// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // // ignore-lexer-test FIXME #15883 use self::Entry::*; use self::SearchResult::*; use self::VacantEntryState::*; use borrow::Borrow; use clone::Clone; use cmp::{max, Eq, PartialEq}; use default::Default; use fmt::{self, Debug}; use hash::{Hash, SipHasher}; use iter::{self, Iterator, ExactSizeIterator, IntoIterator, IteratorExt, FromIterator, Extend, Map}; use marker::Sized; use mem::{self, replace}; #[cfg(stage0)] use num::{Int, UnsignedInt}; use ops::{Deref, FnMut, Index, IndexMut}; use option::Option::{self, Some, None}; use rand::{self, Rng}; use result::Result::{self, Ok, Err}; use super::table::{ self, Bucket, EmptyBucket, FullBucket, FullBucketImm, FullBucketMut, RawTable, SafeHash }; use super::table::BucketState::{ Empty, Full, }; use super::state::HashState; const INITIAL_LOG2_CAP: usize = 5; #[unstable(feature = "std_misc")] pub const INITIAL_CAPACITY: usize = 1 << INITIAL_LOG2_CAP; // 2^5 /// The default behavior of HashMap implements a load factor of 90.9%. /// This behavior is characterized by the following condition: /// /// - if size > 0.909 * capacity: grow the map #[derive(Clone)] struct DefaultResizePolicy; impl DefaultResizePolicy { fn new() -> DefaultResizePolicy { DefaultResizePolicy } #[inline] fn min_capacity(&self, usable_size: usize) -> usize { // Here, we are rephrasing the logic by specifying the lower limit // on capacity: // // - if `cap < size * 1.1`: grow the map usable_size * 11 / 10 } /// An inverse of `min_capacity`, approximately. #[inline] fn usable_capacity(&self, cap: usize) -> usize { // As the number of entries approaches usable capacity, // min_capacity(size) must be smaller than the internal capacity, // so that the map is not resized: // `min_capacity(usable_capacity(x)) <= x`. // The left-hand side can only be smaller due to flooring by integer // division. // // This doesn't have to be checked for overflow since allocation size // in bytes will overflow earlier than multiplication by 10. cap * 10 / 11 } } #[test] fn test_resize_policy() { let rp = DefaultResizePolicy; for n in 0..1000 { assert!(rp.min_capacity(rp.usable_capacity(n)) <= n); assert!(rp.usable_capacity(rp.min_capacity(n)) <= n); } } // The main performance trick in this hashmap is called Robin Hood Hashing. // It gains its excellent performance from one essential operation: // // If an insertion collides with an existing element, and that element's // "probe distance" (how far away the element is from its ideal location) // is higher than how far we've already probed, swap the elements. // // This massively lowers variance in probe distance, and allows us to get very // high load factors with good performance. The 90% load factor I use is rather // conservative. // // > Why a load factor of approximately 90%? // // In general, all the distances to initial buckets will converge on the mean. // At a load factor of α, the odds of finding the target bucket after k // probes is approximately 1-α^k. If we set this equal to 50% (since we converge // on the mean) and set k=8 (64-byte cache line / 8-byte hash), α=0.92. I round // this down to make the math easier on the CPU and avoid its FPU. // Since on average we start the probing in the middle of a cache line, this // strategy pulls in two cache lines of hashes on every lookup. I think that's // pretty good, but if you want to trade off some space, it could go down to one // cache line on average with an α of 0.84. // // > Wait, what? Where did you get 1-α^k from? // // On the first probe, your odds of a collision with an existing element is α. // The odds of doing this twice in a row is approximately α^2. For three times, // α^3, etc. Therefore, the odds of colliding k times is α^k. The odds of NOT // colliding after k tries is 1-α^k. // // The paper from 1986 cited below mentions an implementation which keeps track // of the distance-to-initial-bucket histogram. This approach is not suitable // for modern architectures because it requires maintaining an internal data // structure. This allows very good first guesses, but we are most concerned // with guessing entire cache lines, not individual indexes. Furthermore, array // accesses are no longer linear and in one direction, as we have now. There // is also memory and cache pressure that this would entail that would be very // difficult to properly see in a microbenchmark. // // ## Future Improvements (FIXME!) // // Allow the load factor to be changed dynamically and/or at initialization. // // Also, would it be possible for us to reuse storage when growing the // underlying table? This is exactly the use case for 'realloc', and may // be worth exploring. // // ## Future Optimizations (FIXME!) // // Another possible design choice that I made without any real reason is // parameterizing the raw table over keys and values. Technically, all we need // is the size and alignment of keys and values, and the code should be just as // efficient (well, we might need one for power-of-two size and one for not...). // This has the potential to reduce code bloat in rust executables, without // really losing anything except 4 words (key size, key alignment, val size, // val alignment) which can be passed in to every call of a `RawTable` function. // This would definitely be an avenue worth exploring if people start complaining // about the size of rust executables. // // Annotate exceedingly likely branches in `table::make_hash` // and `search_hashed` to reduce instruction cache pressure // and mispredictions once it becomes possible (blocked on issue #11092). // // Shrinking the table could simply reallocate in place after moving buckets // to the first half. // // The growth algorithm (fragment of the Proof of Correctness) // -------------------- // // The growth algorithm is basically a fast path of the naive reinsertion- // during-resize algorithm. Other paths should never be taken. // // Consider growing a robin hood hashtable of capacity n. Normally, we do this // by allocating a new table of capacity `2n`, and then individually reinsert // each element in the old table into the new one. This guarantees that the // new table is a valid robin hood hashtable with all the desired statistical // properties. Remark that the order we reinsert the elements in should not // matter. For simplicity and efficiency, we will consider only linear // reinsertions, which consist of reinserting all elements in the old table // into the new one by increasing order of index. However we will not be // starting our reinsertions from index 0 in general. If we start from index // i, for the purpose of reinsertion