TyKind::Closure(.., substs) => { if f.display_target.is_source_code() { return Err(HirDisplayError::DisplaySourceCodeError( DisplaySourceCodeError::Closure, )); } let sig = substs.at(&Interner, 0).assert_ty_ref(&Interner).callable_sig(f.db); if let Some(sig) = sig { if sig.params().is_empty() { write!(f, "||")?; } else if f.omit_verbose_types() { write!(f, "|{}|", TYPE_HINT_TRUNCATION)?; } else { write!(f, "|")?; f.write_joined(sig.params(), ", ")?; write!(f, "|")?; }; write!(f, " -> ")?; sig.ret().hir_fmt(f)?; } else { write!(f, "{{closure}}")?; } } TyKind::Placeholder(idx) => { let id = from_placeholder_idx(f.db, *idx); let generics = generics(f.db.upcast(), id.parent); let param_data = &generics.params.types[id.local_id]; match param_data.provenance { TypeParamProvenance::TypeParamList | TypeParamProvenance::TraitSelf => { write!(f, "{}", param_data.name.clone().unwrap_or_else(Name::missing))? } TypeParamProvenance::ArgumentImplTrait => { let substs = generics.type_params_subst(f.db); let bounds = f.db.generic_predicates(id.parent) .into_iter() .map(|pred| pred.clone().substitute(&Interner, &substs)) .filter(|wc| match &wc.skip_binders() { WhereClause::Implemented(tr) => { &tr.self_type_parameter(&Interner) == self } WhereClause::AliasEq(AliasEq { alias: AliasTy::Projection(proj), ty: _, }) => &proj.self_type_parameter(&Interner) == self, _ => false, }) .collect::>(); write_bounds_like_dyn_trait_with_prefix( "impl", &bounds, SizedByDefault::Sized, f, )?; } } } TyKind::BoundVar(idx) => idx.hir_fmt(f)?, TyKind::Dyn(dyn_ty) => { write_bounds_like_dyn_trait_with_prefix( "dyn", dyn_ty.bounds.skip_binders().interned(), SizedByDefault::NotSized, f, )?; } TyKind::Alias(AliasTy::Projection(p_ty)) => p_ty.hir_fmt(f)?, TyKind::Alias(AliasTy::Opaque(opaque_ty)) => { let impl_trait_id = f.db.lookup_intern_impl_trait_id(opaque_ty.opaque_ty_id.into()); match impl_trait_id { ImplTraitId::ReturnTypeImplTrait(func, idx) => { let datas = f.db.return_type_impl_traits(func).expect("impl trait id without data"); let data = (*datas) .as_ref() .map(|rpit| rpit.impl_traits[idx as usize].bounds.clone()); let bounds = data.substitute(&Interner, &opaque_ty.substitution); write_bounds_like_dyn_trait_with_prefix( "impl", bounds.skip_binders(), SizedByDefault::Sized, f, )?; } ImplTraitId::AsyncBlockTypeImplTrait(..) => { write!(f, "{{async block}}")?; } }; } TyKind::Error => { if f.display_target.is_source_code() { return Err(HirDisplayError::DisplaySourceCodeError( DisplaySourceCodeError::UnknownType, )); } write!(f, "{{unknown}}")?; } TyKind::InferenceVar(..) => write!(f, "_")?, TyKind::Generator(..) => write!(f, "{{generator}}")?, TyKind::GeneratorWitness(..) => write!(f, "{{generator witness}}")?, } Ok(()) } } impl HirDisplay for CallableSig { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { write!(f, "fn(")?; f.write_joined(self.params(), ", ")?; if self.is_varargs { if self.params().is_empty() { write!(f, "...")?; } else { write!(f, ", ...")?; } } write!(f, ")")?; let ret = self.ret(); if !ret.is_unit() { write!(f, " -> ")?; ret.hir_fmt(f)?; } Ok(()) } } fn fn_traits(db: &dyn DefDatabase, trait_: TraitId) -> impl Iterator { let krate = trait_.lookup(db).container.krate(); utils::fn_traits(db, krate) } fn is_sized_trait(db: &dyn DefDatabase, trait_: TraitId) -> Option { let krate = trait_.lookup(db).container.krate(); let sized_trait = db.lang_item(krate, "sized".into()).and_then(|lang_item| lang_item.as_trait())?; Some(trait_ == sized_trait) } #[derive(Clone, Copy, PartialEq, Eq)] pub enum SizedByDefault { NotSized, Sized, } pub fn write_bounds_like_dyn_trait_with_prefix( prefix: &str, predicates: &[QuantifiedWhereClause], default_sized: SizedByDefault, f: &mut HirFormatter, ) -> Result<(), HirDisplayError> { write!