// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // NB: transitionary, de-mode-ing. #[forbid(deprecated_mode)]; #[forbid(deprecated_pattern)]; use T = self::inst::T; use char; use cmp::{Eq, Ord}; use cmp; use from_str::FromStr; use num; use num::Num::from_int; use prelude::*; use str; use uint; use vec; pub const bits : uint = inst::bits; pub const bytes : uint = (inst::bits / 8); pub const min_value: T = (-1 as T) << (bits - 1); pub const max_value: T = min_value - 1 as T; #[inline(always)] pub pure fn min(x: T, y: T) -> T { if x < y { x } else { y } } #[inline(always)] pub pure fn max(x: T, y: T) -> T { if x > y { x } else { y } } #[inline(always)] pub pure fn add(x: T, y: T) -> T { x + y } #[inline(always)] pub pure fn sub(x: T, y: T) -> T { x - y } #[inline(always)] pub pure fn mul(x: T, y: T) -> T { x * y } #[inline(always)] pub pure fn div(x: T, y: T) -> T { x / y } /** * Returns the remainder of y / x. * * # Examples * ~~~ * assert int::rem(5 / 2) == 1; * ~~~ * * When faced with negative numbers, the result copies the sign of the * dividend. * * ~~~ * assert int::rem(2 / -3) == 2; * ~~~ * * ~~~ * assert int::rem(-2 / 3) == -2; * ~~~ * */ #[inline(always)] pub pure fn rem(x: T, y: T) -> T { x % y } #[inline(always)] pub pure fn lt(x: T, y: T) -> bool { x < y } #[inline(always)] pub pure fn le(x: T, y: T) -> bool { x <= y } #[inline(always)] pub pure fn eq(x: T, y: T) -> bool { x == y } #[inline(always)] pub pure fn ne(x: T, y: T) -> bool { x != y } #[inline(always)] pub pure fn ge(x: T, y: T) -> bool { x >= y } #[inline(always)] pub pure fn gt(x: T, y: T) -> bool { x > y } #[inline(always)] pub pure fn is_positive(x: T) -> bool { x > 0 as T } #[inline(always)] pub pure fn is_negative(x: T) -> bool { x < 0 as T } #[inline(always)] pub pure fn is_nonpositive(x: T) -> bool { x <= 0 as T } #[inline(always)] pub pure fn is_nonnegative(x: T) -> bool { x >= 0 as T } /** * Iterate over the range [`lo`..`hi`) * * # Arguments * * * `lo` - lower bound, inclusive * * `hi` - higher bound, exclusive * * # Examples * ~~~ * let mut sum = 0; * for int::range(1, 5) |i| { * sum += i; * } * assert sum == 10; * ~~~ */ #[inline(always)] /// Iterate over the range [`start`,`start`+`step`..`stop`) pub pure fn range_step(start: T, stop: T, step: T, it: fn(T) -> bool) { let mut i = start; if step == 0 { die!(~"range_step called with step == 0"); } else if step > 0 { // ascending while i < stop { if !it(i) { break } i += step; } } else { // descending while i > stop { if !it(i) { break } i += step; } } } #[inline(always)] /// Iterate over the range [`lo`..`hi`) pub pure fn range(lo: T, hi: T, it: fn(T) -> bool) { range_step(lo, hi, 1 as T, it); } #[inline(always)] /// Iterate over the range [`hi`..`lo`) pub pure fn range_rev(hi: T, lo: T, it: fn(T) -> bool) { range_step(hi, lo, -1 as T, it); } /// Computes the bitwise complement #[inline(always)] pub pure fn compl(i: T) -> T { -1 as T ^ i } /// Computes the absolute value #[inline(always)] pub pure fn abs(i: T) -> T { if is_negative(i) { -i } else { i } } #[cfg(notest)] impl T : Ord { #[inline(always)] pure fn lt(&self, other: &T) -> bool { return (*self) < (*other); } #[inline(always)] pure fn le(&self, other: &T) -> bool { return (*self) <= (*other); } #[inline(always)] pure fn ge(&self, other: &T) -> bool { return (*self) >= (*other); } #[inline(always)] pure fn gt(&self, other: &T) -> bool { return (*self) > (*other); } } #[cfg(notest)] impl T : Eq { #[inline(always)] pure fn eq(&self, other: &T) -> bool { return (*self) == (*other); } #[inline(always)] pure fn ne(&self, other: &T) -> bool { return (*self) != (*other); } } impl T: num::Num { #[inline(always)] pure fn add(&self, other: &T) -> T { return *self + *other; } #[inline(always)] pure fn sub(&self, other: &T) -> T { return *self - *other; } #[inline(always)] pure fn mul(&self, other: &T) -> T { return *self * *other; } #[inline(always)] pure fn div(&self, other: &T) -> T { return *self / *other; } #[inline(always)] pure fn modulo(&self, other: &T) -> T { return *self % *other; } #[inline(always)] pure fn neg(&self) -> T { return -*self; } #[inline(always)] pure fn to_int(&self) -> int { return *self as int; } #[inline(always)] static pure fn from_int(n: int) -> T { return n as T; } } impl T: num::Zero { #[inline(always)] static pure fn