we will consider all elements with real // index j < i to have virtual index n + j. // // Our hash generation scheme consists of generating a 64-bit hash and // truncating the most significant bits. When moving to the new table, we // simply introduce a new bit to the front of the hash. Therefore, if an // elements has ideal index i in the old table, it can have one of two ideal // locations in the new table. If the new bit is 0, then the new ideal index // is i. If the new bit is 1, then the new ideal index is n + i. Intuitively, // we are producing two independent tables of size n, and for each element we // independently choose which table to insert it into with equal probability. // However the rather than wrapping around themselves on overflowing their // indexes, the first table overflows into the first, and the first into the // second. Visually, our new table will look something like: // // [yy_xxx_xxxx_xxx|xx_yyy_yyyy_yyy] // // Where x's are elements inserted into the first table, y's are elements // inserted into the second, and _'s are empty sections. We now define a few // key concepts that we will use later. Note that this is a very abstract // perspective of the table. A real resized table would be at least half // empty. // // Theorem: A linear robin hood reinsertion from the first ideal element // produces identical results to a linear naive reinsertion from the same // element. // // FIXME(Gankro, pczarn): review the proof and put it all in a separate README.md /// A hash map implementation which uses linear probing with Robin /// Hood bucket stealing. /// /// The hashes are all keyed by the task-local random number generator /// on creation by default. This means that the ordering of the keys is /// randomized, but makes the tables more resistant to /// denial-of-service attacks (Hash DoS). This behaviour can be /// overridden with one of the constructors. /// /// It is required that the keys implement the `Eq` and `Hash` traits, although /// this can frequently be achieved by using `#[derive(Eq, Hash)]`. /// /// It is a logic error for a key to be modified in such a way that the key's /// hash, as determined by the `Hash` trait, or its equality, as determined by /// the `Eq` trait, changes while it is in the map. This is normally only /// possible through `Cell`, `RefCell`, global state, I/O, or unsafe code. /// /// Relevant papers/articles: /// /// 1. Pedro Celis. ["Robin Hood Hashing"](https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf) /// 2. Emmanuel Goossaert. ["Robin Hood /// hashing"](http://codecapsule.com/2013/11/11/robin-hood-hashing/) /// 3. Emmanuel Goossaert. ["Robin Hood hashing: backward shift /// deletion"](http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/) /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// // type inference lets us omit an explicit type signature (which /// // would be `HashMap<&str, &str>` in this example). /// let mut book_reviews = HashMap::new(); /// /// // review some books. /// book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book."); /// book_reviews.insert("Grimms' Fairy Tales", "Masterpiece."); /// book_reviews.insert("Pride and Prejudice", "Very enjoyable."); /// book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot."); /// /// // check for a specific one. /// if !book_reviews.contains_key(&("Les Misérables")) { /// println!("We've got {} reviews, but Les Misérables ain't one.", /// book_reviews.len()); /// } /// /// // oops, this review has a lot of spelling mistakes, let's delete it. /// book_reviews.remove(&("The Adventures of Sherlock Holmes")); /// /// // look up the values associated with some keys. /// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; /// for book in to_find.iter() { /// match book_reviews.get(book) { /// Some(review) => println!("{}: {}", *book, *review), /// None => println!("{} is unreviewed.", *book) /// } /// } /// /// // iterate over everything. /// for (book, review) in book_reviews.iter() { /// println!("{}: \"{}\"", *book, *review); /// } /// ``` /// /// The easiest way to use `HashMap` with a custom type as key is to derive `Eq` and `Hash`. /// We must also derive `PartialEq`. /// /// ``` /// use std::collections::HashMap; /// /// #[derive(Hash, Eq, PartialEq, Debug)] /// struct Viking { /// name: String, /// country: String, /// } /// /// impl Viking { /// /// Create a new Viking. /// fn new(name: &str, country: &str) -> Viking { /// Viking { name: name.to_string(), country: country.to_string() } /// } /// } /// /// // Use a HashMap to store the vikings' health points. /// let mut vikings = HashMap::new(); /// /// vikings.insert(Viking::new("Einar", "Norway"), 25); /// vikings.insert(Viking::new("Olaf", "Denmark"), 24); /// vikings.insert(Viking::new("Harald", "Iceland"), 12); /// /// // Use derived implementation to print the status of the vikings. /// for (viking, health) in vikings.iter() { /// println!("{:?} has {} hp", viking, health); /// } /// ``` #[derive(Clone)] #[stable(feature = "rust1", since = "1.0.0")] pub struct HashMap { // All hashes are keyed on these values, to prevent hash collision attacks. hash_state: S, table: RawTable, resize_policy: DefaultResizePolicy, } /// Search for a pre-hashed key. fn search_hashed(table: M, hash: SafeHash, mut is_match: F) -> SearchResult where M: Deref>, F: FnMut(&K) -> bool, { // This is the only function where capacity can be zero. To avoid // undefined behaviour when Bucket::new gets the raw bucket in this // case, immediately return the appropriate search result. if table.capacity() == 0 { return TableRef(table); } let size = table.size(); let mut probe = Bucket::new(table, hash); let ib = probe.index(); while probe.index() != ib + size { let full = match probe.peek() { Empty(b) => return TableRef(b.into_table()), // hit an empty bucket Full(b) => b }; if full.distance() + ib < full.index() { // We can finish the search early if we hit any bucket // with a lower distance to initial bucket than we've probed. return TableRef(full.into_table()); } // If the hash doesn't match, it can't be this one.. if hash == full.hash() { // If the key doesn't match, it can't be this one.. if is_match(full.read().0) { return FoundExisting(full); } } probe = full.next(); } TableRef(probe.into_table()) } fn pop_internal(starting_bucket: FullBucketMut) -> (K, V) { let (empty, retkey, retval) = starting_bucket.take(); let mut gap = match empty.gap_peek() { Some(b) => b, None => return (retkey, retval) }; while gap.full().distance() != 0 { gap = match gap.shift() { Some(b) => b, None => break }; } // Now we've done all our shifting. Return the value we grabbed earlier. (retkey, retval) } /// Perform robin hood bucket stealing at the given `bucket`. You must /// also pass the position of that bucket's initial bucket so we don't have /// to recalculate it. /// /// `hash`, `k`, and `v` are the elements to "robin hood" into the hashtable. fn robin_hood<'a, K: 'a, V: 'a>(mut bucket: FullBucketMut<'a, K, V>, mut ib: usize, mut hash: SafeHash, mut k: K, mut v: V) -> &'a mut V { let starting_index = bucket.index(); let size = { let table = bucket.table(); // FIXME "lifetime too short". table.size() }; // There can be at most `size - dib` buckets to displace, because // in the worst case, there are `size` elements and we already are // `distance` buckets away from the initial one. let idx_end = starting_index + size - bucket.distance(); loop { let (old_hash, old_key, old_val) = bucket.replace(hash, k, v); loop { let probe = bucket.next(); assert!