type T = uint; /** * Divide two numbers, return the result, rounded up. * * # Arguments * * * x - an integer * * y - an integer distinct from 0u * * # Return value * * The smallest integer `q` such that `x/y <= q`. */ pure fn div_ceil(x: uint, y: uint) -> uint { let div = x / y; if x % y == 0u { div } else { div + 1u } } /** * Divide two numbers, return the result, rounded to the closest integer. * * # Arguments * * * x - an integer * * y - an integer distinct from 0u * * # Return value * * The integer `q` closest to `x/y`. */ pure fn div_round(x: uint, y: uint) -> uint { let div = x / y; if x % y * 2u < y { div } else { div + 1u } } /** * Divide two numbers, return the result, rounded down. * * Note: This is the same function as `div`. * * # Arguments * * * x - an integer * * y - an integer distinct from 0u * * # Return value * * The smallest integer `q` such that `x/y <= q`. This * is either `x/y` or `x/y + 1`. */ pure fn div_floor(x: uint, y: uint) -> uint { return x / y; } /// Produce a uint suitable for use in a hash table pure fn hash(x: &uint) -> uint { *x } /** * Iterate over the range [`lo`..`hi`), or stop when requested * * # Arguments * * * lo - The integer at which to start the loop (included) * * hi - The integer at which to stop the loop (excluded) * * it - A block to execute with each consecutive integer of the range. * Return `true` to continue, `false` to stop. * * # Return value * * `true` If execution proceeded correctly, `false` if it was interrupted, * that is if `it` returned `false` at any point. */ pure fn iterate(lo: uint, hi: uint, it: fn(uint) -> bool) -> bool { let mut i = lo; while i < hi { if (!it(i)) { return false; } i += 1u; } return true; } /// Returns the smallest power of 2 greater than or equal to `n` #[inline(always)] fn next_power_of_two(n: uint) -> uint { let halfbits: uint = sys::size_of::() * 4u; let mut tmp: uint = n - 1u; let mut shift: uint = 1u; while shift <= halfbits { tmp |= tmp >> shift; shift <<= 1u; } return tmp + 1u; } #[test] fn test_next_power_of_two() { assert (uint::next_power_of_two(0u) == 0u); assert (uint::next_power_of_two(1u) == 1u); assert (uint::next_power_of_two(2u) == 2u); assert (uint::next_power_of_two(3u) == 4u); assert (uint::next_power_of_two(4u) == 4u); assert (uint::next_power_of_two(5u) == 8u); assert (uint::next_power_of_two(6u) == 8u); assert (uint::next_power_of_two(7u) == 8u); assert (uint::next_power_of_two(8u) == 8u); assert (uint::next_power_of_two(9u) == 16u); assert (uint::next_power_of_two(10u) == 16u); assert (uint::next_power_of_two(11u) == 16u); assert (uint::next_power_of_two(12u) == 16u); assert (uint::next_power_of_two(13u) == 16u); assert (uint::next_power_of_two(14u) == 16u); assert (uint::next_power_of_two(15u) == 16u); assert (uint::next_power_of_two(16u) == 16u); assert (uint::next_power_of_two(17u) == 32u); assert (uint::next_power_of_two(18u) == 32u); assert (uint::next_power_of_two(19u) == 32u); assert (uint::next_power_of_two(20u) == 32u); assert (uint::next_power_of_two(21u) == 32u); assert (uint::next_power_of_two(22u) == 32u); assert (uint::next_power_of_two(23u) == 32u); assert (uint::next_power_of_two(24u) == 32u); assert (uint::next_power_of_two(25u) == 32u); assert (uint::next_power_of_two(26u) == 32u); assert (uint::next_power_of_two(27u) == 32u); assert (uint::next_power_of_two(28u) == 32u); assert (uint::next_power_of_two(29u) == 32u); assert (uint::next_power_of_two(30u) == 32u); assert (uint::next_power_of_two(31u) == 32u); assert (uint::next_power_of_two(32u) == 32u); assert (uint::next_power_of_two(33u) == 64u); assert (uint::next_power_of_two(34u) == 64u); assert (uint::next_power_of_two(35u) == 64u); assert (uint::next_power_of_two(36u) == 64u); assert (uint::next_power_of_two(37u) == 64u); assert (uint::next_power_of_two(38u) == 64u); assert (uint::next_power_of_two(39u) == 64u); } #[test] fn test_overflows() { assert (uint::max_value > 0u); assert (uint::min_value <= 0u); assert (uint::min_value + uint::max_value + 1u == 0u); } #[test] fn test_div() { assert(uint::div_floor(3u, 4u) == 0u); assert(uint::div_ceil(3u, 4u) == 1u); assert(uint::div_round(3u, 4u) == 1u); }