// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Implementation of compiling various phases of the compiler and standard //! library. //! //! This module contains some of the real meat in the rustbuild build system //! which is where Cargo is used to compiler the standard library, libtest, and //! compiler. This module is also responsible for assembling the sysroot as it //! goes along from the output of the previous stage. use std::env; use std::fs::{self, File}; use std::io::BufReader; use std::io::prelude::*; use std::path::{Path, PathBuf}; use std::process::{Command, Stdio}; use std::str; use std::cmp::min; use build_helper::{output, mtime, up_to_date}; use filetime::FileTime; use serde_json; use util::{exe, libdir, is_dylib, copy}; use {Build, Compiler, Mode}; use native; use tool; use cache::{INTERNER, Interned}; use builder::{Step, RunConfig, ShouldRun, Builder}; #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct Std { pub target: Interned, pub compiler: Compiler, } impl Step for Std { type Output = (); const DEFAULT: bool = true; fn should_run(run: ShouldRun) -> ShouldRun { run.path("src/libstd").krate("std") } fn make_run(run: RunConfig) { run.builder.ensure(Std { compiler: run.builder.compiler(run.builder.top_stage, run.host), target: run.target, }); } /// Build the standard library. /// /// This will build the standard library for a particular stage of the build /// using the `compiler` targeting the `target` architecture. The artifacts /// created will also be linked into the sysroot directory. fn run(self, builder: &Builder) { let build = builder.build; let target = self.target; let compiler = self.compiler; builder.ensure(StartupObjects { compiler, target }); if build.force_use_stage1(compiler, target) { let from = builder.compiler(1, build.build); builder.ensure(Std { compiler: from, target, }); println!("Uplifting stage1 std ({} -> {})", from.host, target); // Even if we're not building std this stage, the new sysroot must // still contain the musl startup objects. if target.contains("musl") && !target.contains("mips") { let libdir = builder.sysroot_libdir(compiler, target); copy_musl_third_party_objects(build, target, &libdir); } builder.ensure(StdLink { compiler: from, target_compiler: compiler, target, }); return; } let _folder = build.fold_output(|| format!("stage{}-std", compiler.stage)); println!("Building stage{} std artifacts ({} -> {})", compiler.stage, &compiler.host, target); if target.contains("musl") && !target.contains("mips") { let libdir = builder.sysroot_libdir(compiler, target); copy_musl_third_party_objects(build, target, &libdir); } let out_dir = build.cargo_out(compiler, Mode::Libstd, target); build.clear_if_dirty(&out_dir, &builder.rustc(compiler)); let mut cargo = builder.cargo(compiler, Mode::Libstd, target, "build"); std_cargo(build, &compiler, target, &mut cargo); run_cargo(build, &mut cargo, &libstd_stamp(build, compiler, target)); builder.ensure(StdLink { compiler: builder.compiler(compiler.stage, build.build), target_compiler: compiler, target, }); } } /// Copies the crt(1,i,n).o startup objects /// /// Since musl supports fully static linking, we can cross link for it even /// with a glibc-targeting toolchain, given we have the appropriate startup /// files. As those shipped with glibc won't work, copy the ones provided by /// musl so we have them on linux-gnu hosts. fn copy_musl_third_party_objects(build: &Build, target: Interned, into: &Path) { for &obj in &["crt1.o", "crti.o", "crtn.o"] { copy(&build.musl_root(target).unwrap().join("lib").join(obj), &into.join(obj)); } } /// Configure cargo to compile the standard library, adding appropriate env vars /// and such. pub fn std_cargo(build: &Build, compiler: &Compiler, target: Interned, cargo: &mut Command) { let mut features = build.std_features(); if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") { cargo.env("MACOSX_DEPLOYMENT_TARGET", target); } // When doing a local rebuild we tell cargo that we're stage1 rather than // stage0. This works fine if the local rust and being-built rust have the // same view of what the default allocator is, but fails otherwise. Since // we don't have a way to express an allocator preference yet, work // around the issue in the case of a local rebuild with jemalloc disabled. if compiler.stage == 0 && build.local_rebuild && !build.config.use_jemalloc { features.push_str(" force_alloc_system"); } if compiler.stage != 0 && build.config.sanitizers { // This variable is used by the sanitizer runtime crates, e.g. // rustc_lsan, to build the sanitizer runtime from C code // When this variable is missing, those crates won't compile the C code, // so we don't set this variable during stage0 where llvm-config is // missing // We also only build the runtimes when --enable-sanitizers (or its // config.toml equivalent) is used cargo.env("LLVM_CONFIG", build.llvm_config(target)); } cargo.arg("--features").arg(features) .arg("--manifest-path") .arg(build.src.join("src/libstd/Cargo.toml")); if let Some(target) = build.config.target_config.get(&target) { if let Some(ref jemalloc) = target.jemalloc { cargo.env("JEMALLOC_OVERRIDE", jemalloc); } } if target.contains("musl") { if let Some(p) = build.musl_root(target) { cargo.env("MUSL_ROOT", p); } } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] struct StdLink { pub compiler: Compiler, pub target_compiler: Compiler, pub target: Interned, } impl Step for StdLink { type Output = (); fn should_run(run: ShouldRun) -> ShouldRun { run.never() } /// Link all libstd rlibs/dylibs into the sysroot location. /// /// Links those artifacts generated by `compiler` to a the `stage` compiler's /// sysroot for the specified `host` and `target`. /// /// Note that this assumes that `compiler` has already generated the libstd /// libraries for `target`, and this method will find them in the relevant /// output directory. fn run(self, builder: &Builder) { let build = builder.build; let compiler = self.compiler; let target_compiler = self.target_compiler; let target = self.target; println!("Copying stage{} std from stage{} ({} -> {} / {})", target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target); let libdir = builder.sysroot_libdir(target_compiler, target); add_to_sysroot(&libdir, &libstd_stamp(build, compiler, target)); if build.config.sanitizers && compiler.stage != 0 && target == "x86_64-apple-darwin" { // The sanitizers are only built in stage1 or above, so the dylibs will // be missing in stage0 and causes panic. See the `std()` function above // for reason why the sanitizers are not built in stage0. copy_apple_sanitizer_dylibs(&build.native_dir(target), "osx", &libdir); } builder.ensure(tool::CleanTools { compiler: target_compiler, target, mode: Mode::Libstd, }); } } fn copy_apple_sanitizer_dylibs(native_dir: &Path, platform: &str, into: &Path) { for &sanitizer in &["asan", "tsan"] { let filename = format!("libclang_rt.{}_{}_dynamic.dylib", sanitizer, platform); let mut src_path = native_dir.join(sanitizer); src_path.push("build"); src_path.push("lib"); src_path.push("darwin"); src_path.push(&filename); copy(&src_path, &into.join(filename)); } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct StartupObjects { pub compiler: Compiler, pub target: Interned, } impl Step for StartupObjects { type Output = (); fn should_run(run: ShouldRun) -> ShouldRun { run.path("src/rtstartup") } fn make_run(run: RunConfig) { run.builder.ensure(StartupObjects { compiler: run.builder.compiler(run.builder.top_stage, run.host), target: run.target, }); } /// Build and prepare startup objects like rsbegin.o and rsend.o /// /// These are primarily used on Windows right now for linking executables/dlls. /// They don't require any library support as they're just plain old object /// files, so we just use the nightly snapshot compiler to always build them (as /// no other compilers are guaranteed to be available). fn run(self, builder: &Builder) { let build = builder.build; let for_compiler = self.compiler; let target = self.target; if !target.contains("pc-windows-gnu") { return } let src_dir = &build.src.join("src/rtstartup"); let dst_dir = &build.native_dir(target).join("rtstartup"); let sysroot_dir = &builder.sysroot_libdir(for_compiler, target); t!