(probe.index() != idx_end); let full_bucket = match probe.peek() { Empty(bucket) => { // Found a hole! let b = bucket.put(old_hash, old_key, old_val); // Now that it's stolen, just read the value's pointer // right out of the table! return Bucket::at_index(b.into_table(), starting_index) .peek() .expect_full() .into_mut_refs() .1; }, Full(bucket) => bucket }; let probe_ib = full_bucket.index() - full_bucket.distance(); bucket = full_bucket; // Robin hood! Steal the spot. if ib < probe_ib { ib = probe_ib; hash = old_hash; k = old_key; v = old_val; break; } } } } /// A result that works like Option> but preserves /// the reference that grants us access to the table in any case. enum SearchResult { // This is an entry that holds the given key: FoundExisting(FullBucket), // There was no such entry. The reference is given back: TableRef(M) } impl SearchResult { fn into_option(self) -> Option> { match self { FoundExisting(bucket) => Some(bucket), TableRef(_) => None } } } impl HashMap where K: Eq + Hash, S: HashState { fn make_hash(&self, x: &X) -> SafeHash where X: Hash { table::make_hash(&self.hash_state, x) } /// Search for a key, yielding the index if it's found in the hashtable. /// If you already have the hash for the key lying around, use /// search_hashed. fn search<'a, Q: ?Sized>(&'a self, q: &Q) -> Option> where K: Borrow, Q: Eq + Hash { let hash = self.make_hash(q); search_hashed(&self.table, hash, |k| q.eq(k.borrow())) .into_option() } fn search_mut<'a, Q: ?Sized>(&'a mut self, q: &Q) -> Option> where K: Borrow, Q: Eq + Hash { let hash = self.make_hash(q); search_hashed(&mut self.table, hash, |k| q.eq(k.borrow())) .into_option() } // The caller should ensure that invariants by Robin Hood Hashing hold. fn insert_hashed_ordered(&mut self, hash: SafeHash, k: K, v: V) { let cap = self.table.capacity(); let mut buckets = Bucket::new(&mut self.table, hash); let ib = buckets.index(); while buckets.index() != ib + cap { // We don't need to compare hashes for value swap. // Not even DIBs for Robin Hood. buckets = match buckets.peek() { Empty(empty) => { empty.put(hash, k, v); return; } Full(b) => b.into_bucket() }; buckets.next(); } panic!("Internal HashMap error: Out of space."); } } impl HashMap { /// Create an empty HashMap. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, int> = HashMap::new(); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn new() -> HashMap { Default::default() } /// Creates an empty hash map with the given initial capacity. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, int> = HashMap::with_capacity(10); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn with_capacity(capacity: usize) -> HashMap { HashMap::with_capacity_and_hash_state(capacity, Default::default()) } } impl HashMap where K: Eq + Hash, S: HashState { /// Creates an empty hashmap which will use the given hasher to hash keys. /// /// The creates map has the default initial capacity. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// let mut map = HashMap::with_hash_state(s); /// map.insert(1, 2); /// ``` #[inline] #[unstable(feature = "std_misc", reason = "hasher stuff is unclear")] pub fn with_hash_state(hash_state: S) -> HashMap { HashMap { hash_state: hash_state, resize_policy: DefaultResizePolicy::new(), table: RawTable::new(0), } } /// Create an empty HashMap with space for at least `capacity` /// elements, using `hasher` to hash the keys. /// /// Warning: `hasher` is normally randomly generated, and /// is designed to allow HashMaps to be resistant to attacks that /// cause many collisions and very poor performance. Setting it /// manually using this function can expose a DoS attack vector. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// let mut map = HashMap::with_capacity_and_hash_state(10, s); /// map.insert(1, 2); /// ``` #[inline] #[unstable(feature = "std_misc", reason = "hasher stuff is unclear")] pub fn with_capacity_and_hash_state(capacity: usize, hash_state: S) -> HashMap { let resize_policy = DefaultResizePolicy::new(); let min_cap = max(INITIAL_CAPACITY, resize_policy.min_capacity(capacity)); let internal_cap = min_cap.checked_next_power_of_two().expect("capacity overflow"); assert!(internal_cap >= capacity, "capacity overflow"); HashMap { hash_state: hash_state, resize_policy: resize_policy, table: RawTable::new(internal_cap), } } /// Returns the number of elements the map can hold without reallocating. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let map: HashMap = HashMap::with_capacity(100); /// assert!(map.capacity() >= 100); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn capacity(&self) -> usize { self.resize_policy.usable_capacity(self.table.capacity()) } /// Reserves capacity for at least `additional` more elements to be inserted /// in the `HashMap`. The collection may reserve more space to avoid /// frequent reallocations. /// /// # Panics /// /// Panics if the new allocation size overflows `usize`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, int> = HashMap::new(); /// map.reserve(10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve(&mut self, additional: usize) { let new_size = self.len().checked_add(additional).expect("capacity overflow"); let min_cap = self.resize_policy.min_capacity(new_size); // An invalid value shouldn't make us run out of space. This includes // an overflow check. assert!(new_size <= min_cap); if self.table.capacity() < min_cap { let new_capacity = max(min_cap.next_power_of_two(), INITIAL_CAPACITY); self.resize(new_capacity); } } /// Resizes the internal vectors to a new capacity. It's your responsibility to: /// 1) Make sure the new capacity is enough for all the elements, accounting /// for the load factor. /// 2) Ensure new_capacity is a power of two or zero. fn resize(&mut self, new_capacity: usize) { assert!