(f, "{}", prefix)?; if !predicates.is_empty() { write!(f, " ")?; write_bounds_like_dyn_trait(predicates, default_sized, f) } else { Ok(()) } } fn write_bounds_like_dyn_trait( predicates: &[QuantifiedWhereClause], default_sized: SizedByDefault, f: &mut HirFormatter, ) -> Result<(), HirDisplayError> { // Note: This code is written to produce nice results (i.e. // corresponding to surface Rust) for types that can occur in // actual Rust. It will have weird results if the predicates // aren't as expected (i.e. self types = $0, projection // predicates for a certain trait come after the Implemented // predicate for that trait). let mut first = true; let mut angle_open = false; let mut is_fn_trait = false; let mut is_sized = None; for p in predicates.iter() { match p.skip_binders() { WhereClause::Implemented(trait_ref) => { let trait_ = trait_ref.hir_trait_id(); match is_sized_trait(f.db.upcast(), trait_) { Some(true) => { is_sized = Some(true); if default_sized == SizedByDefault::Sized { // Don't print +Sized, but rather +?Sized if absent. continue; } } Some(false) => is_sized = is_sized.or(Some(false)), None => (), } if !is_fn_trait { is_fn_trait = fn_traits(f.db.upcast(), trait_).any(|it| it == trait_); } if !is_fn_trait && angle_open { write!(f, ">")?; angle_open = false; } if !first { write!(f, " + ")?; } // We assume that the self type is ^0.0 (i.e. the // existential) here, which is the only thing that's // possible in actual Rust, and hence don't print it write!(f, "{}", f.db.trait_data(trait_).name)?; if let [_, params @ ..] = &*trait_ref.substitution.as_slice(&Interner) { if is_fn_trait { if let Some(args) = params.first().and_then(|it| it.assert_ty_ref(&Interner).as_tuple()) { write!(f, "(")?; f.write_joined(args.as_slice(&Interner), ", ")?; write!(f, ")")?; } } else if !params.is_empty() { write!(f, "<")?; f.write_joined(params, ", ")?; // there might be assoc type bindings, so we leave the angle brackets open angle_open = true; } } } WhereClause::AliasEq(alias_eq) if is_fn_trait => { is_fn_trait = false; if !alias_eq.ty.is_unit() { write!(f, " -> ")?; alias_eq.ty.hir_fmt(f)?; } } WhereClause::AliasEq(AliasEq { ty, alias }) => { // in types in actual Rust, these will always come // after the corresponding Implemented predicate if angle_open { write!(f, ", ")?; } else { write!(f, "<")?; angle_open = true; } if let AliasTy::Projection(proj) = alias { let type_alias = f.db.type_alias_data(from_assoc_type_id(proj.associated_ty_id)); write!(f, "{} = ", type_alias.name)?; } ty.hir_fmt(f)?; } // FIXME implement these WhereClause::LifetimeOutlives(_) => {} WhereClause::TypeOutlives(_) => {} } first = false; } if angle_open { write!(f, ">")?; } if default_sized == SizedByDefault::Sized && is_sized.is_some() { if is_sized == Some(false) { write!(f, "{}?Sized", if first { "" } else { " + " })?; } else if first { write!(f, "Sized")?; } } Ok(()) } fn fmt_trait_ref(tr: &TraitRef, f: &mut HirFormatter, use_as: bool) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{}", TYPE_HINT_TRUNCATION); } tr.self_type_parameter(&Interner).hir_fmt(f)?; if use_as { write!