// NB: transitionary, de-mode-ing. #[forbid(deprecated_mode)]; #[forbid(deprecated_pattern)]; //! Operations and constants for `f64` pub use cmath::c_double_utils::*; pub use cmath::c_double_targ_consts::*; // FIXME (#1433): obtain these in a different way // These are not defined inside consts:: for consistency with // the integer types pub const radix: uint = 2u; pub const mantissa_digits: uint = 53u; pub const digits: uint = 15u; pub const epsilon: f64 = 2.2204460492503131e-16_f64; pub const min_value: f64 = 2.2250738585072014e-308_f64; pub const max_value: f64 = 1.7976931348623157e+308_f64; pub const min_exp: int = -1021; pub const max_exp: int = 1024; pub const min_10_exp: int = -307; pub const max_10_exp: int = 308; pub const NaN: f64 = 0.0_f64/0.0_f64; pub const infinity: f64 = 1.0_f64/0.0_f64; pub const neg_infinity: f64 = -1.0_f64/0.0_f64; pub pure fn is_NaN(f: f64) -> bool { f != f } pub pure fn add(x: f64, y: f64) -> f64 { return x + y; } pub pure fn sub(x: f64, y: f64) -> f64 { return x - y; } pub pure fn mul(x: f64, y: f64) -> f64 { return x * y; } pub pure fn div(x: f64, y: f64) -> f64 { return x / y; } pub pure fn rem(x: f64, y: f64) -> f64 { return x % y; } pub pure fn lt(x: f64, y: f64) -> bool { return x < y; } pub pure fn le(x: f64, y: f64) -> bool { return x <= y; } pub pure fn eq(x: f64, y: f64) -> bool { return x == y; } pub pure fn ne(x: f64, y: f64) -> bool { return x != y; } pub pure fn ge(x: f64, y: f64) -> bool { return x >= y; } pub pure fn gt(x: f64, y: f64) -> bool { return x > y; } pub pure fn sqrt(x: f64) -> f64 { cmath::c_double_utils::sqrt(x as libc::c_double) as f64 } /// Returns true if `x` is a positive number, including +0.0f640 and +Infinity pub pure fn is_positive(x: f64) -> bool { return x > 0.0f64 || (1.0f64/x) == infinity; } /// Returns true if `x` is a negative number, including -0.0f640 and -Infinity pub pure fn is_negative(x: f64) -> bool { return x < 0.0f64 || (1.0f64/x) == neg_infinity; } /** * Returns true if `x` is a negative number, including -0.0f640 and -Infinity * * This is the same as `f64::is_negative`. */ pub pure fn is_nonpositive(x: f64) -> bool { return x < 0.0f64 || (1.0f64/x) == neg_infinity; } /** * Returns true if `x` is a positive number, including +0.0f640 and +Infinity * * This is the same as `f64::positive`. */ pub pure fn is_nonnegative(x: f64) -> bool { return x > 0.0f64 || (1.0f64/x) == infinity; } /// Returns true if `x` is a zero number (positive or negative zero) pub pure fn is_zero(x: f64) -> bool { return x == 0.0f64 || x == -0.0f64; } /// Returns true if `x`is an infinite number pub pure fn is_infinite(x: f64) -> bool { return x == infinity || x == neg_infinity; } /// Returns true if `x`is a finite number pub pure fn is_finite(x: f64) -> bool { return !(is_NaN(x) || is_infinite(x)); } // FIXME (#1999): add is_normal, is_subnormal, and fpclassify /* Module: consts */ pub mod consts { // FIXME (requires Issue #1433 to fix): replace with mathematical // constants from cmath. /// Archimedes' constant pub const pi: f64 = 3.14159265358979323846264338327950288_f64; /// pi/2.0 pub const frac_pi_2: f64 = 1.57079632679489661923132169163975144_f64; /// pi/4.0 pub const frac_pi_4: f64 = 0.785398163397448309615660845819875721_f64; /// 1.0/pi pub const frac_1_pi: f64 = 0.318309886183790671537767526745028724_f64; /// 2.0/pi pub const frac_2_pi: f64 = 0.636619772367581343075535053490057448_f64; /// 2.0/sqrt(pi) pub const frac_2_sqrtpi: f64 = 1.12837916709551257389615890312154517_f64; /// sqrt(2.0) pub const sqrt2: f64 = 1.41421356237309504880168872420969808_f64; /// 1.0/sqrt(2.0) pub const frac_1_sqrt2: f64 = 0.707106781186547524400844362104849039_f64; /// Euler's number pub const e: f64 = 2.71828182845904523536028747135266250_f64; /// log2(e) pub const log2_e: f64 = 1.44269504088896340735992468100189214_f64; /// log10(e) pub const log10_e: f64 = 0.434294481903251827651128918916605082_f64; /// ln(2.0) pub const ln_2: f64 = 0.693147180559945309417232121458176568_f64; /// ln(10.0) pub const ln_10: f64 = 2.30258509299404568401799145468436421_f64; } pub pure fn signbit(x: f64) -> int { if is_negative(x) { return 1; } else { return 0; } } pub pure fn logarithm(n: f64, b: f64) -> f64 { return log2(n) / log2(b); } impl f64 : cmp::Eq { pure fn eq(&self, other: &f64) -> bool { (*self) == (*other) } pure fn ne(&self, other: &f64) -> bool { (*self) != (*other) } } impl f64 : cmp::Ord { pure fn lt(&self, other: &f64) -> bool { (*self) < (*other) } pure fn le(&self, other: &f64) -> bool { (*self) <= (*other) } pure fn ge(&self, other: &f64) -> bool { (*self) >= (*other) } pure fn gt(&self, other: &f64) -> bool { (*self) > (*other) } } impl f64: num::Num { pure fn add(other: &f64) -> f64 { return self + *other; } pure fn sub(other: &f64) -> f64 { return self - *other; } pure fn mul(other: &f64) -> f64 { return self * *other; } pure fn div(other: &f64) -> f64 { return self / *other; } pure fn modulo(other: &f64) -> f64 { return self % *other; } pure fn neg() -> f64 { return -self; } pure fn to_int() -> int { return self as int; } static pure fn from_int(n: int) -> f64 { return n as f64; } } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //