#![allow(clippy::float_cmp)] use crate::source::{get_source_text, walk_span_to_context}; use crate::{clip, is_direct_expn_of, sext, unsext}; use if_chain::if_chain; use rustc_ast::ast::{self, LitFloatType, LitKind}; use rustc_data_structures::sync::Lrc; use rustc_hir::def::{DefKind, Res}; use rustc_hir::{BinOp, BinOpKind, Block, Expr, ExprKind, HirId, Item, ItemKind, Node, QPath, UnOp}; use rustc_lexer::tokenize; use rustc_lint::LateContext; use rustc_middle::mir; use rustc_middle::mir::interpret::Scalar; use rustc_middle::ty::{self, EarlyBinder, FloatTy, ScalarInt, Ty, TyCtxt}; use rustc_middle::ty::{List, SubstsRef}; use rustc_middle::{bug, span_bug}; use rustc_span::symbol::Symbol; use rustc_span::SyntaxContext; use std::cmp::Ordering::{self, Equal}; use std::hash::{Hash, Hasher}; use std::iter; /// A `LitKind`-like enum to fold constant `Expr`s into. #[derive(Debug, Clone)] pub enum Constant { /// A `String` (e.g., "abc"). Str(String), /// A binary string (e.g., `b"abc"`). Binary(Lrc<[u8]>), /// A single `char` (e.g., `'a'`). Char(char), /// An integer's bit representation. Int(u128), /// An `f32`. F32(f32), /// An `f64`. F64(f64), /// `true` or `false`. Bool(bool), /// An array of constants. Vec(Vec), /// Also an array, but with only one constant, repeated N times. Repeat(Box, u64), /// A tuple of constants. Tuple(Vec), /// A raw pointer. RawPtr(u128), /// A reference Ref(Box), /// A literal with syntax error. Err, } impl PartialEq for Constant { fn eq(&self, other: &Self) -> bool { match (self, other) { (Self::Str(ls), Self::Str(rs)) => ls == rs, (Self::Binary(l), Self::Binary(r)) => l == r, (&Self::Char(l), &Self::Char(r)) => l == r, (&Self::Int(l), &Self::Int(r)) => l == r, (&Self::F64(l), &Self::F64(r)) => { // We want `Fw32 == FwAny` and `FwAny == Fw64`, and by transitivity we must have // `Fw32 == Fw64`, so don’t compare them. // `to_bits` is required to catch non-matching 0.0, -0.0, and NaNs. l.to_bits() == r.to_bits() }, (&Self::F32(l), &Self::F32(r)) => { // We want `Fw32 == FwAny` and `FwAny == Fw64`, and by transitivity we must have // `Fw32 == Fw64`, so don’t compare them. // `to_bits` is required to catch non-matching 0.0, -0.0, and NaNs. f64::from(l).to_bits() == f64::from(r).to_bits() }, (&Self::Bool(l), &Self::Bool(r)) => l == r, (&Self::Vec(ref l), &Self::Vec(ref r)) | (&Self::Tuple(ref l), &Self::Tuple(ref r)) => l == r, (Self::Repeat(lv, ls), Self::Repeat(rv, rs)) => ls == rs && lv == rv, (Self::Ref(lb), Self::Ref(rb)) => *lb == *rb, // TODO: are there inter-type equalities? _ => false, } } } impl Hash for Constant { fn hash(&self, state: &mut H) where H: Hasher, { std::mem::discriminant(self).hash(state); match *self { Self::Str(ref s) => { s.hash(state); }, Self::Binary(ref b) => { b.hash(state); }, Self::Char(c) => { c.hash(state); }, Self::Int(i) => { i.hash(state); }, Self::F32(f) => { f64::from(f).to_bits().hash(state); }, Self::F64(f) => { f.to_bits().hash(state); }, Self::Bool(b) => { b.hash(state); }, Self::Vec(ref v) | Self::Tuple(ref v) => { v.hash(state); }, Self::Repeat(ref c, l) => { c.hash(state); l.hash(state); }, Self::RawPtr(u) => { u.hash(state); }, Self::Ref(ref r) => { r.hash(state); }, Self::Err => {}, } } } impl Constant { pub fn partial_cmp(tcx: TyCtxt<'_>, cmp_type: Ty<'_>, left: &Self, right: &Self) -> Option { match (left, right) { (Self::Str(ls), Self::Str(rs)) => Some(ls.cmp(rs)), (Self::Char(l), Self::Char(r)) => Some(l.cmp(r)), (&Self::Int(l), &Self::Int(r)) => match *cmp_type.kind() { ty::Int(int_ty) => Some(sext(tcx, l, int_ty).cmp(&sext(tcx, r, int_ty))), ty::Uint(_) => Some(l.cmp(&r)), _ => bug!("Not an int type"), }, (&Self::F64(l), &Self::F64(r)) => l.partial_cmp(&r), (&Self::F32(l), &Self::F32(r)) => l.partial_cmp(&r), (Self::Bool(l), Self::Bool(r)) => Some(l.cmp(r)), (Self::Tuple(l), Self::Tuple(r)) if l.len() == r.len() => match *cmp_type.kind() { ty::Tuple(tys) if tys.len() == l.len() => l .iter() .zip(r) .zip(tys) .map(|((li, ri), cmp_type)| Self::partial_cmp(tcx, cmp_type, li, ri)) .find(|r| r.map_or(true, |o| o != Ordering::Equal)) .unwrap_or_else(|| Some(l.len().cmp(&r.len()))), _ => None, }, (Self::Vec(l), Self::Vec(r)) => { let (ty::Array(cmp_type, _) | ty::Slice(cmp_type)) = *cmp_type.kind() else { return None }; iter::zip(l, r) .map(|(li, ri)| Self::partial_cmp(tcx, cmp_type, li, ri)) .find(|r| r.map_or(true, |o| o != Ordering::Equal)) .unwrap_or_else(|| Some(l.len().cmp(&r.len()))) }, (Self::Repeat(lv, ls), Self::Repeat(rv, rs)) => { match Self::partial_cmp( tcx, match *cmp_type.kind() { ty::Array(ty, _) => ty, _ => return None, }, lv, rv, ) { Some(Equal) => Some(ls.cmp(rs)), x => x, } }, (Self::Ref(lb), Self::Ref(rb)) => Self::partial_cmp( tcx, match *cmp_type.kind() { ty::Ref(_, ty, _) => ty, _ => return None, }, lb, rb, ), // TODO: are there any useful inter-type orderings? _ => None, } } /// Returns the integer value or `None` if `self` or `val_type` is not integer type. pub fn int_value(&self, cx: &LateContext<'_>, val_type: Ty<'_>) -> Option { if let Constant::Int(const_int) = *self { match *val_type.kind() { ty::Int(ity) => Some(FullInt::S(sext(cx.tcx, const_int, ity))), ty::Uint(_) => Some(FullInt::U(const_int)), _ => None, } } else { None } } #[must_use] pub fn peel_refs(mut self) -> Self { while let Constant::Ref(r) = self { self = *r; } self } } /// Parses a `LitKind` to a `Constant`. pub fn lit_to_mir_constant(lit: &LitKind, ty: Option>) -> Constant { match *lit { LitKind::Str(ref is, _) => Constant::Str(is.to_string()), LitKind::Byte(b) => Constant::Int(u128::from(b)), LitKind::ByteStr(ref s, _) | LitKind::CStr(ref s, _) => Constant::Binary(Lrc::clone(s)), LitKind::Char(c) => Constant::Char(c), LitKind::Int(n, _) => Constant::Int(n), LitKind::Float(ref is, LitFloatType::Suffixed(fty)) => match fty { ast::FloatTy::F32 => Constant::F32(is.as_str().parse().unwrap()), ast::FloatTy::F64 => Constant::F64(is.as_str().parse().unwrap()), }, LitKind::Float(ref is, LitFloatType::Unsuffixed) => match ty.expect("type of float is known").kind() { ty::Float(FloatTy::F32) => Constant::F32(is.as_str().parse().unwrap()), ty::Float(FloatTy::F64) => Constant::F64(is.as_str().parse().unwrap()), _ => bug!(), }, LitKind::Bool(b) => Constant::Bool(b), LitKind::Err => Constant::Err, } } /// The source of a constant value. pub enum ConstantSource { /// The value is determined solely from the expression. Local, /// The value is dependent on a defined constant. Constant, } impl ConstantSource { pub fn is_local(&self) -> bool { matches!