import std::int; import std::str; import std::uint; import std::vec; import std::box; import std::ufind; import std::map; import std::map::hashmap; import std::option; import std::option::none; import std::option::some; import std::smallintmap; import driver::session; import front::ast; import front::ast::def_id; import front::ast::constr_arg_general; import front::ast::mutability; import front::ast::controlflow; import front::creader; import middle::metadata; import util::common::*; import util::data::interner; import pretty::ppaux::ty_to_str; export ann_to_monotype; export ann_to_type; export ann_to_type_params; export ann_to_ty_param_substs_opt_and_ty; export any_item_native; export any_item_rust; export arg; export args_eq; export bind_params_in_type; export block_ty; export constr_def; export constr_general; export constr_table; export count_ty_params; export ctxt; export decl_local_ty; export def_has_ty_params; export eq_ty; export expr_ann; export expr_has_ty_params; export expr_ty; export fold_ty; export field; export field_idx; export field_num; export fm_general; export get_element_type; export hash_ty; export idx_nil; export is_lval; export item_table; export lookup_item_type; export method; export method_idx; export method_ty_to_fn_ty; export mk_bool; export mk_bot; export mk_box; export mk_chan; export mk_char; export mk_ctxt; export mk_float; export mk_fn; export mk_imm_box; export mk_imm_tup; export mk_imm_vec; export mk_int; export mk_istr; export mk_ivec; export mk_mach; export mk_native; export mk_native_fn; export mk_nil; export mk_obj; export mk_param; export mk_port; export mk_ptr; export mk_rec; export mk_str; export mk_tag; export mk_task; export mk_tup; export mk_type; export mk_uint; export mk_var; export mk_vec; export mode; export mo_val; export mo_alias; export mt; export node_type_table; export pat_ann; export pat_ty; export path_to_str; export rename; export ret_ty_of_fn; export ret_ty_of_fn_ty; export ret_ty_to_fn_ty; export sequence_element_type; export sequence_is_interior; export struct; export sort_methods; export stmt_ann; export strip_boxes; export sty; export substitute_type_params; export t; export tag_variants; export tag_variant_with_id; export ty_param_substs_opt_and_ty; export ty_param_count_and_ty; export ty_native_fn; export ty_bool; export ty_bot; export ty_box; export ty_chan; export ty_char; export ty_float; export ty_fn; export ty_fn_abi; export ty_fn_proto; export ty_fn_ret; export ty_int; export ty_istr; export ty_ivec; export ty_machine; export ty_native; export ty_nil; export ty_obj; export ty_param; export ty_port; export ty_ptr; export ty_rec; export ty_str; export ty_tag; export ty_task; export ty_tup; export ty_type; export ty_uint; export ty_var; export ty_var_id; export ty_vec; export ty_param_substs_opt_and_ty_to_monotype; export ty_fn_args; export type_contains_params; export type_contains_vars; export type_err; export type_err_to_str; export type_has_dynamic_size; export type_has_pointers; export type_is_bool; export type_is_bot; export type_is_box; export type_is_boxed; export type_is_chan; export type_is_fp; export type_is_integral; export type_is_native; export type_is_nil; export type_is_scalar; export type_is_sequence; export type_is_signed; export type_is_structural; export type_is_tup_like; export type_is_str; export type_owns_heap_mem; export type_param; export unify; export variant_info; export walk_ty; // Data types tag mode { mo_val; mo_alias(bool); } type arg = rec(mode mode, t ty); type field = rec(ast::ident ident, mt mt); type method = rec(ast::proto proto, ast::ident ident, vec[arg] inputs, t output, controlflow cf, vec[@constr_def] constrs); tag any_item { any_item_rust(@ast::item); any_item_native(@ast::native_item, ast::native_abi); } type item_table = hashmap[ast::def_id, any_item]; type constr_table = hashmap[ast::def_id, vec[constr_def]]; type mt = rec(t ty, ast::mutability mut); // Contains information needed to resolve types and (in the future) look up // the types of AST nodes. type creader_cache = hashmap[tup(int, uint, uint), ty::t]; type ctxt = rec(@type_store ts, session::session sess, resolve::def_map def_map, node_type_table node_types, item_table items, // Only contains type items constr_table fn_constrs, type_cache tcache, creader_cache rcache, hashmap[t, str] short_names_cache, hashmap[t, bool] has_pointer_cache, hashmap[@ast::ty, option::t[t]] ast_ty_to_ty_cache); type ty_ctxt = ctxt; // Needed for disambiguation from unify::ctxt. // Convert from method type to function type. Pretty easy; we just drop // 'ident'. fn method_ty_to_fn_ty(&ctxt cx, method m) -> t { ret mk_fn(cx, m.proto, m.inputs, m.output, m.cf, m.constrs); } // Never construct these manually. These are interned. type raw_t = rec(sty struct, option::t[str] cname, uint hash, bool has_params, bool has_vars); type t = uint; // NB: If you change this, you'll probably want to change the corresponding // AST structure in front/ast::rs as well. tag sty { ty_nil; ty_bot; ty_bool; ty_int; ty_float; ty_uint; ty_machine(ty_mach); ty_char; ty_str; ty_istr; ty_tag(def_id, vec[t]); ty_box(mt); ty_vec(mt); ty_ivec(mt); ty_ptr(mt); ty_port(t); ty_chan(t); ty_task; ty_tup(vec[mt]); ty_rec(vec[field]); ty_fn(ast::proto, vec[arg], t, controlflow, vec[@constr_def]); ty_native_fn(ast::native_abi, vec[arg], t); ty_obj(vec[method]); ty_var(int); // type variable ty_param(uint); // fn/tag type param ty_type; ty_native; // TODO: ty_fn_arg(t), for a possibly-aliased function argument } type constr_def = spanned[constr_general[uint]]; type constr_general[T] = rec(path path, vec[@constr_arg_general[T]] args, def_id id); // Data structures used in type unification tag type_err { terr_mismatch; terr_controlflow_mismatch; terr_box_mutability; terr_vec_mutability; terr_tuple_size(uint, uint); terr_tuple_mutability; terr_record_size(uint, uint); terr_record_mutability; terr_record_fields(ast::ident, ast::ident); terr_meth_count; terr_obj_meths(ast::ident, ast::ident); terr_arg_count; } type ty_param_count_and_ty = tup(uint, t); type type_cache = hashmap[ast::def_id, ty_param_count_and_ty]; const uint idx_nil = 0u; const uint idx_bool = 1u; const uint idx_int = 2u; const uint idx_float = 3u; const uint idx_uint = 4u; const uint idx_i8 = 5u; const uint idx_i16 = 6u; const uint idx_i32 = 7u; const uint idx_i64 = 8u; const uint idx_u8 = 9u; const uint idx_u16 = 10u; const uint idx_u32 = 11u; const uint idx_u64 = 12u; const uint idx_f32 = 13u; const uint idx_f64 = 14u; const uint idx_char = 15u; const uint idx_str = 16u; const uint idx_istr = 17u; const uint idx_task = 18u; const uint idx_native = 19u; const uint idx_type = 20u; const uint idx_bot = 21u; const uint idx_first_others = 22u; type type_store = interner::interner[raw_t]; type ty_param_substs_opt_and_ty = tup(option::t[vec[ty::t]], ty::t); type node_type_table = @smallintmap::smallintmap[ty::ty_param_substs_opt_and_ty]; fn populate_type_store(&ctxt cx) { intern(cx, ty_nil, none[str]); intern(cx, ty_bool, none[str]); intern(cx, ty_int, none[str]); intern(cx, ty_float, none[str]); intern(cx, ty_uint, none[str]); intern(cx, ty_machine(ty_i8), none[str]); intern(cx, ty_machine(ty_i16), none[str]); intern(cx, ty_machine(ty_i32), none[str]); intern(cx, ty_machine(ty_i64), none[str]); intern(cx, ty_machine(ty_u8), none[str]); intern(cx, ty_machine(ty_u16), none[str]); intern(cx, ty_machine(ty_u32), none[str]); intern(cx, ty_machine(ty_u64), none[str]); intern(cx, ty_machine(ty_f32), none[str]); intern(cx, ty_machine(ty_f64), none[str]); intern(cx, ty_char, none[str]); intern(cx, ty_str, none[str]); intern(cx, ty_istr, none[str]); intern(cx, ty_task, none[str]); intern(cx, ty_native, none[str]); intern(cx, ty_type, none[str]); intern(cx, ty_bot, none[str]); assert (vec::len(cx.ts.vect) == idx_first_others); } fn mk_rcache() -> creader_cache { fn hash_cache_entry(&tup(int, uint, uint) k) -> uint { ret (k._0 as uint) + k._1 + k._2; } fn eq_cache_entries(&tup(int, uint, uint) a, &tup(int, uint, uint) b) -> bool { ret a._0 == b._0 && a._1 == b._1 && a._2 == b._2; } auto h = hash_cache_entry; auto e = eq_cache_entries; ret map::mk_hashmap[tup(int, uint, uint), t](h, e); } fn mk_ctxt(session::session s, resolve::def_map dm, constr_table cs) -> ctxt { let node_type_table