(fs::create_dir_all(dst_dir)); for file in &["rsbegin", "rsend"] { let src_file = &src_dir.join(file.to_string() + ".rs"); let dst_file = &dst_dir.join(file.to_string() + ".o"); if !up_to_date(src_file, dst_file) { let mut cmd = Command::new(&build.initial_rustc); build.run(cmd.env("RUSTC_BOOTSTRAP", "1") .arg("--cfg").arg("stage0") .arg("--target").arg(target) .arg("--emit=obj") .arg("-o").arg(dst_file) .arg(src_file)); } copy(dst_file, &sysroot_dir.join(file.to_string() + ".o")); } for obj in ["crt2.o", "dllcrt2.o"].iter() { copy(&compiler_file(build.cc(target), obj), &sysroot_dir.join(obj)); } } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct Test { pub compiler: Compiler, pub target: Interned, } impl Step for Test { type Output = (); const DEFAULT: bool = true; fn should_run(run: ShouldRun) -> ShouldRun { run.path("src/libtest").krate("test") } fn make_run(run: RunConfig) { run.builder.ensure(Test { compiler: run.builder.compiler(run.builder.top_stage, run.host), target: run.target, }); } /// Build libtest. /// /// This will build libtest and supporting libraries for a particular stage of /// the build using the `compiler` targeting the `target` architecture. The /// artifacts created will also be linked into the sysroot directory. fn run(self, builder: &Builder) { let build = builder.build; let target = self.target; let compiler = self.compiler; builder.ensure(Std { compiler, target }); if build.force_use_stage1(compiler, target) { builder.ensure(Test { compiler: builder.compiler(1, build.build), target, }); println!("Uplifting stage1 test ({} -> {})", &build.build, target); builder.ensure(TestLink { compiler: builder.compiler(1, build.build), target_compiler: compiler, target, }); return; } let _folder = build.fold_output(|| format!("stage{}-test", compiler.stage)); println!("Building stage{} test artifacts ({} -> {})", compiler.stage, &compiler.host, target); let out_dir = build.cargo_out(compiler, Mode::Libtest, target); build.clear_if_dirty(&out_dir, &libstd_stamp(build, compiler, target)); let mut cargo = builder.cargo(compiler, Mode::Libtest, target, "build"); test_cargo(build, &compiler, target, &mut cargo); run_cargo(build, &mut cargo, &libtest_stamp(build, compiler, target)); builder.ensure(TestLink { compiler: builder.compiler(compiler.stage, build.build), target_compiler: compiler, target, }); } } /// Same as `std_cargo`, but for libtest pub fn test_cargo(build: &Build, _compiler: &Compiler, _target: Interned, cargo: &mut Command) { if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") { cargo.env("MACOSX_DEPLOYMENT_TARGET", target); } cargo.arg("--manifest-path") .arg(build.src.join("src/libtest/Cargo.toml")); } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct TestLink { pub compiler: Compiler, pub target_compiler: Compiler, pub target: Interned, } impl Step for TestLink { type Output = (); fn should_run(run: ShouldRun) -> ShouldRun { run.never() } /// Same as `std_link`, only for libtest fn run(self, builder: &Builder) { let build = builder.build; let compiler = self.compiler; let target_compiler = self.target_compiler; let target = self.target; println!("Copying stage{} test from stage{} ({} -> {} / {})", target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target); add_to_sysroot(&builder.sysroot_libdir(target_compiler, target), &libtest_stamp(build, compiler, target)); builder.ensure(tool::CleanTools { compiler: target_compiler, target, mode: Mode::Libtest, }); } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct Rustc { pub compiler: Compiler, pub target: Interned, } impl Step for Rustc { type Output = (); const ONLY_HOSTS: bool = true; const DEFAULT: bool = true; fn should_run(run: ShouldRun) -> ShouldRun { run.path("src/librustc").krate("rustc-main") } fn make_run(run: RunConfig) { run.builder.ensure(Rustc { compiler: run.builder.compiler(run.builder.top_stage, run.host), target: run.target, }); } /// Build the compiler. /// /// This will build the compiler for a particular stage of the build using /// the `compiler` targeting the `target` architecture. The artifacts /// created will also be linked into the sysroot directory. fn run(self, builder: &Builder) { let build = builder.build; let compiler = self.compiler; let target = self.target; builder.ensure(Test { compiler, target }); // Build LLVM for our target. This will implicitly build the host LLVM // if necessary. builder.ensure(native::Llvm { target }); if build.force_use_stage1(compiler, target) { builder.ensure(Rustc { compiler: builder.compiler(1, build.build), target, }); println!