(self.table.size() <= new_capacity); assert!(new_capacity.is_power_of_two() || new_capacity == 0); let mut old_table = replace(&mut self.table, RawTable::new(new_capacity)); let old_size = old_table.size(); if old_table.capacity() == 0 || old_table.size() == 0 { return; } // Grow the table. // Specialization of the other branch. let mut bucket = Bucket::first(&mut old_table); // "So a few of the first shall be last: for many be called, // but few chosen." // // We'll most likely encounter a few buckets at the beginning that // have their initial buckets near the end of the table. They were // placed at the beginning as the probe wrapped around the table // during insertion. We must skip forward to a bucket that won't // get reinserted too early and won't unfairly steal others spot. // This eliminates the need for robin hood. loop { bucket = match bucket.peek() { Full(full) => { if full.distance() == 0 { // This bucket occupies its ideal spot. // It indicates the start of another "cluster". bucket = full.into_bucket(); break; } // Leaving this bucket in the last cluster for later. full.into_bucket() } Empty(b) => { // Encountered a hole between clusters. b.into_bucket() } }; bucket.next(); } // This is how the buckets might be laid out in memory: // ($ marks an initialized bucket) // ________________ // |$$$_$$$$$$_$$$$$| // // But we've skipped the entire initial cluster of buckets // and will continue iteration in this order: // ________________ // |$$$$$$_$$$$$ // ^ wrap around once end is reached // ________________ // $$$_____________| // ^ exit once table.size == 0 loop { bucket = match bucket.peek() { Full(bucket) => { let h = bucket.hash(); let (b, k, v) = bucket.take(); self.insert_hashed_ordered(h, k, v); { let t = b.table(); // FIXME "lifetime too short". if t.size() == 0 { break } }; b.into_bucket() } Empty(b) => b.into_bucket() }; bucket.next(); } assert_eq!(self.table.size(), old_size); } /// Shrinks the capacity of the map as much as possible. It will drop /// down as much as possible while maintaining the internal rules /// and possibly leaving some space in accordance with the resize policy. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap = HashMap::with_capacity(100); /// map.insert(1, 2); /// map.insert(3, 4); /// assert!(map.capacity() >= 100); /// map.shrink_to_fit(); /// assert!(map.capacity() >= 2); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn shrink_to_fit(&mut self) { let min_capacity = self.resize_policy.min_capacity(self.len()); let min_capacity = max(min_capacity.next_power_of_two(), INITIAL_CAPACITY); // An invalid value shouldn't make us run out of space. debug_assert!(self.len() <= min_capacity); if self.table.capacity() != min_capacity { let old_table = replace(&mut self.table, RawTable::new(min_capacity)); let old_size = old_table.size(); // Shrink the table. Naive algorithm for resizing: for (h, k, v) in old_table.into_iter() { self.insert_hashed_nocheck(h, k, v); } debug_assert_eq!(self.table.size(), old_size); } } /// Insert a pre-hashed key-value pair, without first checking /// that there's enough room in the buckets. Returns a reference to the /// newly insert value. /// /// If the key already exists, the hashtable will be returned untouched /// and a reference to the existing element will be returned. fn insert_hashed_nocheck(&mut self, hash: SafeHash, k: K, v: V) -> &mut V { self.insert_or_replace_with(hash, k, v, |_, _, _| ()) } fn insert_or_replace_with<'a, F>(&'a mut self, hash: SafeHash, k: K, v: V, mut found_existing: F) -> &'a mut V where F: FnMut(&mut K, &mut V, V), { // Worst case, we'll find one empty bucket among `size + 1` buckets. let size = self.table.size(); let mut probe = Bucket::new(&mut self.table, hash); let ib = probe.index(); loop { let mut bucket = match probe.peek() { Empty(bucket) => { // Found a hole! return bucket.put(hash, k, v).into_mut_refs().1; } Full(bucket) => bucket }; // hash matches? if bucket.hash() == hash { // key matches? if k == *bucket.read_mut().0 { let (bucket_k, bucket_v) = bucket.into_mut_refs(); debug_assert!(k == *bucket_k); // Key already exists. Get its reference. found_existing(bucket_k, bucket_v, v); return bucket_v; } } let robin_ib = bucket.index() as int - bucket.distance() as int; if (ib as int) < robin_ib { // Found a luckier bucket than me. Better steal his spot. return robin_hood(bucket, robin_ib as usize, hash, k, v); } probe = bucket.next(); assert!(probe.index() != ib + size + 1); } } /// An iterator visiting all keys in arbitrary order. /// Iterator element type is `&'a K`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// for key in map.keys() { /// println!("{}", key); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn keys<'a>(&'a self) -> Keys<'a, K, V> { fn first((a, _): (A, B)) -> A { a } let first: fn((&'a K,&'a V)) -> &'a K = first; // coerce to fn ptr Keys { inner: self.iter().map(first) } } /// An iterator visiting all values in arbitrary order. /// Iterator element type is `&'a V`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// for val in map.values() { /// println!("{}", val); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn values<'a>(&'a self) -> Values<'a, K, V> { fn second((_, b): (A, B)) -> B { b } let second: fn((&'a K,&'a V)) -> &'a V = second; // coerce to fn ptr Values { inner: self.iter().map(second) } } /// An iterator visiting all key-value pairs in arbitrary order. /// Iterator element type is `(&'a K, &'a V)`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// for (key, val) in map.iter() { /// println!("key: {} val: {}", key, val); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn iter(&self) -> Iter { Iter { inner: self.table.iter() } } /// An iterator visiting all key-value pairs in arbitrary order, /// with mutable references to the values. /// Iterator element type is `(&'a K, &'a mut V)`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// // Update all values /// for (_, val) in map.iter_mut() { /// *val *= 2; /// } /// /// for (key, val) in map.iter() { /// println!("key: {} val: {}", key, val); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn iter_mut(&mut self) -> IterMut { IterMut { inner: self.table.iter_mut() } } /// Creates a consuming iterator, that is, one that moves each key-value /// pair out of the map in arbitrary order. The map cannot be used after /// calling this. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1); /// map.insert("b", 2); /// map.insert("c", 3); /// /// // Not possible with .iter() /// let vec: Vec<(&str, int)> = map.into_iter().collect(); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn into_iter(self) -> IntoIter { fn last_two((_, b, c): (A, B, C)) -> (B, C) { (b, c) } let last_two: fn((SafeHash, K, V)) -> (K, V) = last_two; IntoIter { inner: self.table.into_iter().map(last_two) } } /// Gets the given key's corresponding entry in the map for in-place manipulation. #[stable(feature = "rust1", since = "1.0.0")] pub fn entry(&mut self, key: K) -> Entry { // Gotta resize now. self.reserve(1); let hash = self.make_hash(&key); search_entry_hashed(&mut self.table, hash, key) } /// Returns the number of elements in the map. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// assert_eq!(a.len(), 0); /// a.insert(1, "a"); /// assert_eq!(a.len(), 1); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn len(&self) -> usize { self.table.size() } /// Returns true if the map contains no elements. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// assert!(a.is_empty()); /// a.insert(1, "a"); /// assert!(!a.is_empty()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Clears the map, returning all key-value pairs as an iterator. Keeps the /// allocated memory for reuse. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// a.insert(1, "a"); /// a.insert(2, "b"); /// /// for (k, v) in a.drain().take(1) { /// assert!(k == 1 || k == 2); /// assert!(v == "a" || v == "b"); /// } /// /// assert!(a.is_empty()); /// ``` #[inline] #[unstable(feature = "std_misc", reason = "matches collection reform specification, waiting for dust to settle")] pub fn drain(&mut self) -> Drain { fn last_two((_, b, c): (A, B, C)) -> (B, C) { (b, c) } let last_two: fn((SafeHash, K, V)) -> (K, V) = last_two; // coerce to fn pointer Drain { inner: self.table.drain().map(last_two), } } /// Clears the map, removing all key-value pairs. Keeps the allocated memory /// for reuse. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// a.insert(1, "a"); /// a.clear(); /// assert!(a.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn clear(&mut self) { self.drain(); } /// Returns a reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but /// `Hash` and `Eq` on the borrowed form *must* match those for /// the key type. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.get(&1), Some(&"a")); /// assert_eq!(map.get(&2), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn get(&self, k: &Q) -> Option<&V> where K: Borrow, Q: Hash + Eq { self.search(k).map(|bucket| bucket.into_refs().1) } /// Returns true if the map contains a value for the specified key. /// /// The key may be any borrowed form of the map's key type, but /// `Hash` and `Eq` on the borrowed form *must* match those for /// the key type. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.contains_key(&1), true); /// assert_eq!(map.contains_key(&2), false); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn contains_key(&self, k: &Q) -> bool where K: Borrow, Q: Hash + Eq { self.search(k).is_some() } /// Returns a mutable reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but /// `Hash` and `Eq` on the borrowed form *must* match those for /// the key type. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// match map.get_mut(&1) { /// Some(x) => *x = "b", /// None => (), /// } /// assert_eq!(map[1], "b"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn get_mut(&mut self, k: &Q) -> Option<&mut V> where K: Borrow, Q: Hash + Eq { self.search_mut(k).map(|bucket| bucket.into_mut_refs().1) } /// Inserts a key-value pair from the map. If the key already had a value /// present in the map, that value is returned. Otherwise, `None` is returned. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// assert_eq!(map.insert(37, "a"), None); /// assert_eq!(map.is_empty(), false); /// /// map.insert(37, "b"); /// assert_eq!(map.insert(37, "c"), Some("b")); /// assert_eq!(map[37], "c"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(&mut self, k: K, v: V) -> Option { let hash = self.make_hash(&k); self.reserve(1); let mut retval = None; self.insert_or_replace_with(hash, k, v, |_, val_ref, val| { retval = Some(replace(val_ref, val)); }); retval } /// Removes a key from the map, returning the value at the key if the key /// was previously in the map. /// /// The key may be any borrowed form of the map's key type, but /// `Hash` and `Eq` on the borrowed form *must* match those for /// the key type. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.remove(&1), Some("a")); /// assert_eq!(map.remove(&1), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn remove(&mut self, k: &Q) -> Option where K: Borrow, Q: Hash + Eq { if self.table.size() == 0 { return None } self.search_mut(k).map(|bucket| pop_internal(bucket).1) } } fn search_entry_hashed<'a, K: Eq, V>(table: &'a mut RawTable, hash: SafeHash, k: K) -> Entry<'a, K, V> { // Worst case, we'll find one empty bucket among `size + 1` buckets. let size = table.size(); let mut probe = Bucket::new(table, hash); let ib = probe.index(); loop { let bucket = match probe.peek() { Empty(bucket) => { // Found a hole! return Vacant(VacantEntry { hash: hash, key: k, elem: NoElem(bucket), }); }, Full(bucket) => bucket }; // hash matches? if bucket.hash() == hash { // key matches? if k == *bucket.read().0 { return Occupied(OccupiedEntry{ elem: bucket, }); } } let robin_ib = bucket.index() as int - bucket.distance() as int; if (ib as int) < robin_ib { // Found a luckier bucket than me. Better steal his spot. return Vacant(VacantEntry { hash: hash, key: k, elem: NeqElem(bucket, robin_ib as usize), }); } probe = bucket.next(); assert!(probe.index() != ib + size + 1); } } impl PartialEq for HashMap where K: Eq + Hash, V: PartialEq, S: HashState { fn eq(&self, other: &HashMap) -> bool { if self.len() != other.len() { return false; } self.iter().all(|(key, value)| other.get(key).map_or(false, |v| *value == *v) ) } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for HashMap where K: Eq + Hash, V: Eq, S: HashState {} #[stable(feature = "rust1", since = "1.0.0")] impl Debug for HashMap where K: Eq + Hash + Debug, V: Debug, S: HashState { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "{{")); for (i, (k, v)) in self.iter().enumerate() { if i != 0 { try!(write!(f, ", ")); } try!(write!(f, "{:?}: {:?}", *k, *v)); } write!