(f, " as ")?; } else { write!(f, ": ")?; } write!(f, "{}", f.db.trait_data(tr.hir_trait_id()).name)?; if tr.substitution.len(&Interner) > 1 { write!(f, "<")?; f.write_joined(&tr.substitution.as_slice(&Interner)[1..], ", ")?; write!(f, ">")?; } Ok(()) } impl HirDisplay for TraitRef { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { fmt_trait_ref(self, f, false) } } impl HirDisplay for WhereClause { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{}", TYPE_HINT_TRUNCATION); } match self { WhereClause::Implemented(trait_ref) => trait_ref.hir_fmt(f)?, WhereClause::AliasEq(AliasEq { alias: AliasTy::Projection(projection_ty), ty }) => { write!(f, "<")?; fmt_trait_ref(&projection_ty.trait_ref(f.db), f, true)?; write!( f, ">::{} = ", f.db.type_alias_data(from_assoc_type_id(projection_ty.associated_ty_id)).name, )?; ty.hir_fmt(f)?; } WhereClause::AliasEq(_) => write!(f, "{{error}}")?, // FIXME implement these WhereClause::TypeOutlives(..) => {} WhereClause::LifetimeOutlives(..) => {} } Ok(()) } } impl HirDisplay for LifetimeOutlives { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { self.a.hir_fmt(f)?; write!(f, ": ")?; self.b.hir_fmt(f) } } impl HirDisplay for Lifetime { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { self.interned().hir_fmt(f) } } impl HirDisplay for LifetimeData { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { match self { LifetimeData::BoundVar(idx) => idx.hir_fmt(f), LifetimeData::InferenceVar(_) => write!(f, "_"), LifetimeData::Placeholder(idx) => { let id = lt_from_placeholder_idx(f.db, *idx); let generics = generics(f.db.upcast(), id.parent); let param_data = &generics.params.lifetimes[id.local_id]; write!(f, "{}", param_data.name) } LifetimeData::Static => write!(f, "'static"), LifetimeData::Empty(_) => Ok(()), LifetimeData::Erased => Ok(()), LifetimeData::Phantom(_, _) => Ok(()), } } } impl HirDisplay for DomainGoal { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { match self { DomainGoal::Holds(wc) => { write!(f, "Holds(")?; wc.hir_fmt(f)?; write!(f, ")")?; } _ => write!(f, "?")?, } Ok(()) } } pub fn write_visibility( module_id: ModuleId, vis: Visibility, f: &mut HirFormatter, ) -> Result<(), HirDisplayError> { match vis { Visibility::Public => write!(f, "pub "), Visibility::Module(vis_id) => { let def_map = module_id.def_map(f.db.upcast()); let root_module_id = def_map.module_id(def_map.root()); if vis_id == module_id { // pub(self) or omitted Ok(()) } else if root_module_id == vis_id { write!(f, "pub(crate) ") } else if module_id.containing_module(f.db.upcast()) == Some(vis_id) { write!(f, "pub(super) ") } else { write!(f, "pub(in ...) ") } } } } impl HirDisplay for TypeRef { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { match self { TypeRef::Never => write!(f, "!")?, TypeRef::Placeholder => write!(f, "_")?, TypeRef::Tuple(elems) => { write!(f, "(")?; f.write_joined(elems, ", ")?; if elems.len() == 1 { write!(f, ",")?; } write!(f, ")")?; } TypeRef::Path(path) => path.hir_fmt(f)?, TypeRef::RawPtr(inner, mutability) => { let mutability = match mutability { hir_def::type_ref::Mutability::Shared => "*const ", hir_def::type_ref::Mutability::Mut => "*mut ", }; write!(f, "{}", mutability)?; inner.hir_fmt(f)?; } TypeRef::Reference(inner, lifetime, mutability) => { let mutability = match mutability { hir_def::type_ref::Mutability::Shared => "", hir_def::type_ref::Mutability::Mut => "mut ", }; write!