("Uplifting stage1 rustc ({} -> {})", &build.build, target); builder.ensure(RustcLink { compiler: builder.compiler(1, build.build), target_compiler: compiler, target, }); return; } // Ensure that build scripts have a std to link against. builder.ensure(Std { compiler: builder.compiler(self.compiler.stage, build.build), target: build.build, }); let _folder = build.fold_output(|| format!("stage{}-rustc", compiler.stage)); println!("Building stage{} compiler artifacts ({} -> {})", compiler.stage, &compiler.host, target); let out_dir = build.cargo_out(compiler, Mode::Librustc, target); build.clear_if_dirty(&out_dir, &libtest_stamp(build, compiler, target)); let mut cargo = builder.cargo(compiler, Mode::Librustc, target, "build"); rustc_cargo(build, &compiler, target, &mut cargo); run_cargo(build, &mut cargo, &librustc_stamp(build, compiler, target)); builder.ensure(RustcLink { compiler: builder.compiler(compiler.stage, build.build), target_compiler: compiler, target, }); } } /// Same as `std_cargo`, but for libtest pub fn rustc_cargo(build: &Build, compiler: &Compiler, target: Interned, cargo: &mut Command) { cargo.arg("--features").arg(build.rustc_features()) .arg("--manifest-path") .arg(build.src.join("src/rustc/Cargo.toml")); // Set some configuration variables picked up by build scripts and // the compiler alike cargo.env("CFG_RELEASE", build.rust_release()) .env("CFG_RELEASE_CHANNEL", &build.config.channel) .env("CFG_VERSION", build.rust_version()) .env("CFG_PREFIX", build.config.prefix.clone().unwrap_or_default()); if compiler.stage == 0 { cargo.env("CFG_LIBDIR_RELATIVE", "lib"); } else { let libdir_relative = build.config.libdir_relative.clone().unwrap_or(PathBuf::from("lib")); cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative); } // If we're not building a compiler with debugging information then remove // these two env vars which would be set otherwise. if build.config.rust_debuginfo_only_std { cargo.env_remove("RUSTC_DEBUGINFO"); cargo.env_remove("RUSTC_DEBUGINFO_LINES"); } if let Some(ref ver_date) = build.rust_info.commit_date() { cargo.env("CFG_VER_DATE", ver_date); } if let Some(ref ver_hash) = build.rust_info.sha() { cargo.env("CFG_VER_HASH", ver_hash); } if !build.unstable_features() { cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1"); } // Flag that rust llvm is in use if build.is_rust_llvm(target) { cargo.env("LLVM_RUSTLLVM", "1"); } cargo.env("LLVM_CONFIG", build.llvm_config(target)); let target_config = build.config.target_config.get(&target); if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) { cargo.env("CFG_LLVM_ROOT", s); } // Building with a static libstdc++ is only supported on linux right now, // not for MSVC or macOS if build.config.llvm_static_stdcpp && !target.contains("windows") && !target.contains("apple") { cargo.env("LLVM_STATIC_STDCPP", compiler_file(build.cxx(target).unwrap(), "libstdc++.a")); } if build.config.llvm_link_shared { cargo.env("LLVM_LINK_SHARED", "1"); } if let Some(ref s) = build.config.rustc_default_linker { cargo.env("CFG_DEFAULT_LINKER", s); } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] struct RustcLink { pub compiler: Compiler, pub target_compiler: Compiler, pub target: Interned, } impl Step for RustcLink { type Output = (); fn should_run(run: ShouldRun) -> ShouldRun { run.never() } /// Same as `std_link`, only for librustc fn run(self, builder: &Builder) { let build = builder.build; let compiler = self.compiler; let target_compiler = self.target_compiler; let target = self.target; println!