(f, "}}") } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for HashMap where K: Eq + Hash, S: HashState + Default, { fn default() -> HashMap { HashMap::with_hash_state(Default::default()) } } #[stable(feature = "rust1", since = "1.0.0")] impl Index for HashMap where K: Eq + Hash + Borrow, Q: Eq + Hash, S: HashState, { type Output = V; #[inline] fn index<'a>(&'a self, index: &Q) -> &'a V { self.get(index).expect("no entry found for key") } } #[stable(feature = "rust1", since = "1.0.0")] impl IndexMut for HashMap where K: Eq + Hash + Borrow, Q: Eq + Hash, S: HashState, { #[inline] fn index_mut<'a>(&'a mut self, index: &Q) -> &'a mut V { self.get_mut(index).expect("no entry found for key") } } /// HashMap iterator. #[stable(feature = "rust1", since = "1.0.0")] pub struct Iter<'a, K: 'a, V: 'a> { inner: table::Iter<'a, K, V> } // FIXME(#19839) Remove in favor of `#[derive(Clone)]` impl<'a, K, V> Clone for Iter<'a, K, V> { fn clone(&self) -> Iter<'a, K, V> { Iter { inner: self.inner.clone() } } } /// HashMap mutable values iterator. #[stable(feature = "rust1", since = "1.0.0")] pub struct IterMut<'a, K: 'a, V: 'a> { inner: table::IterMut<'a, K, V> } /// HashMap move iterator. #[stable(feature = "rust1", since = "1.0.0")] pub struct IntoIter { inner: iter::Map, fn((SafeHash, K, V)) -> (K, V)> } /// HashMap keys iterator. #[stable(feature = "rust1", since = "1.0.0")] pub struct Keys<'a, K: 'a, V: 'a> { inner: Map, fn((&'a K, &'a V)) -> &'a K> } // FIXME(#19839) Remove in favor of `#[derive(Clone)]` impl<'a, K, V> Clone for Keys<'a, K, V> { fn clone(&self) -> Keys<'a, K, V> { Keys { inner: self.inner.clone() } } } /// HashMap values iterator. #[stable(feature = "rust1", since = "1.0.0")] pub struct Values<'a, K: 'a, V: 'a> { inner: Map, fn((&'a K, &'a V)) -> &'a V> } // FIXME(#19839) Remove in favor of `#[derive(Clone)]` impl<'a, K, V> Clone for Values<'a, K, V> { fn clone(&self) -> Values<'a, K, V> { Values { inner: self.inner.clone() } } } /// HashMap drain iterator. #[unstable(feature = "std_misc", reason = "matches collection reform specification, waiting for dust to settle")] pub struct Drain<'a, K: 'a, V: 'a> { inner: iter::Map, fn((SafeHash, K, V)) -> (K, V)> } /// A view into a single occupied location in a HashMap. #[unstable(feature = "std_misc", reason = "precise API still being fleshed out")] pub struct OccupiedEntry<'a, K: 'a, V: 'a> { elem: FullBucket>, } /// A view into a single empty location in a HashMap. #[unstable(feature = "std_misc", reason = "precise API still being fleshed out")] pub struct VacantEntry<'a, K: 'a, V: 'a> { hash: SafeHash, key: K, elem: VacantEntryState>, } /// A view into a single location in a map, which may be vacant or occupied. #[unstable(feature = "std_misc", reason = "precise API still being fleshed out")] pub enum Entry<'a, K: 'a, V: 'a> { /// An occupied Entry. Occupied(OccupiedEntry<'a, K, V>), /// A vacant Entry. Vacant(VacantEntry<'a, K, V>), } /// Possible states of a VacantEntry. enum VacantEntryState { /// The index is occupied, but the key to insert has precedence, /// and will kick the current one out on insertion. NeqElem(FullBucket, usize), /// The index is genuinely vacant. NoElem(EmptyBucket), } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V, S> IntoIterator for &'a HashMap where K: Eq + Hash, S: HashState { type Item = (&'a K, &'a V); type IntoIter = Iter<'a, K, V>; fn into_iter(self) -> Iter<'a, K, V> { self.iter() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V, S> IntoIterator for &'a mut HashMap where K: Eq + Hash, S: HashState { type Item = (&'a K, &'a mut V); type IntoIter = IterMut<'a, K, V>; fn into_iter(mut self) -> IterMut<'a, K, V> { self.iter_mut() } } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for HashMap where K: Eq + Hash, S: HashState { type Item = (K, V); type IntoIter = IntoIter; fn into_iter(self) -> IntoIter { self.into_iter() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Iter<'a, K, V> { type Item = (&'a K, &'a V); #[inline] fn next(&mut self) -> Option<(&'a K, &'a V)> { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for IterMut<'a, K, V> { type Item = (&'a K, &'a mut V); #[inline] fn next(&mut self) -> Option<(&'a K, &'a mut V)> { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for IntoIter { type Item = (K, V); #[inline] fn next(&mut self) -> Option<(K, V)> { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IntoIter { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Keys<'a, K, V> { type Item = &'a K; #[inline] fn next(&mut self) -> Option<(&'a K)> { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Values<'a, K, V> { type Item = &'a V; #[inline] fn next(&mut self) -> Option<(&'a V)> { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Drain<'a, K, V> { type Item = (K, V); #[inline] fn next(&mut self) -> Option<(K, V)> { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> { #[inline] fn len(&self) -> usize { self.inner.len() } } #[unstable(feature = "std_misc", reason = "matches collection reform v2 specification, waiting for dust to settle")] impl<'a, K, V> Entry<'a, K, V> { /// Returns a mutable reference to the entry if occupied, or the VacantEntry if vacant. pub fn get(self) -> Result<&'a mut V, VacantEntry<'a, K, V>> { match self { Occupied(entry) => Ok(entry.into_mut()), Vacant(entry) => Err(entry), } } } impl<'a, K, V> OccupiedEntry<'a, K, V> { /// Gets a reference to the value in the entry. #[stable(feature = "rust1", since = "1.0.0")] pub fn get(&self) -> &V { self.elem.read().1 } /// Gets a mutable reference to the value in the entry. #[stable(feature = "rust1", since = "1.0.0")] pub fn get_mut(&mut self) -> &mut V { self.elem.read_mut().1 } /// Converts the OccupiedEntry into a mutable reference to the value in the entry /// with a lifetime bound to the map itself #[stable(feature = "rust1", since = "1.0.0")] pub fn into_mut(self) -> &'a mut V { self.elem.into_mut_refs().1 } /// Sets the value of the entry, and returns the entry's old value #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(&mut self, mut value: V) -> V { let old_value = self.get_mut(); mem::swap(&mut value, old_value); value } /// Takes the value out of the entry, and returns it #[stable(feature = "rust1", since = "1.0.0")] pub fn remove(self) -> V { pop_internal(self.elem).1 } } impl<'a, K: 'a, V: 'a> VacantEntry<'a, K, V> { /// Sets the value of the entry with the VacantEntry's key, /// and returns a mutable reference to it #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(self, value: V) -> &'a mut V { match self.elem { NeqElem(bucket, ib) => { robin_hood(bucket, ib, self.hash, self.key, value) } NoElem(bucket) => { bucket.put(self.hash, self.key, value).into_mut_refs().1 } } } } #[stable(feature = "rust1", since = "1.0.0")] impl FromIterator<(K, V)> for HashMap where K: Eq + Hash, S: HashState + Default { fn from_iter>(iterable: T) -> HashMap { let iter = iterable.into_iter(); let lower = iter.size_hint().0; let mut map = HashMap::with_capacity_and_hash_state(lower, Default::default()); map.extend(iter); map } } #[stable(feature = "rust1", since = "1.0.0")] impl