(self, Self::Local) } } /// Attempts to evaluate the expression as a constant. pub fn constant<'tcx>( lcx: &LateContext<'tcx>, typeck_results: &ty::TypeckResults<'tcx>, e: &Expr<'_>, ) -> Option { ConstEvalLateContext::new(lcx, typeck_results).expr(e) } /// Attempts to evaluate the expression as a constant. pub fn constant_with_source<'tcx>( lcx: &LateContext<'tcx>, typeck_results: &ty::TypeckResults<'tcx>, e: &Expr<'_>, ) -> Option<(Constant, ConstantSource)> { let mut ctxt = ConstEvalLateContext::new(lcx, typeck_results); let res = ctxt.expr(e); res.map(|x| (x, ctxt.source)) } /// Attempts to evaluate an expression only if it's value is not dependent on other items. pub fn constant_simple<'tcx>( lcx: &LateContext<'tcx>, typeck_results: &ty::TypeckResults<'tcx>, e: &Expr<'_>, ) -> Option { constant_with_source(lcx, typeck_results, e).and_then(|(c, s)| s.is_local().then_some(c)) } pub fn constant_full_int<'tcx>( lcx: &LateContext<'tcx>, typeck_results: &ty::TypeckResults<'tcx>, e: &Expr<'_>, ) -> Option { constant_simple(lcx, typeck_results, e)?.int_value(lcx, typeck_results.expr_ty(e)) } #[derive(Copy, Clone, Debug, Eq)] pub enum FullInt { S(i128), U(u128), } impl PartialEq for FullInt { #[must_use] fn eq(&self, other: &Self) -> bool { self.cmp(other) == Ordering::Equal } } impl PartialOrd for FullInt { #[must_use] fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl Ord for FullInt { #[must_use] fn cmp(&self, other: &Self) -> Ordering { use FullInt::{S, U}; fn cmp_s_u(s: i128, u: u128) -> Ordering { u128::try_from(s).map_or(Ordering::Less, |x| x.cmp(&u)) } match (*self, *other) { (S(s), S(o)) => s.cmp(&o), (U(s), U(o)) => s.cmp(&o), (S(s), U(o)) => cmp_s_u(s, o), (U(s), S(o)) => cmp_s_u(o, s).reverse(), } } } pub struct ConstEvalLateContext<'a, 'tcx> { lcx: &'a LateContext<'tcx>, typeck_results: &'a ty::TypeckResults<'tcx>, param_env: ty::ParamEnv<'tcx>, source: ConstantSource, substs: SubstsRef<'tcx>, } impl<'a, 'tcx> ConstEvalLateContext<'a, 'tcx> { fn new(lcx: &'a LateContext<'tcx>, typeck_results: &'a ty::TypeckResults<'tcx>) -> Self { Self { lcx, typeck_results, param_env: lcx.param_env, source: ConstantSource::Local, substs: List::empty(), } } /// Simple constant folding: Insert an expression, get a constant or none. pub fn expr(&mut self, e: &Expr<'_>) -> Option { match e.kind { ExprKind::Path(ref qpath) => self.fetch_path(qpath, e.hir_id, self.typeck_results.expr_ty(e)), ExprKind::Block(block, _) => self.block(block), ExprKind::Lit(lit) => { if is_direct_expn_of(e.span, "cfg").is_some() { None } else { Some(lit_to_mir_constant(&lit.node, self.typeck_results.expr_ty_opt(e))) } }, ExprKind::Array(vec) => self.multi(vec).map(Constant::Vec), ExprKind::Tup(tup) => self.multi(tup).map(Constant::Tuple), ExprKind::Repeat(value, _) => { let n = match self.typeck_results.expr_ty(e).kind() { ty::Array(_, n) => n.try_eval_target_usize(self.lcx.tcx, self.lcx.param_env)?, _ => span_bug!