("Copying stage{} rustc from stage{} ({} -> {} / {})", target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target); add_to_sysroot(&builder.sysroot_libdir(target_compiler, target), &librustc_stamp(build, compiler, target)); builder.ensure(tool::CleanTools { compiler: target_compiler, target, mode: Mode::Librustc, }); } } /// Cargo's output path for the standard library in a given stage, compiled /// by a particular compiler for the specified target. pub fn libstd_stamp(build: &Build, compiler: Compiler, target: Interned) -> PathBuf { build.cargo_out(compiler, Mode::Libstd, target).join(".libstd.stamp") } /// Cargo's output path for libtest in a given stage, compiled by a particular /// compiler for the specified target. pub fn libtest_stamp(build: &Build, compiler: Compiler, target: Interned) -> PathBuf { build.cargo_out(compiler, Mode::Libtest, target).join(".libtest.stamp") } /// Cargo's output path for librustc in a given stage, compiled by a particular /// compiler for the specified target. pub fn librustc_stamp(build: &Build, compiler: Compiler, target: Interned) -> PathBuf { build.cargo_out(compiler, Mode::Librustc, target).join(".librustc.stamp") } fn compiler_file(compiler: &Path, file: &str) -> PathBuf { let out = output(Command::new(compiler) .arg(format!("-print-file-name={}", file))); PathBuf::from(out.trim()) } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct Sysroot { pub compiler: Compiler, } impl Step for Sysroot { type Output = Interned; fn should_run(run: ShouldRun) -> ShouldRun { run.never() } /// Returns the sysroot for the `compiler` specified that *this build system /// generates*. /// /// That is, the sysroot for the stage0 compiler is not what the compiler /// thinks it is by default, but it's the same as the default for stages /// 1-3. fn run(self, builder: &Builder) -> Interned { let build = builder.build; let compiler = self.compiler; let sysroot = if compiler.stage == 0 { build.out.join(&compiler.host).join("stage0-sysroot") } else { build.out.join(&compiler.host).join(format!("stage{}", compiler.stage)) }; let _ = fs::remove_dir_all(&sysroot); t!(fs::create_dir_all(&sysroot)); INTERNER.intern_path(sysroot) } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct Assemble { /// The compiler which we will produce in this step. Assemble itself will /// take care of ensuring that the necessary prerequisites to do so exist, /// that is, this target can be a stage2 compiler and Assemble will build /// previous stages for you. pub target_compiler: Compiler, } impl Step for Assemble { type Output = Compiler; fn should_run(run: ShouldRun) -> ShouldRun { run.path("src/rustc") } /// Prepare a new compiler from the artifacts in `stage` /// /// This will assemble a compiler in `build/$host/stage$stage`. The compiler /// must have been previously produced by the `stage - 1` build.build /// compiler. fn run(self, builder: &Builder) -> Compiler { let build = builder.build; let target_compiler = self.target_compiler; if target_compiler.stage == 0 { assert_eq!(build.build, target_compiler.host, "Cannot obtain compiler for non-native build triple at stage 0"); // The stage 0 compiler for the build triple is always pre-built. return target_compiler; } // Get the compiler that we'll use to bootstrap ourselves. let build_compiler = if target_compiler.host != build.build { // Build a compiler for the host platform. We cannot use the stage0 // compiler for the host platform for this because it doesn't have // the libraries we need. FIXME: Perhaps we should download those // libraries? It would make builds faster... // FIXME: It may be faster if we build just a stage 1 // compiler and then use that to bootstrap this compiler // forward. builder.compiler(target_compiler.stage - 1, build.build) } else { // Build the compiler we'll use to build the stage requested. This // may build more than one compiler (going down to stage 0). builder.compiler(target_compiler.stage - 1, target_compiler.host) }; // Build the libraries for this compiler to link to (i.e., the libraries // it uses at runtime). NOTE: Crates the target compiler compiles don't // link to these. (FIXME: Is that correct? It seems to be correct most // of the time but I think we do link to these for stage2/bin compilers // when not performing a full bootstrap). if builder.build.config.keep_stage.map_or(false, |s| target_compiler.stage <= s) { builder.verbose("skipping compilation of compiler due to --keep-stage"); let compiler = build_compiler; for stage in 0..min(target_compiler.stage, builder.config.keep_stage.unwrap()) { let target_compiler = builder.compiler(stage, target_compiler.host); let target = target_compiler.host; builder.ensure(StdLink { compiler, target_compiler, target }); builder.ensure(TestLink { compiler, target_compiler, target }); builder.ensure(RustcLink { compiler, target_compiler, target }); } } else { builder.ensure(Rustc { compiler: build_compiler, target: target_compiler.host }); } let stage = target_compiler.stage; let host = target_compiler.host; println!("Assembling stage{} compiler ({})", stage, host); // Link in all dylibs to the libdir let sysroot = builder.sysroot(target_compiler); let sysroot_libdir = sysroot.join(libdir(&*host)); t!(fs::create_dir_all(&sysroot_libdir)); let src_libdir = builder.sysroot_libdir(build_compiler, host); for f in t!(fs::read_dir(&src_libdir)).map(|f| t!(f)) { let filename = f.file_name().into_string().unwrap(); if is_dylib(&filename) { copy(&f.path(), &sysroot_libdir.join(&filename)); } } let out_dir = build.cargo_out(build_compiler, Mode::Librustc, host); // Link the compiler binary itself into place let rustc = out_dir.join(exe("rustc", &*host)); let bindir = sysroot.join("bin"); t!(fs::create_dir_all(&bindir)); let compiler = builder.rustc(target_compiler); let _ = fs::remove_file(&compiler); copy(&rustc, &compiler); target_compiler } } /// Link some files into a rustc sysroot. /// /// For a particular stage this will link the file listed in `stamp` into the /// `sysroot_dst` provided. fn add_to_sysroot(sysroot_dst: &Path, stamp: &Path) { t!(fs::create_dir_all(&sysroot_dst)); let mut contents = Vec::new(); t!(t!(File::open(stamp)).read_to_end(&mut contents)); // This is the method we use for extracting paths from the stamp file passed to us. See // run_cargo for more information (in this file). for part in contents.split(|b| *b == 0) { if part.is_empty() { continue } let path = Path::new(t!(str::from_utf8(part))); copy(&path, &sysroot_dst.join(path.file_name().unwrap())); } } // Avoiding a dependency on winapi to keep compile times down #[cfg(unix)] fn stderr_isatty() -> bool { use libc; unsafe { libc::isatty(libc::STDERR_FILENO) != 0 } } #[cfg(windows)] fn stderr_isatty() -> bool { type DWORD = u32; type BOOL = i32; type HANDLE = *mut u8; const STD_ERROR_HANDLE: DWORD = -12i32 as DWORD; extern "system" { fn GetStdHandle(which: DWORD) -> HANDLE; fn GetConsoleMode(hConsoleHandle: HANDLE, lpMode: *mut DWORD) -> BOOL; } unsafe { let handle = GetStdHandle(STD_ERROR_HANDLE); let mut out = 0; GetConsoleMode(handle, &mut out) != 0 } } fn run_cargo(build: &Build, cargo: &mut Command, stamp: &Path) { // Instruct Cargo to give us json messages on stdout, critically leaving // stderr as piped so we can get those pretty colors. cargo.arg("--message-format").arg("json") .stdout(Stdio::piped()); if stderr_isatty() { // since we pass message-format=json to cargo, we need to tell the rustc // wrapper to give us colored output if necessary. This is because we // only want Cargo's JSON output, not rustcs. cargo.env("RUSTC_COLOR", "1"); } build.verbose(&format!("running: {:?}", cargo)); let mut child = match cargo.spawn() { Ok(child) => child, Err(e) => panic!("failed to execute command: {:?