ntt = @smallintmap::mk[ty::ty_param_substs_opt_and_ty](); auto tcache = new_def_hash[ty::ty_param_count_and_ty](); auto items = new_def_hash[any_item](); auto ts = @interner::mk[raw_t](hash_raw_ty, eq_raw_ty); auto cx = rec(ts=ts, sess=s, def_map=dm, node_types=ntt, items=items, fn_constrs=cs, tcache=tcache, rcache=mk_rcache(), short_names_cache=map::mk_hashmap[ty::t, str](ty::hash_ty, ty::eq_ty), has_pointer_cache=map::mk_hashmap[ty::t, bool](ty::hash_ty, ty::eq_ty), ast_ty_to_ty_cache=map::mk_hashmap[@ast::ty, option::t[t]](ast::hash_ty, ast::eq_ty)); populate_type_store(cx); ret cx; } // Type constructors fn mk_raw_ty(&ctxt cx, &sty st, &option::t[str] cname) -> raw_t { auto h = hash_type_info(st, cname); let bool has_params = false; let bool has_vars = false; fn derive_flags_t(&ctxt cx, &mutable bool has_params, &mutable bool has_vars, &t tt) { auto rt = interner::get[raw_t](*cx.ts, tt); has_params = has_params || rt.has_params; has_vars = has_vars || rt.has_vars; } fn derive_flags_mt(&ctxt cx, &mutable bool has_params, &mutable bool has_vars, &mt m) { derive_flags_t(cx, has_params, has_vars, m.ty); } fn derive_flags_arg(&ctxt cx, &mutable bool has_params, &mutable bool has_vars, &arg a) { derive_flags_t(cx, has_params, has_vars, a.ty); } fn derive_flags_sig(&ctxt cx, &mutable bool has_params, &mutable bool has_vars, &vec[arg] args, &t tt) { for (arg a in args) { derive_flags_arg(cx, has_params, has_vars, a); } derive_flags_t(cx, has_params, has_vars, tt); } alt (st) { case (ty_nil) {/* no-op */ } case (ty_bot) {/* no-op */ } case (ty_bool) {/* no-op */ } case (ty_int) {/* no-op */ } case (ty_float) {/* no-op */ } case (ty_uint) {/* no-op */ } case (ty_machine(_)) {/* no-op */ } case (ty_char) {/* no-op */ } case (ty_str) {/* no-op */ } case (ty_istr) {/* no-op */ } case (ty_task) {/* no-op */ } case (ty_type) {/* no-op */ } case (ty_native) {/* no-op */ } case (ty_param(_)) { has_params = true; } case (ty_var(_)) { has_vars = true; } case (ty_tag(_, ?tys)) { for (t tt in tys) { derive_flags_t(cx, has_params, has_vars, tt); } } case (ty_box(?m)) { derive_flags_mt(cx, has_params, has_vars, m); } case (ty_vec(?m)) { derive_flags_mt(cx, has_params, has_vars, m); } case (ty_ivec(?m)) { derive_flags_mt(cx, has_params, has_vars, m); } case (ty_ptr(?m)) { derive_flags_mt(cx, has_params, has_vars, m); } case (ty_port(?tt)) { derive_flags_t(cx, has_params, has_vars, tt); } case (ty_chan(?tt)) { derive_flags_t(cx, has_params, has_vars, tt); } case (ty_tup(?mts)) { for (mt m in mts) { derive_flags_mt(cx, has_params, has_vars, m); } } case (ty_rec(?flds)) { for (field f in flds) { derive_flags_mt(cx, has_params, has_vars, f.mt); } } case (ty_fn(_, ?args, ?tt, _, _)) { derive_flags_sig(cx, has_params, has_vars, args, tt); } case (ty_native_fn(_, ?args, ?tt)) { derive_flags_sig(cx, has_params, has_vars, args, tt); } case (ty_obj(?meths)) { for (method m in meths) { derive_flags_sig(cx, has_params, has_vars, m.inputs, m.output); } } } ret rec(struct=st, cname=cname, hash=h, has_params=has_params, has_vars=has_vars); } fn intern(&ctxt cx, &sty st, &option::t[str] cname) { interner::intern[raw_t](*cx.ts, mk_raw_ty(cx, st, cname)); } fn gen_ty_full(&ctxt cx, &sty st, &option::t[str] cname) -> t { auto raw_type = mk_raw_ty(cx, st, cname); ret interner::intern[raw_t](*cx.ts, raw_type); } // These are private constructors to this module. External users should always // use the mk_foo() functions below. fn gen_ty(&ctxt cx, &sty st) -> t { ret gen_ty_full(cx, st, none[str]); } fn mk_nil(&ctxt cx) -> t { ret idx_nil; } fn mk_bot(&ctxt cx) -> t { ret idx_bot; } fn mk_bool(&ctxt cx) -> t { ret idx_bool; } fn mk_int(&ctxt cx) -> t { ret idx_int; } fn mk_float(&ctxt cx) -> t { ret idx_float; } fn mk_uint(&ctxt cx) -> t { ret idx_uint; } fn mk_mach(&ctxt cx, &ty_mach tm) -> t { alt (tm) { case (ty_u8) { ret idx_u8; } case (ty_u16) { ret idx_u16; } case (ty_u32) { ret idx_u32; } case (ty_u64) { ret idx_u64; } case (ty_i8) { ret idx_i8; } case (ty_i16) { ret idx_i16; } case (ty_i32) { ret idx_i32; } case (ty_i64) { ret idx_i64; } case (ty_f32) { ret idx_f32; } case (ty_f64) { ret idx_f64; } } } fn mk_char(&ctxt cx) -> t { ret idx_char; } fn mk_str(&ctxt cx) -> t { ret idx_str; } fn mk_istr(&ctxt cx) -> t { ret idx_istr; } fn mk_tag(&ctxt cx, &ast::def_id did, &vec[t] tys) -> t { ret gen_ty(cx, ty_tag(did, tys)); } fn mk_box(&ctxt cx, &mt tm) -> t { ret gen_ty(cx, ty_box(tm)); } fn mk_ptr(&ctxt cx, &mt tm) -> t { ret gen_ty(cx, ty_ptr(tm)); } fn mk_imm_box(&ctxt cx, &t ty) -> t { ret mk_box(cx, rec(ty=ty, mut=ast::imm)); } fn mk_vec(&ctxt cx, &mt tm) -> t { ret gen_ty(cx, ty_vec(tm)); } fn mk_ivec(&ctxt cx, &mt tm) -> t { ret gen_ty(cx, ty_ivec(tm)); } fn mk_imm_vec(&ctxt cx, &t typ) -> t { ret gen_ty(cx, ty_vec(rec(ty=typ, mut=ast::imm))); } fn mk_port(&ctxt cx, &t ty) -> t { ret gen_ty(cx, ty_port(ty)); } fn mk_chan(&ctxt cx, &t ty) -> t { ret gen_ty(cx, ty_chan(ty)); } fn mk_task(&ctxt cx) -> t { ret gen_ty(cx, ty_task); } fn mk_tup(&ctxt cx, &vec[mt] tms) -> t { ret gen_ty(cx, ty_tup(tms)); } fn mk_imm_tup(&ctxt cx, &vec[t] tys) -> t { // TODO: map let vec[ty::mt] mts = []; for (t typ in tys) { mts += [rec(ty=typ, mut=ast::imm)]; } ret mk_tup(cx, mts); } fn mk_rec(&ctxt cx, &vec[field] fs) -> t { ret gen_ty(cx, ty_rec(fs)); } fn mk_fn(&ctxt cx, &ast::proto proto, &vec[arg] args, &t ty, &controlflow cf, &vec[@constr_def] constrs) -> t { ret gen_ty(cx, ty_fn(proto, args, ty, cf, constrs)); } fn mk_native_fn(&ctxt cx, &ast::native_abi abi, &vec[arg] args, &t ty) -> t { ret gen_ty(cx, ty_native_fn(abi, args, ty)); } fn mk_obj(&ctxt cx, &vec[method] meths) -> t { ret gen_ty(cx, ty_obj(meths)); } fn mk_var(&ctxt cx, int v) -> t { ret gen_ty(cx, ty_var(v)); } fn mk_param(&ctxt cx, uint n) -> t { ret gen_ty(cx, ty_param(n)); } fn mk_type(&ctxt cx) -> t { ret idx_type; } fn mk_native(&ctxt cx) -> t { ret idx_native; } // Returns the one-level-deep type structure of the given type. fn struct(&ctxt cx, &t typ) -> sty { ret interner::get[raw_t](*cx.ts, typ).struct; } // Returns the canonical name of the given type. fn cname(&ctxt cx, &t typ) -> option::t[str] { ret interner::get[raw_t](*cx.ts, typ).cname; } // Stringification fn path_to_str(&ast::path pth) -> str { auto result = str::connect(pth.node.idents, "::"); if (vec::len[@ast::ty](pth.node.types) > 0u) { fn f(&@ast::ty t) -> str { ret pretty::pprust::ty_to_str(*t); } result += "["; result += str::connect(vec::map(f, pth.node.types), ","); result += "]"; } ret result; } // Type folds type ty_walk = fn(t) ; fn walk_ty(&ctxt cx, ty_walk walker, t ty) { alt (struct(cx, ty)) { case (ty_nil) {/* no-op */ } case (ty_bot) {/* no-op */ } case (ty_bool) {/* no-op */ } case (ty_int) {/* no-op */ } case (ty_uint) {/* no-op */ } case (ty_float) {/* no-op */ } case (ty_machine(_)) {/* no-op */ } case (ty_char) {/* no-op */ } case (ty_str) {/* no-op */ } case (ty_istr) {/* no-op */ } case (ty_type) {/* no-op */ } case (ty_native) {/* no-op */ } case (ty_box(?tm)) { walk_ty(cx, walker, tm.ty); } case (ty_vec(?tm)) { walk_ty(cx, walker, tm.ty); } case (ty_ivec(?tm)) { walk_ty(cx, walker, tm.ty); } case (ty_ptr(?tm)) { walk_ty(cx, walker, tm.ty); } case (ty_port(?subty)) { walk_ty(cx, walker, subty); } case (ty_chan(?subty)) { walk_ty(cx, walker, subty); } case (ty_tag(?tid, ?subtys)) { for (t subty in subtys) { walk_ty(cx, walker, subty); } } case (ty_tup(?mts)) { for (mt tm in mts) { walk_ty(cx, walker, tm.ty); } } case (ty_rec(?fields)) { for (field fl in fields) { walk_ty(cx, walker, fl.mt.ty); } } case (ty_fn(?proto, ?args, ?ret_ty, _, _)) { for (arg a in args) { walk_ty(cx, walker, a.ty); } walk_ty(cx, walker, ret_ty); } case (ty_native_fn(?abi, ?args, ?ret_ty)) { for (arg a in args) { walk_ty(cx, walker, a.ty); } walk_ty(cx, walker, ret_ty); } case (ty_obj(?methods)) { let vec[method] new_methods = []; for (method m in methods) { for (arg a in m.inputs) { walk_ty(cx, walker, a.ty); } walk_ty(cx, walker, m.output); } } case (ty_var(_)) {/* no-op */ } case (ty_param(_)) {/* no-op */ } } walker(ty); } tag fold_mode { fm_var(fn(int) -> t ); fm_param(fn(uint) -> t ); fm_general(fn(t) -> t ); } fn fold_ty(&ctxt cx, fold_mode fld, t ty_0) -> t { auto ty = ty_0; // Fast paths. alt (fld) { case (fm_var(_)) { if (!type_contains_vars(cx, ty)) { ret ty; } } case (fm_param(_)) { if (!type_contains_params(cx, ty)) { ret ty; } } case (fm_general(_)) {/* no fast path */ } } alt (struct(cx, ty)) { case (ty_nil) {/* no-op */ } case (ty_bot) {/* no-op */ } case (ty_bool) {/* no-op */ } case (ty_int) {/* no-op */ } case (ty_uint) {/* no-op */ } case (ty_float) {/* no-op */ } case (ty_machine(_)) {/* no-op */ } case (ty_char) {/* no-op */ } case (ty_str) {/* no-op */ } case (ty_istr) {/* no-op */ } case (ty_type) {/* no-op */ } case (ty_native) {/* no-op */ } case (ty_task) {/* no-op */ } case (ty_box(?tm)) { ty = copy_cname(cx, mk_box(cx, rec(ty=fold_ty(cx, fld, tm.ty), mut=tm.mut)), ty); } case (ty_ptr(?tm)) { ty = copy_cname(cx, mk_ptr(cx, rec(ty=fold_ty(cx, fld, tm.ty), mut=tm.mut)), ty); } case (ty_vec(?tm)) { ty = copy_cname(cx, mk_vec(cx, rec(ty=fold_ty(cx, fld, tm.ty), mut=tm.mut)), ty); } case (ty_ivec(?tm)) { ty = copy_cname(cx, mk_ivec(cx, rec(ty=fold_ty(cx, fld, tm.ty), mut=tm.mut)), ty); } case (ty_port(?subty)) { ty = copy_cname(cx, mk_port(cx, fold_ty(cx, fld, subty)), ty); } case (ty_chan(?subty)) { ty = copy_cname(cx, mk_chan(cx, fold_ty(cx, fld, subty)), ty); } case (ty_tag(?tid, ?subtys)) { let vec[t] new_subtys = []; for (t subty in subtys) { new_subtys += [fold_ty(cx, fld, subty)]; } ty = copy_cname(cx, mk_tag(cx, tid, new_subtys), ty); } case (ty_tup(?mts)) { let vec[mt] new_mts = []; for (mt tm in mts) { auto new_subty = fold_ty(cx, fld, tm.ty); new_mts += [rec(ty=new_subty, mut=tm.mut)]; } ty = copy_cname(cx, mk_tup(cx, new_mts), ty); } case (ty_rec(?fields)) { let vec[field] new_fields = []; for (field fl in fields) { auto new_ty = fold_ty(cx, fld, fl.mt.ty); auto new_mt = rec(ty=new_ty, mut=fl.mt.mut); new_fields += [rec(ident=fl.ident, mt=new_mt)]; } ty = copy_cname(cx, mk_rec(cx, new_fields), ty); } case (ty_fn(?proto, ?args, ?ret_ty, ?cf, ?constrs)) { let vec[arg] new_args = []; for (arg a in args) { auto new_ty = fold_ty(cx, fld, a.ty); new_args += [rec(mode=a.mode, ty=new_ty)]; } ty = copy_cname(cx, mk_fn(cx, proto, new_args, fold_ty(cx, fld, ret_ty), cf, constrs), ty); } case (ty_native_fn(?abi, ?args, ?ret_ty)) { let vec[arg] new_args = []; for (arg a in args) { auto new_ty = fold_ty(cx, fld, a.ty); new_args += [rec(mode=a.mode, ty=new_ty)]; } ty = copy_cname(cx, mk_native_fn(cx, abi, new_args, fold_ty(cx, fld, ret_ty)), ty); } case (ty_obj(?methods)) { let vec[method] new_methods = []; for (method m in methods) { let vec[arg] new_args = []; for (arg a in m.inputs) { new_args += [rec(mode=a.mode, ty=fold_ty(cx, fld, a.ty))]; } new_methods += [rec(proto=m.proto, ident=m.ident, inputs=new_args, output=fold_ty(cx, fld, m.output), cf=m.cf, constrs=m.constrs)]; } ty = copy_cname(cx, mk_obj(cx, new_methods), ty); } case (ty_var(?id)) { alt (fld) { case (fm_var(?folder)) { ty = folder(id); } case (_) {/* no-op */ } } } case (ty_param(?id)) { alt (fld) { case (fm_param(?folder)) { ty = folder(id); } case (_) {/* no-op */ } } } } // If this is a general type fold, then we need to run it now. alt (fld) { case (fm_general(?folder)) { ret folder(ty); } case (_) { ret ty; } } } // Type utilities fn rename(&ctxt cx, t typ, str new_cname) -> t { ret gen_ty_full(cx, struct(cx, typ), some[str](new_cname)); } // Returns a type with the structural part taken from `struct_ty` and the // canonical name from `cname_ty`. fn copy_cname(&ctxt cx, t struct_ty, t cname_ty) -> t { ret gen_ty_full(cx, struct(cx, struct_ty), cname(cx, cname_ty)); } fn type_is_nil(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_nil) { ret true; } case (_) { ret false; } } } fn type_is_bot(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_bot) { ret true; } case (_) { ret false; } } } fn type_is_bool(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_bool) { ret true; } case (_) { ret false; } } } fn type_is_chan(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_chan(_)) { ret true; } case (_) { ret false; } } } fn type_is_structural(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_tup(_)) { ret true; } case (ty_rec(_)) { ret true; } case (ty_tag(_, _)) { ret true; } case (ty_fn(_, _, _, _, _)) { ret true; } case (ty_obj(_)) { ret true; } case (ty_ivec(_)) { ret true; } case (ty_istr) { ret true; } case (_) { ret false; } } } fn type_is_sequence(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_str) { ret true; } case (ty_istr) { ret true; } case (ty_vec(_)) { ret true; } case (ty_ivec(_)) { ret true; } case (_) { ret false; } } } fn type_is_str(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_str) { ret true; } case (_) { ret false; } } } fn sequence_is_interior(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case ( // TODO: Or-patterns ty::ty_vec(_)) { ret false; } case (ty::ty_str) { ret false; } case (ty::ty_ivec(_)) { ret true; } case (ty::ty_istr) { ret true; } case (_) { cx.sess.bug("sequence_is_interior called on non-sequence type"); } } } fn sequence_element_type(&ctxt cx, &t ty) -> t { alt (struct(cx, ty)) { case (ty_str) { ret mk_mach(cx, ty_u8); } case (ty_istr) { ret mk_mach(cx, ty_u8); } case (ty_vec(?mt)) { ret mt.ty; } case (ty_ivec(?mt)) { ret mt.ty; } case (_) { cx.sess.bug("sequence_element_type called on non-sequence value"); } } } fn type_is_tup_like(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_box(_)) { ret true; } case (ty_tup(_)) { ret true; } case (ty_rec(_)) { ret true; } case (ty_tag(_, _)) { ret true; } case (_) { ret false; } } } fn get_element_type(&ctxt cx, &t ty, uint i) -> t { assert (type_is_tup_like(cx, ty)); alt (struct(cx, ty)) { case (ty_tup(?mts)) { ret mts.(i).ty; } case (ty_rec(?flds)) { ret flds.(i).mt.ty; } } // NB: This is not exhaustive -- struct(cx, ty) could be a box or a // tag. cx.sess.bug("get_element_type called on a value other than a " + "tuple or record"); } fn type_is_box(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_box(_)) { ret true; } case (_) { ret false; } } } fn type_is_boxed(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_str) { ret true; } case (ty_vec(_)) { ret true; } case (ty_box(_)) { ret true; } case (ty_port(_)) { ret true; } case (ty_chan(_)) { ret true; } case (ty_task) { ret true; } case (_) { ret false; } } } fn type_is_scalar(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_nil) { ret true; } case (ty_bool) { ret true; } case (ty_int) { ret true; } case (ty_float) { ret true; } case (ty_uint) { ret true; } case (ty_machine(_)) { ret true; } case (ty_char) { ret true; } case (ty_type) { ret true; } case (ty_native) { ret true; } case (ty_ptr(_)) { ret true; } case (_) { ret false; } } } fn type_has_pointers(&ctxt cx, &t ty) -> bool { alt (cx.has_pointer_cache.find(ty)) { case (some(?result)) { ret result; } case (none) { /* fall through */ } } auto result = false; alt (struct(cx, ty)) { // scalar types case (ty_nil) { /* no-op */ } case (ty_bot) { /* no-op */ } case (ty_bool) { /* no-op */ } case (ty_int) { /* no-op */ } case (ty_float) { /* no-op */ } case (ty_uint) { /* no-op */ } case (ty_machine(_)) { /* no-op */ } case (ty_char) { /* no-op */ } case (ty_type) { /* no-op */ } case (ty_native) { /* no-op */ } case (ty_tup(?elts)) { for (mt m in elts) { if (type_has_pointers(cx, m.ty)) { result = true; } } } case (ty_rec(?flds)) { for (field f in flds) { if (type_has_pointers(cx, f.mt.ty)) { result = true; } } } case (ty_tag(?did, ?tps)) { auto variants = tag_variants(cx, did); for (variant_info variant in variants) { auto tup_ty = mk_imm_tup(cx, variant.args); // Perform any type parameter substitutions. tup_ty = substitute_type_params(cx, tps, tup_ty); if (type_has_pointers(cx, tup_ty)) { result = true; } } } case (_) { result = true; } } cx.has_pointer_cache.insert(ty, result); ret result; } // FIXME: should we just return true for native types in // type_is_scalar? fn type_is_native(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_native) { ret true; } case (_) { ret false; } } } fn type_has_dynamic_size(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_nil) { ret false; } case (ty_bot) { ret false; } case (ty_bool) { ret false; } case (ty_int) { ret false; } case (ty_float) { ret false; } case (ty_uint) { ret false; } case (ty_machine(_)) { ret false; } case (ty_char) { ret false; } case (ty_str) { ret false; } case (ty_istr) { ret false; } case (ty_tag(_, ?subtys)) { auto i = 0u; while (i < vec::len[t](subtys)) { if (type_has_dynamic_size(cx, subtys.