zero() -> T { 0 } } impl T: num::One { #[inline(always)] static pure fn one() -> T { 1 } } /** * Parse a buffer of bytes * * # Arguments * * * buf - A byte buffer * * radix - The base of the number */ pub pure fn parse_bytes(buf: &[u8], radix: uint) -> Option { if vec::len(buf) == 0u { return None; } let mut i = vec::len(buf) - 1u; let mut start = 0u; let mut power = 1 as T; if buf[0] == ('-' as u8) { power = -1 as T; start = 1u; } let mut n = 0 as T; loop { match char::to_digit(buf[i] as char, radix) { Some(d) => n += (d as T) * power, None => return None } power *= radix as T; if i <= start { return Some(n); } i -= 1u; }; } /// Parse a string to an int #[inline(always)] pub pure fn from_str(s: &str) -> Option { parse_bytes(str::to_bytes(s), 10u) } impl T : FromStr { #[inline(always)] static pure fn from_str(s: &str) -> Option { from_str(s) } } /// Convert to a string in a given base #[inline(always)] pub pure fn to_str(n: T, radix: uint) -> ~str { do to_str_bytes(n, radix) |slice| { do vec::as_imm_buf(slice) |p, len| { unsafe { str::raw::from_buf_len(p, len) } } } } #[inline(always)] pub pure fn to_str_bytes(n: T, radix: uint, f: fn(v: &[u8]) -> U) -> U { if n < 0 as T { uint::to_str_bytes(true, -n as uint, radix, f) } else { uint::to_str_bytes(false, n as uint, radix, f) } } /// Convert to a string #[inline(always)] pub pure fn str(i: T) -> ~str { return to_str(i, 10u); } #[test] fn test_from_str() { assert from_str(~"0") == Some(0 as T); assert from_str(~"3") == Some(3 as T); assert from_str(~"10") == Some(10 as T); assert from_str(~"123456789") == Some(123456789 as T); assert from_str(~"00100") == Some(100 as T); assert from_str(~"-1") == Some(-1 as T); assert from_str(~"-3") == Some(-3 as T); assert from_str(~"-10") == Some(-10 as T); assert from_str(~"-123456789") == Some(-123456789 as T); assert from_str(~"-00100") == Some(-100 as T); assert from_str(~" ").is_none(); assert from_str(~"x").is_none(); } #[test] fn test_parse_bytes() { use str::to_bytes; assert parse_bytes(to_bytes(~"123"), 10u) == Some(123 as T); assert parse_bytes(to_bytes(~"1001"), 2u) == Some(9 as T); assert parse_bytes(to_bytes(~"123"), 8u) == Some(83 as T); assert parse_bytes(to_bytes(~"123"), 16u) == Some(291 as T); assert parse_bytes(to_bytes(~"ffff"), 16u) == Some(65535 as T); assert parse_bytes(to_bytes(~"FFFF"), 16u) == Some(65535 as T); assert parse_bytes(to_bytes(~"z"), 36u) == Some(35 as T); assert parse_bytes(to_bytes(~"Z"), 36u) == Some(35 as T); assert parse_bytes(to_bytes(~"-123"), 10u) == Some(-123 as T); assert parse_bytes(to_bytes(~"-1001"), 2u) == Some(-9 as T); assert parse_bytes(to_bytes(~"-123"), 8u) == Some(-83 as T); assert parse_bytes(to_bytes(~"-123"), 16u) == Some(-291 as T); assert parse_bytes(to_bytes(~"-ffff"), 16u) == Some(-65535 as T); assert parse_bytes(to_bytes(~"-FFFF"), 16u) == Some(-65535 as T); assert parse_bytes(to_bytes(~"-z"), 36u) == Some(-35 as T); assert parse_bytes(to_bytes(~"-Z"), 36u) == Some(-35 as T); assert parse_bytes(to_bytes(~"Z"), 35u).is_none(); assert parse_bytes(to_bytes(~"-9"), 2u).is_none(); } #[test] fn test_to_str() { assert (to_str(0 as T, 10u) == ~"0"); assert (to_str(1 as T, 10u) == ~"1"); assert (to_str(-1 as T, 10u) == ~"-1"); assert (to_str(127 as T, 16u) == ~"7f"); assert (to_str(100 as T, 10u) == ~"100"); } #[test] fn test_interfaces() { fn test(ten: U) { assert (ten.to_int() == 10); let two: U = from_int(2); assert (two.to_int() == 2); assert (ten.add(&two) == from_int(12)); assert (ten.sub(&two) == from_int(8)); assert (ten.mul(&two) == from_int(20)); assert (ten.div(&two) == from_int(5)); assert (ten.modulo(&two) == from_int(0)); assert (ten.neg() == from_int(-10)); } test(10 as T); } #[test] pub fn test_ranges() { let mut l = ~[]; for range(0,3) |i| { l.push(i); } for range_rev(13,10) |i| { l.push(i); } for range_step(20,26,2) |i| { l.push(i); } for range_step(36,30,-2) |i| { l.push(i); } assert l == ~[0,1,2, 13,12,11, 20,22,24, 36,34,32]; // None of the `fail`s should execute. for range(10,0) |_i| { die!(~"unreachable"); } for range_rev(0,10) |_i| { die!(~"unreachable"); } for range_step(10,0,1) |_i| { die!(~"unreachable"); } for range_step(0,10,-1) |_i| { die!(~"unreachable"); } } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_range_step_zero_step() { for range_step(0,10,0) |_i| {} }