(f, "&")?; if let Some(lifetime) = lifetime { write!(f, "{} ", lifetime.name)?; } write!(f, "{}", mutability)?; inner.hir_fmt(f)?; } TypeRef::Array(inner, len) => { write!(f, "[")?; inner.hir_fmt(f)?; write!(f, "; {}]", len)?; } TypeRef::Slice(inner) => { write!(f, "[")?; inner.hir_fmt(f)?; write!(f, "]")?; } TypeRef::Fn(tys, is_varargs) => { // FIXME: Function pointer qualifiers. write!(f, "fn(")?; f.write_joined(&tys[..tys.len() - 1], ", ")?; if *is_varargs { write!(f, "{}...", if tys.len() == 1 { "" } else { ", " })?; } write!(f, ")")?; let ret_ty = tys.last().unwrap(); match ret_ty { TypeRef::Tuple(tup) if tup.is_empty() => {} _ => { write!(f, " -> ")?; ret_ty.hir_fmt(f)?; } } } TypeRef::ImplTrait(bounds) => { write!(f, "impl ")?; f.write_joined(bounds, " + ")?; } TypeRef::DynTrait(bounds) => { write!(f, "dyn ")?; f.write_joined(bounds, " + ")?; } TypeRef::Macro(macro_call) => { let macro_call = macro_call.to_node(f.db.upcast()); let ctx = body::LowerCtx::with_hygiene(f.db.upcast(), &Hygiene::new_unhygienic()); match macro_call.path() { Some(path) => match Path::from_src(path, &ctx) { Some(path) => path.hir_fmt(f)?, None => write!(f, "{{macro}}")?, }, None => write!(f, "{{macro}}")?, } write!(f, "!(..)")?; } TypeRef::Error => write!(f, "{{error}}")?, } Ok(()) } } impl HirDisplay for TypeBound { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { match self { TypeBound::Path(path, modifier) => { // todo don't print implicit Sized; implicit ?Sized on Self of a trait match modifier { TraitBoundModifier::None => (), TraitBoundModifier::Maybe => write!(f, "?")?, } path.hir_fmt(f) } TypeBound::Lifetime(lifetime) => write!(f, "{}", lifetime.name), TypeBound::ForLifetime(lifetimes, path) => { write!(f, "for<{}> ", lifetimes.iter().format(", "))?; path.hir_fmt(f) } TypeBound::Error => write!(f, "{{error}}"), } } } impl HirDisplay for Path { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { match (self.type_anchor(), self.kind()) { (Some(anchor), _) => { write!(f, "<")?; anchor.hir_fmt(f)?; write!(f, ">")?; } (_, PathKind::Plain) => {} (_, PathKind::Abs) => write!(f, "::")?, (_, PathKind::Crate) => write!(f, "crate")?, (_, PathKind::Super(0)) => write!(f, "self")?, (_, PathKind::Super(n)) => { write!(f, "super")?; for _ in 0..*n { write!(f, "::super")?; } } (_, PathKind::DollarCrate(_)) => write!(f, "{{extern_crate}}")?, } for (seg_idx, segment) in self.segments().iter().enumerate() { if seg_idx != 0 { write!(f, "::")?; } write!(f, "{}", segment.name)?; if let Some(generic_args) = segment.args_and_bindings { // We should be in type context, so format as `Foo` instead of `Foo::`. // Do we actually format expressions? write!(f, "<")?; let mut first = true; for arg in &generic_args.args { if first { first = false; if generic_args.has_self_type { // FIXME: Convert to `` form. write!(f, "Self = ")?; } } else { write!(f, ", ")?; } arg.hir_fmt(f)?; } for binding in &generic_args.bindings { if first { first = false; } else { write!(f, ", ")?; } write!(f, "{}", binding.name)?; match &binding.type_ref { Some(ty) => { write!(f, " = ")?; ty.hir_fmt(f)? } None => { write!(f, ": ")?; f.write_joined(&binding.bounds, " + ")?; } } } write!(f, ">")?; } } Ok(()) } } impl HirDisplay for hir_def::path::GenericArg { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { match self { hir_def::path::GenericArg::Type(ty) => ty.hir_fmt(f), hir_def::path::GenericArg::Lifetime(lifetime) => write!(f, "{}", lifetime.name), } } }