(i))) { ret true; } i += 1u; } ret false; } case (ty_box(_)) { ret false; } case (ty_vec(_)) { ret false; } case (ty_ivec(?mt)) { ret type_has_dynamic_size(cx, mt.ty); } case (ty_ptr(_)) { ret false; } case (ty_port(_)) { ret false; } case (ty_chan(_)) { ret false; } case (ty_task) { ret false; } case (ty_tup(?mts)) { auto i = 0u; while (i < vec::len[mt](mts)) { if (type_has_dynamic_size(cx, mts.(i).ty)) { ret true; } i += 1u; } ret false; } case (ty_rec(?fields)) { auto i = 0u; while (i < vec::len[field](fields)) { if (type_has_dynamic_size(cx, fields.(i).mt.ty)) { ret true; } i += 1u; } ret false; } case (ty_fn(_,_,_,_,_)) { ret false; } case (ty_native_fn(_,_,_)) { ret false; } case (ty_obj(_)) { ret false; } case (ty_var(_)) { fail "ty_var in type_has_dynamic_size()"; } case (ty_param(_)) { ret true; } case (ty_type) { ret false; } case (ty_native) { ret false; } } } fn type_is_integral(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_int) { ret true; } case (ty_uint) { ret true; } case (ty_machine(?m)) { alt (m) { case (ty_i8) { ret true; } case (ty_i16) { ret true; } case (ty_i32) { ret true; } case (ty_i64) { ret true; } case (ty_u8) { ret true; } case (ty_u16) { ret true; } case (ty_u32) { ret true; } case (ty_u64) { ret true; } case (_) { ret false; } } } case (ty_char) { ret true; } case (_) { ret false; } } } fn type_is_fp(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_machine(?tm)) { alt (tm) { case (ty_f32) { ret true; } case (ty_f64) { ret true; } case (_) { ret false; } } } case (ty_float) { ret true; } case (_) { ret false; } } } fn type_is_signed(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_int) { ret true; } case (ty_machine(?tm)) { alt (tm) { case (ty_i8) { ret true; } case (ty_i16) { ret true; } case (ty_i32) { ret true; } case (ty_i64) { ret true; } case (_) { ret false; } } } case (_) { ret false; } } } fn type_owns_heap_mem(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_ivec(_)) { ret true; } case (ty_istr) { ret true; } case (ty_nil) { ret false; } case (ty_bot) { ret false; } case (ty_bool) { ret false; } case (ty_int) { ret false; } case (ty_float) { ret false; } case (ty_uint) { ret false; } case (ty_machine(_)) { ret false; } case (ty_char) { ret false; } case (ty_str) { ret false; } case (ty_tag(_,_)) { ret false; } case (ty_box(_)) { ret false; } case (ty_vec(_)) { ret false; } case (ty_ptr(_)) { ret false; } case (ty_port(_)) { ret false; } case (ty_chan(_)) { ret false; } case (ty_task) { ret false; } case (ty_tup(_)) { ret false; } case (ty_rec(_)) { ret false; } case (ty_fn(_,_,_,_,_)) { ret false; } case (ty_native_fn(_,_,_)) { ret false; } case (ty_obj(_)) { ret false; } case (ty_var(_)) { fail "ty_var in type_owns_heap_mem"; } case (ty_param(_)) { ret false; } case (ty_type) { ret false; } case (ty_native) { ret false; } } } fn type_param(&ctxt cx, &t ty) -> option::t[uint] { alt (struct(cx, ty)) { case (ty_param(?id)) { ret some[uint](id); } case (_) {/* fall through */ } } ret none[uint]; } fn def_to_str(&ast::def_id did) -> str { ret #fmt("%d:%d", did._0, did._1); } // Type hashing. This function is private to this module (and slow); external // users should use `hash_ty()` instead. fn hash_type_structure(&sty st) -> uint { fn hash_uint(uint id, uint n) -> uint { auto h = id; h += h << 5u + n; ret h; } fn hash_def(uint id, ast::def_id did) -> uint { auto h = id; h += h << 5u + (did._0 as uint); h += h << 5u + (did._1 as uint); ret h; } fn hash_subty(uint id, &t subty) -> uint { auto h = id; h += h << 5u + hash_ty(subty); ret h; } fn hash_fn(uint id, &vec[arg] args, &t rty) -> uint { auto h = id; for (arg a in args) { h += h << 5u + hash_ty(a.ty); } h += h << 5u + hash_ty(rty); ret h; } alt (st) { case (ty_nil) { ret 0u; } case (ty_bool) { ret 1u; } case (ty_int) { ret 2u; } case (ty_float) { ret 3u; } case (ty_uint) { ret 4u; } case (ty_machine(?tm)) { alt (tm) { case (ty_i8) { ret 5u; } case (ty_i16) { ret 6u; } case (ty_i32) { ret 7u; } case (ty_i64) { ret 8u; } case (ty_u8) { ret 9u; } case (ty_u16) { ret 10u; } case (ty_u32) { ret 11u; } case (ty_u64) { ret 12u; } case (ty_f32) { ret 13u; } case (ty_f64) { ret 14u; } } } case (ty_char) { ret 15u; } case (ty_str) { ret 16u; } case (ty_istr) { ret 17u; } case (ty_tag(?did, ?tys)) { auto h = hash_def(18u, did); for (t typ in tys) { h += h << 5u + hash_ty(typ); } ret h; } case (ty_box(?mt)) { ret hash_subty(19u, mt.ty); } case (ty_vec(?mt)) { ret hash_subty(20u, mt.ty); } case (ty_ivec(?mt)) { ret hash_subty(21u, mt.ty); } case (ty_port(?typ)) { ret hash_subty(22u, typ); } case (ty_chan(?typ)) { ret hash_subty(23u, typ); } case (ty_task) { ret 24u; } case (ty_tup(?mts)) { auto h = 25u; for (mt tm in mts) { h += h << 5u + hash_ty(tm.ty); } ret h; } case (ty_rec(?fields)) { auto h = 26u; for (field f in fields) { h += h << 5u + hash_ty(f.mt.ty); } ret h; } case ( // ??? ty_fn(_, ?args, ?rty, _, _)) { ret hash_fn(27u, args, rty); } case (ty_native_fn(_, ?args, ?rty)) { ret hash_fn(28u, args, rty); } case (ty_obj(?methods)) { auto h = 29u; for (method m in methods) { h += h << 5u + str::hash(m.ident); } ret h; } case (ty_var(?v)) { ret hash_uint(30u, v as uint); } case (ty_param(?pid)) { ret hash_uint(31u, pid); } case (ty_type) { ret 32u; } case (ty_native) { ret 33u; } case (ty_bot) { ret 34u; } case (ty_ptr(?mt)) { ret hash_subty(35u, mt.ty); } } } fn hash_type_info(&sty st, &option::t[str] cname_opt) -> uint { auto h = hash_type_structure(st); alt (cname_opt) { case (none) {/* no-op */ } case (some(?s)) { h += h << 5u + str::hash(s); } } ret h; } fn hash_raw_ty(&raw_t rt) -> uint { ret rt.hash; } fn hash_ty(&t typ) -> uint { ret typ; } // Type equality. This function is private to this module (and slow); external // users should use `eq_ty()` instead. fn eq_int(&uint x, &uint y) -> bool { ret x == y; } fn arg_eq[T](&fn(&T, &T) -> bool eq, @ast::constr_arg_general[T] a, @ast::constr_arg_general[T] b) -> bool { alt (a.node) { case (ast::carg_base) { alt (b.node) { case (ast::carg_base) { ret true; } case (_) { ret false; } } } case (ast::carg_ident(?s)) { alt (b.node) { case (ast::carg_ident(?t)) { ret eq(s, t); } case (_) { ret false; } } } case (ast::carg_lit(?l)) { alt (b.node) { case (ast::carg_lit(?m)) { ret lit_eq(l, m); } case (_) { ret false; } } } } } fn args_eq[T](fn(&T, &T) -> bool eq, vec[@ast::constr_arg_general[T]] a, vec[@ast::constr_arg_general[T]] b) -> bool { let uint i = 0u; for (@ast::constr_arg_general[T] arg in a) { if (!arg_eq(eq, arg, b.(i))) { ret false; } i += 1u; } ret true; } fn constr_eq(&@constr_def c, &@constr_def d) -> bool { ret path_to_str(c.node.path) == path_to_str(d.node.path) && // FIXME: hack args_eq(eq_int, c.node.args, d.node.args); } fn constrs_eq(&vec[@constr_def] cs, &vec[@constr_def] ds) -> bool { if (vec::len(cs) != vec::len(ds)) { ret false; } auto i = 0u; for (@constr_def c in cs) { if (!constr_eq(c, ds.(i))) { ret false; } i += 1u; } ret true; } fn equal_type_structures(&sty a, &sty b) -> bool { fn equal_mt(&mt a, &mt b) -> bool { ret a.mut == b.mut && eq_ty(a.ty, b.ty); } fn equal_fn(&vec[arg] args_a, &t rty_a, &vec[arg] args_b, &t rty_b) -> bool { if (!eq_ty(rty_a, rty_b)) { ret false; } auto len = vec::len[arg](args_a); if (len != vec::len[arg](args_b)) { ret false; } auto i = 0u; while (i < len) { auto arg_a = args_a.(i); auto arg_b = args_b.(i); if (arg_a.mode != arg_b.mode) { ret false; } if (!eq_ty(arg_a.ty, arg_b.ty)) { ret false; } i += 1u; } ret true; } fn equal_def(&ast::def_id did_a, &ast::def_id did_b) -> bool { ret did_a._0 == did_b._0 && did_a._1 == did_b._1; } alt (a) { case (ty_nil) { alt (b) { case (ty_nil) { ret true; } case (_) { ret false; } } } case (ty_bot) { alt (b) { case (ty_bot) { ret true; } case (_) { ret false; } } } case (ty_bool) { alt (b) { case (ty_bool) { ret true; } case (_) { ret false; } } } case (ty_int) { alt (b) { case (ty_int) { ret true; } case (_) { ret false; } } } case (ty_float) { alt (b) { case (ty_float) { ret true; } case (_) { ret false; } } } case (ty_uint) { alt (b) { case (ty_uint) { ret true; } case (_) { ret false; } } } case (ty_machine(?tm_a)) { alt (b) { case (ty_machine(?tm_b)) { ret hash_type_structure(a) == hash_type_structure(b); } case (_) { ret false; } } } case (ty_char) { alt (b) { case (ty_char) { ret true; } case (_) { ret false; } } } case (ty_str) { alt (b) { case (ty_str) { ret true; } case (_) { ret false; } } } case (ty_istr) { alt (b) { case (ty_istr) { ret true; } case (_) { ret false; } } } case (ty_tag(?id_a, ?tys_a)) { alt (b) { case (ty_tag(?id_b, ?tys_b)) { if (!equal_def(id_a, id_b)) { ret false; } auto len = vec::len[t](tys_a); if (len != vec::len[t](tys_b)) { ret false; } auto i = 0u; while (i < len) { if (!eq_ty(tys_a.