Extend<(K, V)> for HashMap where K: Eq + Hash, S: HashState { fn extend>(&mut self, iter: T) { for (k, v) in iter { self.insert(k, v); } } } /// `RandomState` is the default state for `HashMap` types. /// /// A particular instance `RandomState` will create the same instances of /// `Hasher`, but the hashers created by two different `RandomState` /// instances are unlikely to produce the same result for the same values. #[derive(Clone)] #[unstable(feature = "std_misc", reason = "hashing an hash maps may be altered")] pub struct RandomState { k0: u64, k1: u64, } #[unstable(feature = "std_misc", reason = "hashing an hash maps may be altered")] impl RandomState { /// Construct a new `RandomState` that is initialized with random keys. #[inline] #[allow(deprecated)] pub fn new() -> RandomState { let mut r = rand::thread_rng(); RandomState { k0: r.gen(), k1: r.gen() } } } #[unstable(feature = "std_misc", reason = "hashing an hash maps may be altered")] impl HashState for RandomState { type Hasher = SipHasher; fn hasher(&self) -> SipHasher { SipHasher::new_with_keys(self.k0, self.k1) } } #[unstable(feature = "std_misc", reason = "hashing an hash maps may be altered")] impl Default for RandomState { #[inline] fn default() -> RandomState { RandomState::new() } } #[cfg(test)] mod test_map { use prelude::v1::*; use super::HashMap; use super::Entry::{Occupied, Vacant}; use iter::{range_inclusive, range_step_inclusive, repeat}; use cell::RefCell; use rand::{weak_rng, Rng}; #[test] fn test_create_capacity_zero() { let mut m = HashMap::with_capacity(0); assert!(m.insert(1, 1).is_none()); assert!(m.contains_key(&1)); assert!(!m.contains_key(&0)); } #[test] fn test_insert() { let mut m = HashMap::new(); assert_eq!(m.len(), 0); assert!(m.insert(1, 2).is_none()); assert_eq!(m.len(), 1); assert!(m.insert(2, 4).is_none()); assert_eq!(m.len(), 2); assert_eq!(*m.get(&1).unwrap(), 2); assert_eq!(*m.get(&2).unwrap(), 4); } thread_local! { static DROP_VECTOR: RefCell> = RefCell::new(Vec::new()) } #[derive(Hash, PartialEq, Eq)] struct Dropable { k: usize } impl Dropable { fn new(k: usize) -> Dropable { DROP_VECTOR.with(|slot| { slot.borrow_mut()[k] += 1; }); Dropable { k: k } } } impl Drop for Dropable { fn drop(&mut self) { DROP_VECTOR.with(|slot| { slot.borrow_mut()[self.k] -= 1; }); } } impl Clone for Dropable { fn clone(&self) -> Dropable { Dropable::new(self.k) } } #[test] fn test_drops() { DROP_VECTOR.with(|slot| { *slot.borrow_mut() = repeat(0).take(200).collect(); }); { let mut m = HashMap::new(); DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 0); } }); for i in 0..100 { let d1 = Dropable::new(i); let d2 = Dropable::new(i+100); m.insert(d1, d2); } DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 1); } }); for i in 0..50 { let k = Dropable::new(i); let v = m.remove(&k); assert!(v.is_some()); DROP_VECTOR.with(|v| { assert_eq!(v.borrow()[i], 1); assert_eq!(v.borrow()[i+100], 1); }); } DROP_VECTOR.with(|v| { for i in 0..50 { assert_eq!(v.borrow()[i], 0); assert_eq!(v.borrow()[i+100], 0); } for i in 50..100 { assert_eq!(v.borrow()[i], 1); assert_eq!(v.borrow()[i+100], 1); } }); } DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 0); } }); } #[test] fn test_move_iter_drops() { DROP_VECTOR.with(|v| { *v.borrow_mut() = repeat(0).take(200).collect(); }); let hm = { let mut hm = HashMap::new(); DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 0); } }); for i in 0..100 { let d1 = Dropable::new(i); let d2 = Dropable::new(i+100); hm.insert(d1, d2); } DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 1); } }); hm }; // By the way, ensure that cloning doesn't screw up the dropping. drop(hm.clone()); { let mut half = hm.into_iter().take(50); DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 1); } }); for _ in half.by_ref() {} DROP_VECTOR.with(|v| { let nk = (0..100).filter(|&i| { v.borrow()[i] == 1 }).count(); let nv = (0..100).filter(|&i| { v.borrow()[i+100] == 1 }).count(); assert_eq!(nk, 50); assert_eq!(nv, 50); }); }; DROP_VECTOR.with(|v| { for i in 0..200 { assert_eq!(v.borrow()[i], 0); } }); } #[test] fn test_empty_pop() { let mut m: HashMap = HashMap::new(); assert_eq!(m.remove(&0), None); } #[test] fn test_lots_of_insertions() { let mut m = HashMap::new(); // Try this a few times to make sure we never screw up the hashmap's // internal state. for _ in 0..10 { assert!(m.is_empty()); for i in range_inclusive(1, 1000) { assert!(m.insert(i, i).is_none()); for j in range_inclusive(1, i) { let r = m.get(&j); assert_eq!(r, Some(&j)); } for j in range_inclusive(i+1, 1000) { let r = m.get(&j); assert_eq!(r, None); } } for i in range_inclusive(1001, 2000) { assert!(!m.contains_key(&i)); } // remove forwards for i in range_inclusive(1, 1000) { assert!(m.remove(&i).is_some()); for j in range_inclusive(1, i) { assert!(!m.contains_key(&j)); } for j in range_inclusive(i+1, 1000) { assert!(m.contains_key(&j)); } } for i in range_inclusive(1, 1000) { assert!(!m.contains_key(&i)); } for i in range_inclusive(1, 1000) { assert!(m.insert(i, i).is_none()); } // remove backwards for i in range_step_inclusive(1000, 1, -1) { assert!(m.remove(&i).is_some()); for j in range_inclusive(i, 1000) { assert!(!m.contains_key(&j)); } for j in range_inclusive(1, i-1) { assert!(m.contains_key(&j)); } } } } #[test] fn test_find_mut() { let mut m = HashMap::new(); assert!(m.insert(1, 12).is_none()); assert!(m.insert(2, 8).is_none()); assert!(m.insert(5, 14).is_none()); let new = 100; match m.get_mut(&5) { None => panic!(), Some(x) => *x = new } assert_eq!(m.get(&5), Some(&new)); } #[test] fn test_insert_overwrite() { let mut m = HashMap::new(); assert!(m.insert(1, 2).is_none()); assert_eq!(*m.get(&1).unwrap(), 2); assert!(!m.insert(1, 3).is_none()); assert_eq!(*m.get(&1).unwrap(), 3); } #[test] fn test_insert_conflicts() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1, 2).is_none()); assert!(m.insert(5, 3).is_none()); assert!(m.insert(9, 4).is_none()); assert_eq!(*m.get(&9).unwrap(), 4); assert_eq!(*m.get(&5).unwrap(), 3); assert_eq!(*m.get(&1).unwrap(), 2); } #[test] fn test_conflict_remove() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1, 2).is_none()); assert_eq!(*m.get(&1).unwrap(), 2); assert!(m.insert(5, 3).is_none()); assert_eq!(*m.get(&1).unwrap(), 2); assert_eq!(*m.get(&5).unwrap(), 3); assert!(m.insert(9, 4).is_none()); assert_eq!(*m.get(&1).unwrap(), 2); assert_eq!(*m.get(&5).unwrap(), 3); assert_eq!(*m.get(&9).unwrap(), 4); assert!(m.remove(&1).is_some()); assert_eq!(*m.get(&9).unwrap(), 4); assert_eq!(*m.get(&5).unwrap(), 3); } #[test] fn test_is_empty() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1, 2).is_none()); assert!(!m.is_empty()); assert!