(e.span, "typeck error"), }; self.expr(value).map(|v| Constant::Repeat(Box::new(v), n)) }, ExprKind::Unary(op, operand) => self.expr(operand).and_then(|o| match op { UnOp::Not => self.constant_not(&o, self.typeck_results.expr_ty(e)), UnOp::Neg => self.constant_negate(&o, self.typeck_results.expr_ty(e)), UnOp::Deref => Some(if let Constant::Ref(r) = o { *r } else { o }), }), ExprKind::If(cond, then, ref otherwise) => self.ifthenelse(cond, then, *otherwise), ExprKind::Binary(op, left, right) => self.binop(op, left, right), ExprKind::Call(callee, args) => { // We only handle a few const functions for now. if_chain! { if args.is_empty(); if let ExprKind::Path(qpath) = &callee.kind; let res = self.typeck_results.qpath_res(qpath, callee.hir_id); if let Some(def_id) = res.opt_def_id(); let def_path = self.lcx.get_def_path(def_id); let def_path: Vec<&str> = def_path.iter().take(4).map(Symbol::as_str).collect(); if let ["core", "num", int_impl, "max_value"] = *def_path; then { let value = match int_impl { "" => i8::MAX as u128, "" => i16::MAX as u128, "" => i32::MAX as u128, "" => i64::MAX as u128, "" => i128::MAX as u128, _ => return None, }; Some(Constant::Int(value)) } else { None } } }, ExprKind::Index(arr, index) => self.index(arr, index), ExprKind::AddrOf(_, _, inner) => self.expr(inner).map(|r| Constant::Ref(Box::new(r))), // TODO: add other expressions. _ => None, } } #[expect(clippy::cast_possible_wrap)] fn constant_not(&self, o: &Constant, ty: Ty<'_>) -> Option { use self::Constant::{Bool, Int}; match *o { Bool(b) => Some(Bool(!b)), Int(value) => { let value = !value; match *ty.kind() { ty::Int(ity) => Some(Int(unsext(self.lcx.tcx, value as i128, ity))), ty::Uint(ity) => Some(Int(clip(self.lcx.tcx, value, ity))), _ => None, } }, _ => None, } } fn constant_negate(&self, o: &Constant, ty: Ty<'_>) -> Option { use self::Constant::{Int, F32, F64}; match *o { Int(value) => { let ty::Int(ity) = *ty.kind() else { return None }; // sign extend let value = sext(self.lcx.tcx, value, ity); let value = value.checked_neg()?; // clear unused bits Some(Int(unsext(self.lcx.tcx, value, ity))) }, F32(f) => Some(F32(-f)), F64(f) => Some(F64(-f)), _ => None, } } /// Create `Some(Vec![..])` of all constants, unless there is any /// non-constant part. fn multi(&mut self, vec: &[Expr<'_>]) -> Option> { vec.iter().map(|elem| self.expr(elem)).collect::>() } /// Lookup a possibly constant expression from an `ExprKind::Path`. fn fetch_path(&mut self, qpath: &QPath<'_>, id: HirId, ty: Ty<'tcx>) -> Option { let res = self.typeck_results.qpath_res(qpath, id); match res { Res::Def(DefKind::Const | DefKind::AssocConst, def_id) => { // Check if this constant is based on `cfg!(..)`, // which is NOT constant for our purposes. if let Some(node) = self.lcx.tcx.hir().get_if_local(def_id) && let Node::Item(&Item { kind: ItemKind::Const(_, body_id), .. }) = node && let Node::Expr(&Expr { kind: ExprKind::Lit(_), span, .. }) = self.lcx.tcx.hir().get(body_id.hir_id) && is_direct_expn_of(span, "cfg").is_some() { return None; } let substs = self.typeck_results.node_substs(id); let substs = if self.substs.is_empty() { substs } else { EarlyBinder::bind(substs).subst(self.lcx.tcx, self.substs) }; let result = self .lcx .tcx .const_eval_resolve(self.param_env, mir::UnevaluatedConst::new(def_id, substs), None) .ok() .map(|val| rustc_middle::mir::ConstantKind::from_value(val, ty))?; let result = miri_to_const(self.lcx.tcx, result)?; self.source = ConstantSource::Constant; Some(result) }, // FIXME: cover all usable cases. _ => None, } } fn index(&mut self, lhs: &'_ Expr<'_>, index: &'_ Expr<'_>) -> Option { let lhs = self.expr(lhs); let index = self.expr(index); match (lhs, index) { (Some(Constant::Vec(vec)), Some(Constant::Int(index))) => match vec.get(index as usize) { Some(Constant::F32(x)) => Some(Constant::F32(*x)), Some(Constant::F64(x)) => Some(Constant::F64(*x)), _ => None, }, (Some(Constant::Vec(vec)), _) => { if !vec.is_empty() && vec.iter().all(|x| *x == vec[0]) { match vec.get(0) { Some(Constant::F32(x)) => Some(Constant::F32(*x)), Some(Constant::F64(x)) => Some(Constant::F64(*x)), _ => None, } } else { None } }, _ => None, } } /// A block can only yield a constant if it only has one constant expression. fn block(&mut self, block: &Block<'_>) -> Option { if block.stmts.is_empty() && let Some(expr) = block.expr { // Try to detect any `cfg`ed statements or empty macro expansions. let span = block.span.data(); if span.ctxt == SyntaxContext::root() { if let Some(expr_span) = walk_span_to_context(expr.span, span.ctxt) && let expr_lo = expr_span.lo() && expr_lo >= span.lo && let Some(src) = get_source_text(self.lcx, span.lo..expr_lo) && let Some(src) = src.as_str() { use rustc_lexer::TokenKind::{Whitespace, LineComment, BlockComment, Semi, OpenBrace}; if !tokenize(src) .map(|t| t.kind) .filter(|t| !matches!(t, Whitespace | LineComment { .. } | BlockComment { .. } | Semi)) .eq([OpenBrace]) { self.source = ConstantSource::Constant; } } else { // Unable to access the source. Assume a non-local dependency. self.source = ConstantSource::Constant; } } self.expr(expr) } else { None } } fn ifthenelse(&mut self, cond: &Expr<'_>, then: &Expr<'_>, otherwise: Option<&Expr<'_>>) -> Option { if let Some(Constant::Bool(b)) = self.expr(cond) { if b { self.expr(then) } else { otherwise.as_ref().and_then(|expr| self.expr(expr)) } } else { None } } fn binop(&mut self, op: BinOp, left: &Expr<'_>, right: &Expr<'_>) -> Option { let l = self.expr(left)?; let r = self.expr(right); match (l, r) { (Constant::Int(l), Some(Constant::Int(r))) => match *self.typeck_results.expr_ty_opt(left)?.kind() { ty::Int(ity) => { let l = sext(self.lcx.tcx, l, ity); let r = sext(self.lcx.tcx, r, ity); let zext = |n: i128| Constant::Int(unsext(self.lcx.tcx, n, ity)); match op.node { BinOpKind::Add => l.checked_add(r).map(zext), BinOpKind::Sub => l.checked_sub(r).map(zext), BinOpKind::Mul => l.checked_mul(r).map(zext), BinOpKind::Div if r != 0 => l.checked_div(r).map(zext), BinOpKind::Rem if r != 0 => l.checked_rem(r).map(zext), BinOpKind::Shr => l.checked_shr(r.try_into().ok()?).map(zext), BinOpKind::Shl => l.checked_shl(r.try_into().ok()?).map(zext), BinOpKind::BitXor => Some(zext(l ^ r)), BinOpKind::BitOr => Some(zext(l | r)), BinOpKind::BitAnd => Some(zext(l & r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, } }, ty::Uint(_) => match op.node { BinOpKind::Add => l.checked_add(r).map(Constant::Int), BinOpKind::Sub => l.checked_sub(r).map(Constant::Int), BinOpKind::Mul => l.checked_mul(r).map(Constant::Int), BinOpKind::Div => l.checked_div(r).map(Constant::Int), BinOpKind::Rem => l.checked_rem(r).map(Constant::Int), BinOpKind::Shr => l.checked_shr(r.try_into().ok()?).map(Constant::Int), BinOpKind::Shl => l.checked_shl(r.try_into().ok()?).map(Constant::Int), BinOpKind::BitXor => Some(Constant::Int(l ^ r)), BinOpKind::BitOr => Some(Constant::Int(l | r)), BinOpKind::BitAnd => Some(Constant::Int(l & r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, }, _ => None, }, (Constant::F32(l), Some(Constant::F32(r))) => match op.node { BinOpKind::Add => Some(Constant::F32(l + r)), BinOpKind::Sub => Some(Constant::F32(l - r)), BinOpKind::Mul => Some(Constant::F32(l * r)), BinOpKind::Div => Some(Constant::F32(l / r)), BinOpKind::Rem => Some(Constant::F32(l % r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, }, (Constant::F64(l), Some(Constant::F64(r))) => match op.node { BinOpKind::Add => Some(Constant::F64(l + r)), BinOpKind::Sub => Some(Constant::F64(l - r)), BinOpKind::Mul => Some(Constant::F64(l * r)), BinOpKind::Div => Some(Constant::F64(l / r)), BinOpKind::Rem => Some(Constant::F64(l % r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, }, (l, r) => match (op.node, l, r) { (BinOpKind::And, Constant::Bool(false), _) => Some(Constant::Bool(false)), (BinOpKind::Or, Constant::Bool(true), _) => Some(Constant::Bool(true)), (BinOpKind::And, Constant::Bool(true), Some(r)) | (BinOpKind::Or, Constant::Bool(false), Some(r)) => { Some(r) }, (BinOpKind::BitXor, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l ^ r)), (BinOpKind::BitAnd, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l & r)), (BinOpKind::BitOr, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l | r)), _ => None, }, } } } pub fn miri_to_const<'tcx>(tcx: TyCtxt<'tcx>, result: mir::ConstantKind<'tcx>) -> Option { use rustc_middle::mir::interpret::ConstValue; match result { mir::ConstantKind::Val(ConstValue::Scalar(Scalar::Int(int)), _) => { match result.ty().kind() { ty::Bool => Some(Constant::Bool(int == ScalarInt::TRUE)), ty::Uint(_) | ty::Int(_) => Some(Constant::Int(int.assert_bits(int.size()))), ty::Float(FloatTy::F32) => Some(Constant::F32(f32::from_bits( int.try_into().expect("invalid f32 bit representation"), ))), ty::Float(FloatTy::F64) => Some(Constant::F64(f64::from_bits( int.try_into().expect("invalid f64 bit representation"), ))), ty::RawPtr(_) => Some(Constant::RawPtr(int.assert_bits(int.size()))), // FIXME: implement other conversions. _ => None, } }, mir::ConstantKind::Val(ConstValue::Slice { data, start, end }, _) => match result.ty().kind() { ty::Ref(_, tam, _) => match tam.kind() { ty::Str => String::from_utf8( data.inner() .inspect_with_uninit_and_ptr_outside_interpreter(start..end) .to_owned(), ) .ok() .map(Constant::Str), _ => None, }, _ => None, }, mir::ConstantKind::Val(ConstValue::ByRef { alloc, offset: _ }, _) => match result.ty().kind() { ty::Array(sub_type, len) => match sub_type.kind() { ty::Float(FloatTy::F32) => match len.kind().try_to_target_usize(tcx) { Some(len) => alloc .inner() .inspect_with_uninit_and_ptr_outside_interpreter(0..(4 * usize::try_from(len).unwrap())) .to_owned() .array_chunks::<4>() .map(|&chunk| Some(Constant::F32(f32::from_le_bytes(chunk)))) .collect::>>() .map(Constant::Vec), _ => None, }, ty::Float(FloatTy::F64) => match len.kind().try_to_target_usize(tcx) { Some(len) => alloc .inner() .inspect_with_uninit_and_ptr_outside_interpreter(0..(8 * usize::try_from(len).unwrap())) .to_owned() .array_chunks::<8>() .map(|&chunk| Some(Constant::F64(f64::from_le_bytes(chunk)))) .collect::>>() .map(Constant::Vec), _ => None, }, // FIXME: implement other array type conversions. _ => None, }, _ => None, }, // FIXME: implement other conversions. _ => None, } }