(i), tys_b.(i))) { ret false; } i += 1u; } ret true; } case (_) { ret false; } } } case (ty_box(?mt_a)) { alt (b) { case (ty_box(?mt_b)) { ret equal_mt(mt_a, mt_b); } case (_) { ret false; } } } case (ty_vec(?mt_a)) { alt (b) { case (ty_vec(?mt_b)) { ret equal_mt(mt_a, mt_b); } case (_) { ret false; } } } case (ty_ivec(?mt_a)) { alt (b) { case (ty_ivec(?mt_b)) { ret equal_mt(mt_a, mt_b); } case (_) { ret false; } } } case (ty_ptr(?mt_a)) { alt (b) { case (ty_ptr(?mt_b)) { ret equal_mt(mt_a, mt_b); } case (_) { ret false; } } } case (ty_port(?t_a)) { alt (b) { case (ty_port(?t_b)) { ret eq_ty(t_a, t_b); } case (_) { ret false; } } } case (ty_chan(?t_a)) { alt (b) { case (ty_chan(?t_b)) { ret eq_ty(t_a, t_b); } case (_) { ret false; } } } case (ty_task) { alt (b) { case (ty_task) { ret true; } case (_) { ret false; } } } case (ty_tup(?mts_a)) { alt (b) { case (ty_tup(?mts_b)) { auto len = vec::len[mt](mts_a); if (len != vec::len[mt](mts_b)) { ret false; } auto i = 0u; while (i < len) { if (!equal_mt(mts_a.(i), mts_b.(i))) { ret false; } i += 1u; } ret true; } case (_) { ret false; } } } case (ty_rec(?flds_a)) { alt (b) { case (ty_rec(?flds_b)) { auto len = vec::len[field](flds_a); if (len != vec::len[field](flds_b)) { ret false; } auto i = 0u; while (i < len) { auto fld_a = flds_a.(i); auto fld_b = flds_b.(i); if (!str::eq(fld_a.ident, fld_b.ident) || !equal_mt(fld_a.mt, fld_b.mt)) { ret false; } i += 1u; } ret true; } case (_) { ret false; } } } case (ty_fn(?p_a, ?args_a, ?rty_a, ?cf_a, ?constrs_a)) { alt (b) { case (ty_fn(?p_b, ?args_b, ?rty_b, ?cf_b, ?constrs_b)) { ret p_a == p_b && cf_a == cf_b && constrs_eq(constrs_a, constrs_b) && equal_fn(args_a, rty_a, args_b, rty_b); } case (_) { ret false; } } } case (ty_native_fn(?abi_a, ?args_a, ?rty_a)) { alt (b) { case (ty_native_fn(?abi_b, ?args_b, ?rty_b)) { ret abi_a == abi_b && equal_fn(args_a, rty_a, args_b, rty_b); } case (_) { ret false; } } } case (ty_obj(?methods_a)) { alt (b) { case (ty_obj(?methods_b)) { auto len = vec::len[method](methods_a); if (len != vec::len[method](methods_b)) { ret false; } auto i = 0u; while (i < len) { auto m_a = methods_a.(i); auto m_b = methods_b.(i); if (m_a.proto != m_b.proto || !str::eq(m_a.ident, m_b.ident) || !equal_fn(m_a.inputs, m_a.output, m_b.inputs, m_b.output)) { ret false; } i += 1u; } ret true; } case (_) { ret false; } } } case (ty_var(?v_a)) { alt (b) { case (ty_var(?v_b)) { ret v_a == v_b; } case (_) { ret false; } } } case (ty_param(?pid_a)) { alt (b) { case (ty_param(?pid_b)) { ret pid_a == pid_b; } case (_) { ret false; } } } case (ty_type) { alt (b) { case (ty_type) { ret true; } case (_) { ret false; } } } case (ty_native) { alt (b) { case (ty_native) { ret true; } case (_) { ret false; } } } } } // An expensive type equality function. This function is private to this // module. // // FIXME: Use structural comparison, but this loops forever and segfaults. fn eq_raw_ty(&raw_t a, &raw_t b) -> bool { // Check hashes (fast path). if (a.hash != b.hash) { ret false; } // Check canonical names. alt (a.cname) { case (none) { alt (b.cname) { case (none[str]) {/* ok */ } case (_) { ret false; } } } case (some(?s_a)) { alt (b.cname) { case (some(?s_b)) { if (!str::eq(s_a, s_b)) { ret false; } } case (_) { ret false; } } } } // Check structures. ret equal_type_structures(a.struct, b.struct); } // This is the equality function the public should use. It works as long as // the types are interned. fn eq_ty(&t a, &t b) -> bool { ret a == b; } // Type lookups fn ann_to_ty_param_substs_opt_and_ty(&ctxt cx, &ast::ann ann) -> ty_param_substs_opt_and_ty { // Pull out the node type table. alt (smallintmap::find(*cx.node_types, ann.id)) { case (none) { cx.sess.bug("ann_to_ty_param_substs_opt_and_ty() called on an " + "untyped node"); } case (some(?tpot)) { ret tpot; } } } fn ann_to_type(&ctxt cx, &ast::ann ann) -> t { ret ann_to_ty_param_substs_opt_and_ty(cx, ann)._1; } fn ann_to_type_params(&ctxt cx, &ast::ann ann) -> vec[t] { alt (ann_to_ty_param_substs_opt_and_ty(cx, ann)._0) { case (none) { let vec[t] result = []; ret result; } case (some(?tps)) { ret tps; } } } fn ann_has_type_params(&ctxt cx, &ast::ann ann) -> bool { auto tpt = ann_to_ty_param_substs_opt_and_ty(cx, ann); ret !option::is_none[vec[t]](tpt._0); } // Returns a type with type parameter substitutions performed if applicable. fn ty_param_substs_opt_and_ty_to_monotype(&ctxt cx, &ty_param_substs_opt_and_ty tpot) -> t { alt (tpot._0) { case (none) { ret tpot._1; } case (some(?tps)) { ret substitute_type_params(cx, tps, tpot._1); } } } // Returns the type of an annotation, with type parameter substitutions // performed if applicable. fn ann_to_monotype(&ctxt cx, ast::ann a) -> t { auto tpot = ann_to_ty_param_substs_opt_and_ty(cx, a); ret ty_param_substs_opt_and_ty_to_monotype(cx, tpot); } // Returns the number of distinct type parameters in the given type. fn count_ty_params(&ctxt cx, t ty) -> uint { fn counter(&ctxt cx, @mutable vec[uint] param_indices, t ty) { alt (struct(cx, ty)) { case (ty_param(?param_idx)) { auto seen = false; for (uint other_param_idx in *param_indices) { if (param_idx == other_param_idx) { seen = true; } } if (!seen) { *param_indices += [param_idx]; } } case (_) {/* fall through */ } } } let vec[uint] v = []; // FIXME: typechecker botch let @mutable vec[uint] param_indices = @mutable v; auto f = bind counter(cx, param_indices, _); walk_ty(cx, f, ty); ret vec::len[uint](*param_indices); } fn type_contains_vars(&ctxt cx, &t typ) -> bool { ret interner::get[raw_t](*cx.ts, typ).has_vars; } fn type_contains_params(&ctxt cx, &t typ) -> bool { ret interner::get[raw_t](*cx.ts, typ).has_params; } // Type accessors for substructures of types fn ty_fn_args(&ctxt cx, &t fty) -> vec[arg] { alt (struct(cx, fty)) { case (ty::ty_fn(_, ?a, _, _, _)) { ret a; } case (ty::ty_native_fn(_, ?a, _)) { ret a; } } cx.sess.bug("ty_fn_args() called on non-fn type"); } fn ty_fn_proto(&ctxt cx, &t fty) -> ast::proto { alt (struct(cx, fty)) { case (ty::ty_fn(?p, _, _, _, _)) { ret p; } } cx.sess.bug("ty_fn_proto() called on non-fn type"); } fn ty_fn_abi(&ctxt cx, &t fty) -> ast::native_abi { alt (struct(cx, fty)) { case (ty::ty_native_fn(?a, _, _)) { ret a; } } cx.sess.bug("ty_fn_abi() called on non-native-fn type"); } fn ty_fn_ret(&ctxt cx, &t fty) -> t { alt (struct(cx, fty)) { case (ty::ty_fn(_, _, ?r, _, _)) { ret r; } case (ty::ty_native_fn(_, _, ?r)) { ret r; } } cx.sess.bug("ty_fn_ret() called on non-fn type"); } fn is_fn_ty(&ctxt cx, &t fty) -> bool { alt (struct(cx, fty)) { case (ty::ty_fn(_, _, _, _, _)) { ret true; } case (ty::ty_native_fn(_, _, _)) { ret true; } case (_) { ret false; } } } fn ty_var_id(&ctxt cx, t typ) -> int { alt (struct(cx, typ)) { case (ty::ty_var(?vid)) { ret vid; } case (_) { log_err "ty_var_id called on non-var ty"; fail; } } } // Type accessors for AST nodes fn block_ty(&ctxt cx, &ast::block b) -> t { ret ann_to_type(cx, b.node.a); } // Returns the type of a pattern as a monotype. Like @expr_ty, this function // doesn't provide type parameter substitutions. fn pat_ty(&ctxt cx, &@ast::pat pat) -> t { ret ann_to_monotype(cx, pat_ann(pat)); } fn expr_ann(&@ast::expr e) -> ast::ann { alt (e.node) { case (ast::expr_vec(_, _, _, ?a)) { ret a; } case (ast::expr_tup(_, ?a)) { ret a; } case (ast::expr_rec(_, _, ?a)) { ret a; } case (ast::expr_call(_, _, ?a)) { ret a; } case (ast::expr_bind(_, _, ?a)) { ret a; } case (ast::expr_binary(_, _, _, ?a)) { ret a; } case (ast::expr_unary(_, _, ?a)) { ret a; } case (ast::expr_lit(_, ?a)) { ret a; } case (ast::expr_cast(_, _, ?a)) { ret a; } case (ast::expr_if(_, _, _, ?a)) { ret a; } case (ast::expr_if_check(_, _, _, ?a)) { ret a; } case (ast::expr_while(_, _, ?a)) { ret a; } case (ast::expr_for(_, _, _, ?a)) { ret a; } case (ast::expr_for_each(_, _, _, ?a)) { ret a; } case (ast::expr_do_while(_, _, ?a)) { ret a; } case (ast::expr_alt(_, _, ?a)) { ret a; } case (ast::expr_fn(_, ?a)) { ret a; } case (ast::expr_block(_, ?a)) { ret a; } case (ast::expr_move(_, _, ?a)) { ret a; } case (ast::expr_assign(_, _, ?a)) { ret a; } case (ast::expr_swap(_, _, ?a)) { ret a; } case (ast::expr_assign_op(_, _, _, ?a)) { ret a; } case (ast::expr_send(_, _, ?a)) { ret a; } case (ast::expr_recv(_, _, ?a)) { ret a; } case (ast::expr_field(_, _, ?a)) { ret a; } case (ast::expr_index(_, _, ?a)) { ret a; } case (ast::expr_path(_, ?a)) { ret a; } case (ast::expr_ext(_, _, _, _, ?a)) { ret a; } case (ast::expr_fail(?a, _)) { ret a; } case (ast::expr_ret(_, ?a)) { ret a; } case (ast::expr_put(_, ?a)) { ret a; } case (ast::expr_be(_, ?a)) { ret a; } case (ast::expr_log(_, _, ?a)) { ret a; } case (ast::expr_assert(_, ?a)) { ret a; } case (ast::expr_check(_, ?a)) { ret a; } case (ast::expr_port(?a)) { ret a; } case (ast::expr_chan(_, ?a)) { ret a; } case (ast::expr_anon_obj(_, _, _, ?a)) { ret a; } case (ast::expr_break(?a)) { ret a; } case (ast::expr_cont(?a)) { ret a; } case (ast::expr_self_method(_, ?a)) { ret a; } case (ast::expr_spawn(_, _, _, _, ?a)) { ret a; } } } // Returns the type of an expression as a monotype. // // NB: This type doesn't provide type parameter substitutions; e.g. if you // ask for the type of "id" in "id(3)", it will return "fn(&int) -> int" // instead of "fn(&T) -> T with T = int". If this isn't what you want, see // expr_ty_params_and_ty() below. fn expr_ty(&ctxt cx, &@ast::expr expr) -> t { ret ann_to_monotype(cx, expr_ann(expr)); } fn expr_ty_params_and_ty(&ctxt cx, &@ast::expr expr) -> tup(vec[t], t) { auto a = expr_ann(expr); ret tup(ann_to_type_params(cx, a), ann_to_type(cx, a)); } fn expr_has_ty_params(&ctxt cx, &@ast::expr expr) -> bool { ret ann_has_type_params(cx, expr_ann(expr)); } fn decl_local_ty(&ctxt cx, &@ast::local l) -> t { ret ann_to_type(cx, l.node.ann); } fn stmt_ann(&@ast::stmt s) -> ast::ann { alt (s.node) { case (ast::stmt_decl(_, ?a)) { ret a; } case (ast::stmt_expr(_, ?a)) { ret a; } case (ast::stmt_crate_directive(_)) { log_err "ty::stmt_ann(): crate directive found"; fail; } } } fn pat_ann(&@ast::pat p) -> ast::ann { alt (p.node) { case (ast::pat_wild(?a)) { ret a; } case (ast::pat_bind(_, _, ?a)) { ret a; } case (ast::pat_lit(_, ?a)) { ret a; } case (ast::pat_tag(_, _, ?a)) { ret a; } } } // Expression utilities fn field_num(&session::session sess, &span sp, &ast::ident id) -> uint { let uint accum = 0u; let uint i = 0u; for (u8 c in id) { if (i == 0u) { if (c != '_' as u8) { sess.span_fatal(sp, "bad numeric field on tuple: " + "missing leading underscore"); } } else { if ('0' as u8 <= c && c <= '9' as u8) { accum *= 10u; accum += (c as uint) - ('0' as uint); } else { auto s = ""; s += str::unsafe_from_byte(c); sess.span_fatal(sp, "bad numeric field on tuple: " + " non-digit character: " + s); } } i += 1u; } ret accum; } fn field_idx(&session::session sess, &span sp, &ast::ident id, &vec[field] fields) -> uint { let uint i = 0u; for (field f in fields) { if (str::eq(f.ident, id)) { ret i; } i += 1u; } sess.span_fatal(sp, "unknown field '" + id + "' of record"); } fn method_idx(&session::session sess, &span sp, &ast::ident id, &vec[method] meths) -> uint { let uint i = 0u; for (method m in meths) { if (str::eq(m.ident, id)) { ret i; } i += 1u; } sess.span_fatal(sp, "unknown method '" + id + "' of obj"); } fn sort_methods(&vec[method] meths) -> vec[method] { fn method_lteq(&method a, &method b) -> bool { ret str::lteq(a.ident, b.ident); } ret std::sort::merge_sort[method](bind method_lteq(_, _), meths); } fn is_lval(&@ast::expr expr) -> bool { alt (expr.node) { case (ast::expr_field(_, _, _)) { ret true; } case (ast::expr_index(_, _, _)) { ret true; } case (ast::expr_path(_, _)) { ret true; } case (ast::expr_unary(ast::deref, _, _)) { ret true; } case (_) { ret false; } } } // Type unification via Robinson's algorithm (Robinson 1965). Implemented as // described in Hoder and Voronkov: // // http://www.cs.man.ac.uk/~hoderk/ubench/unification_full.pdf mod unify { export fixup_result; export fixup_vars; export fix_ok; export fix_err; export mk_var_bindings; export resolve_type_bindings; export resolve_type_structure; export resolve_type_var; export result; export unify; export ures_ok; export ures_err; export var_bindings; tag result { ures_ok(t); ures_err(type_err); } tag union_result { unres_ok; unres_err(type_err); } tag fixup_result { fix_ok(t); // fixup succeeded fix_err(int); // fixup failed because a type variable was unresolved } type var_bindings = rec(ufind::ufind sets, smallintmap::smallintmap[t] types); type ctxt = rec(@var_bindings vb, ty_ctxt tcx); fn mk_var_bindings() -> @var_bindings { ret @rec(sets=ufind::make(), types=smallintmap::mk[t]()); } // Unifies two sets. fn union(&@ctxt cx, uint set_a, uint set_b) -> union_result { ufind::grow(cx.vb.sets, uint::max(set_a, set_b) + 1u); auto root_a = ufind::find(cx.vb.sets, set_a); auto root_b = ufind::find(cx.vb.sets, set_b); ufind::union(cx.vb.sets, set_a, set_b); auto root_c = ufind::find(cx.vb.sets, set_a); alt (smallintmap::find[t](cx.vb.types, root_a)) { case (none[t]) { alt (smallintmap::find[t](cx.vb.types, root_b)) { case (none[t]) { ret unres_ok; } case (some[t](?t_b)) { smallintmap::insert[t](cx.vb.types, root_c, t_b); ret unres_ok; } } } case (some[t](?t_a)) { alt (smallintmap::find[t](cx.vb.types, root_b)) { case (none[t]) { smallintmap::insert[t](cx.vb.types, root_c, t_a); ret unres_ok; } case (some[t](?t_b)) { alt (unify_step(cx, t_a, t_b)) { case (ures_ok(?t_c)) { smallintmap::insert[t](cx.vb.types, root_c, t_c); ret unres_ok; } case (ures_err(?terr)) { ret unres_err(terr); } } } } } } } fn record_var_binding(&@ctxt cx, int key, t typ) -> result { ufind::grow(cx.vb.sets, (key as uint) + 1u); auto root = ufind::find(cx.vb.sets, key as uint); auto result_type = typ; alt (smallintmap::find[t](cx.vb.types, root)) { case (some(?old_type)) { alt (unify_step(cx, old_type, typ)) { case (ures_ok(?unified_type)) { result_type = unified_type; } case (?res) { ret res; } } } case (none) {/* fall through */ } } smallintmap::insert[t](cx.vb.types, root, result_type); ret ures_ok(typ); } // Wraps the given type in an appropriate cname. // // TODO: This doesn't do anything yet. We should carry the cname up from // the expected and/or actual types when unification results in a type // identical to one or both of the two. The precise algorithm for this is // something we'll probably need to develop over time. // Simple structural type comparison. fn struct_cmp(@ctxt cx, t expected, t actual) -> result { if (struct(cx.tcx, expected) == struct(cx.tcx, actual)) { ret ures_ok(expected); } ret ures_err(terr_mismatch); } // Unifies two mutability flags. fn unify_mut(ast::mutability expected, ast::mutability actual) -> option::t[ast::mutability] { if (expected == actual) { ret some[ast::mutability](expected); } if (expected == ast::maybe_mut) { ret some[ast::mutability](actual); } if (actual == ast::maybe_mut) { ret some[ast::mutability](expected); } ret none[ast::mutability]; } tag fn_common_res { fn_common_res_err(result); fn_common_res_ok(vec[arg], t); } fn unify_fn_common(&@ctxt cx, &t expected, &t actual, &vec[arg] expected_inputs, &t expected_output, &vec[arg] actual_inputs, &t actual_output) -> fn_common_res { auto expected_len = vec::len[arg](expected_inputs); auto actual_len = vec::len[arg](actual_inputs); if (expected_len != actual_len) { ret fn_common_res_err(ures_err(terr_arg_count)); } // TODO: as above, we should have an iter2 iterator. let vec[arg] result_ins = []; auto i = 0u; while (i < expected_len) { auto expected_input = expected_inputs.(i); auto actual_input = actual_inputs.