(m.remove(&1).is_some()); assert!(m.is_empty()); } #[test] fn test_pop() { let mut m = HashMap::new(); m.insert(1, 2); assert_eq!(m.remove(&1), Some(2)); assert_eq!(m.remove(&1), None); } #[test] fn test_iterate() { let mut m = HashMap::with_capacity(4); for i in 0..32 { assert!(m.insert(i, i*2).is_none()); } assert_eq!(m.len(), 32); let mut observed: u32 = 0; for (k, v) in &m { assert_eq!(*v, *k * 2); observed |= 1 << *k; } assert_eq!(observed, 0xFFFF_FFFF); } #[test] fn test_keys() { let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; let map: HashMap<_, _> = vec.into_iter().collect(); let keys: Vec<_> = map.keys().cloned().collect(); assert_eq!(keys.len(), 3); assert!(keys.contains(&1)); assert!(keys.contains(&2)); assert!(keys.contains(&3)); } #[test] fn test_values() { let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; let map: HashMap<_, _> = vec.into_iter().collect(); let values: Vec<_> = map.values().cloned().collect(); assert_eq!(values.len(), 3); assert!(values.contains(&'a')); assert!(values.contains(&'b')); assert!(values.contains(&'c')); } #[test] fn test_find() { let mut m = HashMap::new(); assert!(m.get(&1).is_none()); m.insert(1, 2); match m.get(&1) { None => panic!(), Some(v) => assert_eq!(*v, 2) } } #[test] fn test_eq() { let mut m1 = HashMap::new(); m1.insert(1, 2); m1.insert(2, 3); m1.insert(3, 4); let mut m2 = HashMap::new(); m2.insert(1, 2); m2.insert(2, 3); assert!(m1 != m2); m2.insert(3, 4); assert_eq!(m1, m2); } #[test] fn test_show() { let mut map = HashMap::new(); let empty: HashMap = HashMap::new(); map.insert(1, 2); map.insert(3, 4); let map_str = format!("{:?}", map); assert!(map_str == "{1: 2, 3: 4}" || map_str == "{3: 4, 1: 2}"); assert_eq!(format!("{:?}", empty), "{}"); } #[test] fn test_expand() { let mut m = HashMap::new(); assert_eq!(m.len(), 0); assert!(m.is_empty()); let mut i = 0; let old_cap = m.table.capacity(); while old_cap == m.table.capacity() { m.insert(i, i); i += 1; } assert_eq!(m.len(), i); assert!(!m.is_empty()); } #[test] fn test_behavior_resize_policy() { let mut m = HashMap::new(); assert_eq!(m.len(), 0); assert_eq!(m.table.capacity(), 0); assert!(m.is_empty()); m.insert(0, 0); m.remove(&0); assert!(m.is_empty()); let initial_cap = m.table.capacity(); m.reserve(initial_cap); let cap = m.table.capacity(); assert_eq!(cap, initial_cap * 2); let mut i = 0; for _ in 0..cap * 3 / 4 { m.insert(i, i); i += 1; } // three quarters full assert_eq!(m.len(), i); assert_eq!(m.table.capacity(), cap); for _ in 0..cap / 4 { m.insert(i, i); i += 1; } // half full let new_cap = m.table.capacity(); assert_eq!(new_cap, cap * 2); for _ in 0..cap / 2 - 1 { i -= 1; m.remove(&i); assert_eq!(m.table.capacity(), new_cap); } // A little more than one quarter full. m.shrink_to_fit(); assert_eq!(m.table.capacity(), cap); // again, a little more than half full for _ in 0..cap / 2 - 1 { i -= 1; m.remove(&i); } m.shrink_to_fit(); assert_eq!(m.len(), i); assert!(!m.is_empty()); assert_eq!(m.table.capacity(), initial_cap); } #[test] fn test_reserve_shrink_to_fit() { let mut m = HashMap::new(); m.insert(0, 0); m.remove(&0); assert!(m.capacity() >= m.len()); for i in 0..128 { m.insert(i, i); } m.reserve(256); let usable_cap = m.capacity(); for i in 128..(128 + 256) { m.insert(i, i); assert_eq!(m.capacity(), usable_cap); } for i in 100..(128 + 256) { assert_eq!(m.remove(&i), Some(i)); } m.shrink_to_fit(); assert_eq!(m.len(), 100); assert!(!m.is_empty()); assert!(m.capacity() >= m.len()); for i in 0..100 { assert_eq!(m.remove(&i), Some(i)); } m.shrink_to_fit(); m.insert(0, 0); assert_eq!(m.len(), 1); assert!(m.capacity() >= m.len()); assert_eq!(m.remove(&0), Some(0)); } #[test] fn test_from_iter() { let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let map: HashMap<_, _> = xs.iter().cloned().collect(); for &(k, v) in &xs { assert_eq!(map.get(&k), Some(&v)); } } #[test] fn test_size_hint() { let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let map: HashMap<_, _> = xs.iter().cloned().collect(); let mut iter = map.iter(); for _ in iter.by_ref().take(3) {} assert_eq!(iter.size_hint(), (3, Some(3))); } #[test] fn test_iter_len() { let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let map: HashMap<_, _> = xs.iter().cloned().collect(); let mut iter = map.iter(); for _ in iter.by_ref().take(3) {} assert_eq!(iter.len(), 3); } #[test] fn test_mut_size_hint() { let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let mut map: HashMap<_, _> = xs.iter().cloned().collect(); let mut iter = map.iter_mut(); for _ in iter.by_ref().take(3) {} assert_eq!(iter.size_hint(), (3, Some(3))); } #[test] fn test_iter_mut_len() { let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let mut map: HashMap<_, _> = xs.iter().cloned().collect(); let mut iter = map.iter_mut(); for _ in iter.by_ref().take(3) {} assert_eq!(iter.len(), 3); } #[test] fn test_index() { let mut map = HashMap::new(); map.insert(1, 2); map.insert(2, 1); map.insert(3, 4); assert_eq!(map[2], 1); } #[test] #[should_panic] fn test_index_nonexistent() { let mut map = HashMap::new(); map.insert(1, 2); map.insert(2, 1); map.insert(3, 4); map[4]; } #[test] fn test_entry(){ let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; let mut map: HashMap<_, _> = xs.iter().cloned().collect(); // Existing key (insert) match map.entry(1) { Vacant(_) => unreachable!(), Occupied(mut view) => { assert_eq!(view.get(), &10); assert_eq!(view.insert(100), 10); } } assert_eq!(map.get(&1).unwrap(), &100); assert_eq!(map.len(), 6); // Existing key (update) match map.entry(2) { Vacant(_) => unreachable!(), Occupied(mut view) => { let v = view.get_mut(); let new_v = (*v) * 10; *v = new_v; } } assert_eq!(map.get(&2).unwrap(), &200); assert_eq!(map.len(), 6); // Existing key (take) match map.entry(3) { Vacant(_) => unreachable!(), Occupied(view) => { assert_eq!(view.remove(), 30); } } assert_eq!(map.get(&3), None); assert_eq!(map.len(), 5); // Inexistent key (insert) match map.entry(10) { Occupied(_) => unreachable!(), Vacant(view) => { assert_eq!(*view.insert(1000), 1000); } } assert_eq!(map.get(&10).unwrap(), &1000); assert_eq!(map.len(), 6); } #[test] fn test_entry_take_doesnt_corrupt() { #![allow(deprecated)] //rand // Test for #19292 fn check(m: &HashMap) { for k in m.keys() { assert!(m.contains_key(k), "{} is in keys() but not in the map?", k); } } let mut m = HashMap::new(); let mut rng = weak_rng(); // Populate the map with some items. for _ in 0..50 { let x = rng.gen_range(-10, 10); m.insert(x, ()); } for i in 0..1000 { let x = rng.gen_range(-10, 10); match m.entry(x) { Vacant(_) => {}, Occupied(e) => { println!("{}: remove {}", i, x); e.remove(); }, } check(&m); } } }