}\nerror: {}", cargo, e), }; // `target_root_dir` looks like $dir/$target/release let target_root_dir = stamp.parent().unwrap(); // `target_deps_dir` looks like $dir/$target/release/deps let target_deps_dir = target_root_dir.join("deps"); // `host_root_dir` looks like $dir/release let host_root_dir = target_root_dir.parent().unwrap() // chop off `release` .parent().unwrap() // chop off `$target` .join(target_root_dir.file_name().unwrap()); // Spawn Cargo slurping up its JSON output. We'll start building up the // `deps` array of all files it generated along with a `toplevel` array of // files we need to probe for later. let mut deps = Vec::new(); let mut toplevel = Vec::new(); let stdout = BufReader::new(child.stdout.take().unwrap()); for line in stdout.lines() { let line = t!(line); let json: serde_json::Value = if line.starts_with("{") { t!(serde_json::from_str(&line)) } else { // If this was informational, just print it out and continue println!("{}", line); continue }; if json["reason"].as_str() != Some("compiler-artifact") { continue } for filename in json["filenames"].as_array().unwrap() { let filename = filename.as_str().unwrap(); // Skip files like executables if !filename.ends_with(".rlib") && !filename.ends_with(".lib") && !is_dylib(&filename) { continue } let filename = Path::new(filename); // If this was an output file in the "host dir" we don't actually // worry about it, it's not relevant for us. if filename.starts_with(&host_root_dir) { continue; } // If this was output in the `deps` dir then this is a precise file // name (hash included) so we start tracking it. if filename.starts_with(&target_deps_dir) { deps.push(filename.to_path_buf()); continue; } // Otherwise this was a "top level artifact" which right now doesn't // have a hash in the name, but there's a version of this file in // the `deps` folder which *does* have a hash in the name. That's // the one we'll want to we'll probe for it later. toplevel.push((filename.file_stem().unwrap() .to_str().unwrap().to_string(), filename.extension().unwrap().to_owned() .to_str().unwrap().to_string())); } } // Make sure Cargo actually succeeded after we read all of its stdout. let status = t!(child.wait()); if !status.success() { panic!("command did not execute successfully: {:?}\n\ expected success, got: {}", cargo, status); } // Ok now we need to actually find all the files listed in `toplevel`. We've // got a list of prefix/extensions and we basically just need to find the // most recent file in the `deps` folder corresponding to each one. let contents = t!(target_deps_dir.read_dir()) .map(|e| t!(e)) .map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata()))) .collect::>(); for (prefix, extension) in toplevel { let candidates = contents.iter().filter(|&&(_, ref filename, _)| { filename.starts_with(&prefix[..]) && filename[prefix.len()..].starts_with("-") && filename.ends_with(&extension[..]) }); let max = candidates.max_by_key(|&&(_, _, ref metadata)| { FileTime::from_last_modification_time(metadata) }); let path_to_add = match max { Some(triple) => triple.0.to_str().unwrap(), None => panic!("no output generated for {:?} {:?}", prefix, extension), }; if is_dylib(path_to_add) { let candidate = format!("{}.lib", path_to_add); let candidate = PathBuf::from(candidate); if candidate.exists() { deps.push(candidate); } } deps.push(path_to_add.into()); } // Now we want to update the contents of the stamp file, if necessary. First // we read off the previous contents along with its mtime. If our new // contents (the list of files to copy) is different or if any dep's mtime // is newer then we rewrite the stamp file. deps.sort(); let mut stamp_contents = Vec::new(); if let Ok(mut f) = File::open(stamp) { t!(f.read_to_end(&mut stamp_contents)); } let stamp_mtime = mtime(&stamp); let mut new_contents = Vec::new(); let mut max = None; let mut max_path = None; for dep in deps { let mtime = mtime(&dep); if Some(mtime) > max { max = Some(mtime); max_path = Some(dep.clone()); } new_contents.extend(dep.to_str().unwrap().as_bytes()); new_contents.extend(b"\0"); } let max = max.unwrap(); let max_path = max_path.unwrap(); if stamp_contents == new_contents && max <= stamp_mtime { return } if max > stamp_mtime { build.verbose(&format!("updating {:?} as {:?} changed", stamp, max_path)); } else { build.verbose(&format!("updating {:?} as deps changed", stamp)); } t!(t!(File::create(stamp)).write_all(&new_contents)); }