(i); // Unify the result modes. auto result_mode; if (expected_input.mode != actual_input.mode) { // FIXME this is the wrong error ret fn_common_res_err(ures_err(terr_arg_count)); } else { result_mode = expected_input.mode; } auto result = unify_step(cx, expected_input.ty, actual_input.ty); alt (result) { case (ures_ok(?rty)) { result_ins += [rec(mode=result_mode, ty=rty)]; } case (_) { ret fn_common_res_err(result); } } i += 1u; } // Check the output. auto result = unify_step(cx, expected_output, actual_output); alt (result) { case (ures_ok(?rty)) { ret fn_common_res_ok(result_ins, rty); } case (_) { ret fn_common_res_err(result); } } } fn unify_fn(&@ctxt cx, &ast::proto e_proto, &ast::proto a_proto, &t expected, &t actual, &vec[arg] expected_inputs, &t expected_output, &vec[arg] actual_inputs, &t actual_output, &controlflow expected_cf, &controlflow actual_cf, &vec[@constr_def] expected_constrs, &vec[@constr_def] actual_constrs) -> result { if (e_proto != a_proto) { ret ures_err(terr_mismatch); } alt (expected_cf) { case (ast::return) { } case ( // ok ast::noreturn) { alt (actual_cf) { case (ast::noreturn) { // ok } case (_) { /* even though typestate checking is mostly responsible for checking control flow annotations, this check is necessary to ensure that the annotation in an object method matches the declared object type */ ret ures_err(terr_controlflow_mismatch); } } } } auto t = unify_fn_common(cx, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output); alt (t) { case (fn_common_res_err(?r)) { ret r; } case (fn_common_res_ok(?result_ins, ?result_out)) { auto t2 = mk_fn(cx.tcx, e_proto, result_ins, result_out, actual_cf, actual_constrs); ret ures_ok(t2); } } } fn unify_native_fn(&@ctxt cx, &ast::native_abi e_abi, &ast::native_abi a_abi, &t expected, &t actual, &vec[arg] expected_inputs, &t expected_output, &vec[arg] actual_inputs, &t actual_output) -> result { if (e_abi != a_abi) { ret ures_err(terr_mismatch); } auto t = unify_fn_common(cx, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output); alt (t) { case (fn_common_res_err(?r)) { ret r; } case (fn_common_res_ok(?result_ins, ?result_out)) { auto t2 = mk_native_fn(cx.tcx, e_abi, result_ins, result_out); ret ures_ok(t2); } } } fn unify_obj(&@ctxt cx, &t expected, &t actual, &vec[method] expected_meths, &vec[method] actual_meths) -> result { let vec[method] result_meths = []; let uint i = 0u; let uint expected_len = vec::len[method](expected_meths); let uint actual_len = vec::len[method](actual_meths); if (expected_len != actual_len) { ret ures_err(terr_meth_count); } while (i < expected_len) { auto e_meth = expected_meths.(i); auto a_meth = actual_meths.(i); if (!str::eq(e_meth.ident, a_meth.ident)) { ret ures_err(terr_obj_meths(e_meth.ident, a_meth.ident)); } auto r = unify_fn(cx, e_meth.proto, a_meth.proto, expected, actual, e_meth.inputs, e_meth.output, a_meth.inputs, a_meth.output, e_meth.cf, a_meth.cf, e_meth.constrs, a_meth.constrs); alt (r) { case (ures_ok(?tfn)) { alt (struct(cx.tcx, tfn)) { case (ty_fn(?proto, ?ins, ?out, ?cf, ?constrs)) { result_meths += [rec(inputs=ins, output=out, cf=cf, constrs=constrs with e_meth)]; } } } case (_) { ret r; } } i += 1u; } auto t = mk_obj(cx.tcx, result_meths); ret ures_ok(t); } // If the given type is a variable, returns the structure of that type. fn resolve_type_structure(&ty_ctxt tcx, &@var_bindings vb, t typ) -> fixup_result { alt (struct(tcx, typ)) { case (ty_var(?vid)) { if (vid as uint >= ufind::set_count(vb.sets)) { ret fix_err(vid); } auto root_id = ufind::find(vb.sets, vid as uint); alt (smallintmap::find[t](vb.types, root_id)) { case (none[t]) { ret fix_err(vid); } case (some[t](?rt)) { ret fix_ok(rt); } } } case (_) { ret fix_ok(typ); } } } fn unify_step(&@ctxt cx, &t expected, &t actual) -> result { // TODO: rewrite this using tuple pattern matching when available, to // avoid all this rightward drift and spikiness. // TODO: occurs check, to make sure we don't loop forever when // unifying e.g. 'a and option['a] // Fast path. if (eq_ty(expected, actual)) { ret ures_ok(expected); } // Stage 1: Handle the cases in which one side or another is a type // variable. alt (struct(cx.tcx, actual)) { case ( // If the RHS is a variable type, then just do the // appropriate binding. ty::ty_var(?actual_id)) { auto actual_n = actual_id as uint; alt (struct(cx.tcx, expected)) { case (ty::ty_var(?expected_id)) { auto expected_n = expected_id as uint; alt(union(cx, expected_n, actual_n)) { case (unres_ok) { /* fall through */ } case (unres_err(?t_e)) { ret ures_err(t_e); } } } case (_) { // Just bind the type variable to the expected type. alt (record_var_binding(cx, actual_id, expected)) { case (ures_ok(_)) {/* fall through */ } case (?res) { ret res; } } } } ret ures_ok(mk_var(cx.tcx, actual_id)); } case (_) {/* empty */ } } alt (struct(cx.tcx, expected)) { case (ty::ty_var(?expected_id)) { // Add a binding. (`actual` can't actually be a var here.) alt (record_var_binding(cx, expected_id, actual)) { case (ures_ok(_)) {/* fall through */ } case (?res) { ret res; } } ret ures_ok(mk_var(cx.tcx, expected_id)); } case (_) {/* fall through */ } } // Stage 2: Handle all other cases. alt (struct(cx.tcx, actual)) { case (ty::ty_bot) { ret ures_ok(expected); } case (_) {/* fall through */ } } alt (struct(cx.tcx, expected)) { case (ty::ty_nil) { ret struct_cmp(cx, expected, actual); } case ( // _|_ unifies with anything ty::ty_bot) { ret ures_ok(actual); } case (ty::ty_bool) { ret struct_cmp(cx, expected, actual); } case (ty::ty_int) { ret struct_cmp(cx, expected, actual); } case (ty::ty_uint) { ret struct_cmp(cx, expected, actual); } case (ty::ty_machine(_)) { ret struct_cmp(cx, expected, actual); } case (ty::ty_float) { ret struct_cmp(cx, expected, actual); } case (ty::ty_char) { ret struct_cmp(cx, expected, actual); } case (ty::ty_str) { ret struct_cmp(cx, expected, actual); } case (ty::ty_istr) { ret struct_cmp(cx, expected, actual); } case (ty::ty_type) { ret struct_cmp(cx, expected, actual); } case (ty::ty_native) { ret struct_cmp(cx, expected, actual); } case (ty::ty_param(_)) { ret struct_cmp(cx, expected, actual); } case (ty::ty_tag(?expected_id, ?expected_tps)) { alt (struct(cx.tcx, actual)) { case (ty::ty_tag(?actual_id, ?actual_tps)) { if (expected_id._0 != actual_id._0 || expected_id._1 != actual_id._1) { ret ures_err(terr_mismatch); } // TODO: factor this cruft out, see the TODO in the // ty::ty_tup case let vec[t] result_tps = []; auto i = 0u; auto expected_len = vec::len[t](expected_tps); while (i < expected_len) { auto expected_tp = expected_tps.(i); auto actual_tp = actual_tps.(i); auto result = unify_step(cx, expected_tp, actual_tp); alt (result) { case (ures_ok(?rty)) { vec::push[t](result_tps, rty); } case (_) { ret result; } } i += 1u; } ret ures_ok(mk_tag(cx.tcx, expected_id, result_tps)); } case (_) {/* fall through */ } } ret ures_err(terr_mismatch); } case (ty::ty_box(?expected_mt)) { alt (struct(cx.tcx, actual)) { case (ty::ty_box(?actual_mt)) { auto mut; alt (unify_mut(expected_mt.mut, actual_mt.mut)) { case (none) { ret ures_err(terr_box_mutability); } case (some(?m)) { mut = m; } } auto result = unify_step(cx, expected_mt.ty, actual_mt.ty); alt (result) { case (ures_ok(?result_sub)) { auto mt = rec(ty=result_sub, mut=mut); ret ures_ok(mk_box(cx.tcx, mt)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch); } } } case (ty::ty_vec(?expected_mt)) { alt (struct(cx.tcx, actual)) { case (ty::ty_vec(?actual_mt)) { auto mut; alt (unify_mut(expected_mt.mut, actual_mt.mut)) { case (none) { ret ures_err(terr_vec_mutability); } case (some(?m)) { mut = m; } } auto result = unify_step(cx, expected_mt.ty, actual_mt.ty); alt (result) { case (ures_ok(?result_sub)) { auto mt = rec(ty=result_sub, mut=mut); ret ures_ok(mk_vec(cx.tcx, mt)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch); } } } case (ty::ty_ivec(?expected_mt)) { alt (struct(cx.tcx, actual)) { case (ty::ty_ivec(?actual_mt)) { auto mut; alt (unify_mut(expected_mt.mut, actual_mt.mut)) { case (none) { ret ures_err(terr_vec_mutability); } case (some(?m)) { mut = m; } } auto result = unify_step(cx, expected_mt.ty, actual_mt.ty); alt (result) { case (ures_ok(?result_sub)) { auto mt = rec(ty=result_sub, mut=mut); ret ures_ok(mk_ivec(cx.tcx, mt)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch); } } } case (ty::ty_ptr(?expected_mt)) { alt (struct(cx.tcx, actual)) { case (ty::ty_ptr(?actual_mt)) { auto mut; alt (unify_mut(expected_mt.mut, actual_mt.mut)) { case (none) { ret ures_err(terr_vec_mutability); } case (some(?m)) { mut = m; } } auto result = unify_step(cx, expected_mt.ty, actual_mt.ty); alt (result) { case (ures_ok(?result_sub)) { auto mt = rec(ty=result_sub, mut=mut); ret ures_ok(mk_ptr(cx.tcx, mt)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch); } } } case (ty::ty_port(?expected_sub)) { alt (struct(cx.tcx, actual)) { case (ty::ty_port(?actual_sub)) { auto result = unify_step(cx, expected_sub, actual_sub); alt (result) { case (ures_ok(?result_sub)) { ret ures_ok(mk_port(cx.tcx, result_sub)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch); } } } case (ty::ty_chan(?expected_sub)) { alt (struct(cx.tcx, actual)) { case (ty::ty_chan(?actual_sub)) { auto result = unify_step(cx, expected_sub, actual_sub); alt (result) { case (ures_ok(?result_sub)) { ret ures_ok(mk_chan(cx.tcx, result_sub)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch); } } } case (ty::ty_tup(?expected_elems)) { alt (struct(cx.tcx, actual)) { case (ty::ty_tup(?actual_elems)) { auto expected_len = vec::len[ty::mt](expected_elems); auto actual_len = vec::len[ty::mt](actual_elems); if (expected_len != actual_len) { auto err = terr_tuple_size(expected_len, actual_len); ret ures_err(err); } // TODO: implement an iterator that can iterate over // two arrays simultaneously. let vec[ty::mt] result_elems = []; auto i = 0u; while (i < expected_len) { auto expected_elem = expected_elems.(i); auto actual_elem = actual_elems.(i); auto mut; alt (unify_mut(expected_elem.mut, actual_elem.mut)) { case (none) { auto err = terr_tuple_mutability; ret ures_err(err); } case (some(?m)) { mut = m; } } auto result = unify_step(cx, expected_elem.ty, actual_elem.ty); alt (result) { case (ures_ok(?rty)) { auto mt = rec(ty=rty, mut=mut); result_elems += [mt]; } case (_) { ret result; } } i += 1u; } ret ures_ok(mk_tup(cx.tcx, result_elems)); } case (_) { ret ures_err(terr_mismatch); } } } case (ty::ty_rec(?expected_fields)) { alt (struct(cx.tcx, actual)) { case (ty::ty_rec(?actual_fields)) { auto expected_len = vec::len[field](expected_fields); auto actual_len = vec::len[field](actual_fields); if (expected_len != actual_len) { auto err = terr_record_size(expected_len, actual_len); ret ures_err(err); } // TODO: implement an iterator that can iterate over // two arrays simultaneously. let vec[field] result_fields = []; auto i = 0u; while (i < expected_len) { auto expected_field = expected_fields.(i); auto actual_field = actual_fields.(i); auto mut; alt (unify_mut(expected_field.mt.mut, actual_field.mt.mut)) { case (none) { ret ures_err(terr_record_mutability); } case (some(?m)) { mut = m; } } if (!str::eq(expected_field.ident, actual_field.ident)) { auto err = terr_record_fields(expected_field.ident, actual_field.ident); ret ures_err(err); } auto result = unify_step(cx, expected_field.mt.ty, actual_field.mt.ty); alt (result) { case (ures_ok(?rty)) { auto mt = rec(ty=rty, mut=mut); vec::push[field](result_fields, rec(mt=mt with expected_field)); } case (_) { ret result; } } i += 1u; } ret ures_ok(mk_rec(cx.tcx, result_fields)); } case (_) { ret ures_err(terr_mismatch); } } } case (ty::ty_fn(?ep, ?expected_inputs, ?expected_output, ?expected_cf, ?expected_constrs)) { alt (struct(cx.tcx, actual)) { case (ty::ty_fn(?ap, ?actual_inputs, ?actual_output, ?actual_cf, ?actual_constrs)) { ret unify_fn(cx, ep, ap, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output, expected_cf, actual_cf, expected_constrs, actual_constrs); } case (_) { ret ures_err(terr_mismatch); } } } case (ty::ty_native_fn(?e_abi, ?expected_inputs, ?expected_output)) { alt (struct(cx.tcx, actual)) { case (ty::ty_native_fn(?a_abi, ?actual_inputs, ?actual_output)) { ret unify_native_fn(cx, e_abi, a_abi, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output); } case (_) { ret ures_err(terr_mismatch); } } } case (ty::ty_obj(?expected_meths)) { alt (struct(cx.tcx, actual)) { case (ty::ty_obj(?actual_meths)) { ret unify_obj(cx, expected, actual, expected_meths, actual_meths); } case (_) { ret ures_err(terr_mismatch); } } } } } fn unify(&t expected, &t actual, &@var_bindings vb, &ty_ctxt tcx) -> result { auto cx = @rec(vb=vb, tcx=tcx); ret unify_step(cx, expected, actual); } fn dump_var_bindings(ty_ctxt tcx, @var_bindings vb) { auto i = 0u; while (i < vec::len[ufind::node](vb.sets.nodes)) { auto sets = ""; auto j = 0u; while (j < vec::len[option::t[uint]](vb.sets.nodes)) { if (ufind::find(vb.sets, j) == i) { sets += #fmt(" %u", j); } j += 1u; } auto typespec; alt (smallintmap::find[t](vb.types, i)) { case (none[t]) { typespec = ""; } case (some[t](?typ)) { typespec = " =" + pretty::ppaux::ty_to_str(tcx, typ); } } log_err #fmt("set %u:%s%s", i, typespec, sets); i += 1u; } } // Fixups and substitutions fn fixup_vars(ty_ctxt tcx, @var_bindings vb, t typ) -> fixup_result { fn subst_vars(ty_ctxt tcx, @var_bindings vb, @mutable option::t[int] unresolved, int vid) -> t { if (vid as uint >= ufind::set_count(vb.sets)) { *unresolved = some[int](vid); ret ty::mk_var(tcx, vid); } auto root_id = ufind::find(vb.sets, vid as uint); alt (smallintmap::find[t](vb.types, root_id)) { case (none[t]) { *unresolved = some[int](vid); ret ty::mk_var(tcx, vid); } case (some[t](?rt)) { ret fold_ty(tcx, fm_var(bind subst_vars(tcx, vb, unresolved, _)), rt); } } } auto unresolved = @mutable none[int]; auto rty = fold_ty(tcx, fm_var(bind subst_vars(tcx, vb, unresolved, _)), typ); auto ur = *unresolved; alt (ur) { case (none[int]) { ret fix_ok(rty); } case (some[int](?var_id)) { ret fix_err(var_id); } } } fn resolve_type_var(&ty_ctxt tcx, &@var_bindings vb, int vid) -> fixup_result { if (vid as uint >= ufind::set_count(vb.sets)) { ret fix_err(vid); } auto root_id = ufind::find(vb.sets, vid as uint); alt (smallintmap::find[t](vb.types, root_id)) { case (none[t]) { ret fix_err(vid); } case (some[t](?rt)) { ret fixup_vars(tcx, vb, rt); } } } } fn type_err_to_str(&ty::type_err err) -> str { alt (err) { case (terr_mismatch) { ret "types differ"; } case (terr_controlflow_mismatch) { ret "returning function used where non-returning function" + " was expected"; } case (terr_box_mutability) { ret "boxed values differ in mutability"; } case (terr_vec_mutability) { ret "vectors differ in mutability"; } case (terr_tuple_size(?e_sz, ?a_sz)) { ret "expected a tuple with " + uint::to_str(e_sz, 10u) + " elements but found one with " + uint::to_str(a_sz, 10u) + " elements"; } case (terr_tuple_mutability) { ret "tuple elements differ in mutability"; } case (terr_record_size(?e_sz, ?a_sz)) { ret "expected a record with " + uint::to_str(e_sz, 10u) + " fields but found one with " + uint::to_str(a_sz, 10u) + " fields"; } case (terr_record_mutability) { ret "record elements differ in mutability"; } case (terr_record_fields(?e_fld, ?a_fld)) { ret "expected a record with field '" + e_fld + "' but found one with field '" + a_fld + "'"; } case (terr_arg_count) { ret "incorrect number of function parameters"; } case (terr_meth_count) { ret "incorrect number of object methods"; } case (terr_obj_meths(?e_meth, ?a_meth)) { ret "expected an obj with method '" + e_meth + "' but found one with method '" + a_meth + "'"; } } } // Converts type parameters in a type to type variables and returns the // resulting type along with a list of type variable IDs. fn bind_params_in_type(&ctxt cx, fn() -> int next_ty_var, t typ, uint ty_param_count) -> tup(vec[int], t) { let vec[int] param_var_ids = []; auto i = 0u; while (i < ty_param_count) { param_var_ids += [next_ty_var()]; i += 1u; } fn binder(ctxt cx, vec[int] param_var_ids, fn() -> int next_ty_var, uint index) -> t { ret mk_var(cx, param_var_ids.(index)); } auto new_typ = fold_ty(cx, fm_param(bind binder(cx, param_var_ids, next_ty_var, _)), typ); ret tup(param_var_ids, new_typ); } // Replaces type parameters in the given type using the given list of // substitions. fn substitute_type_params(&ctxt cx, vec[ty::t] substs, t typ) -> t { if (!type_contains_params(cx, typ)) { ret typ; } fn substituter(ctxt cx, vec[ty::t] substs, uint idx) -> t { // FIXME: bounds check can fail ret substs.(idx); } ret fold_ty(cx, fm_param(bind substituter(cx, substs, _)), typ); } fn def_has_ty_params(&ast::def def) -> bool { alt (def) { case (ast::def_fn(_)) { ret true; } case (ast::def_obj(_)) { ret true; } case (ast::def_obj_field(_)) { ret false; } case (ast::def_mod(_)) { ret false; } case (ast::def_const(_)) { ret false; } case (ast::def_arg(_)) { ret false; } case (ast::def_local(_)) { ret false; } case (ast::def_variant(_, _)) { ret true; } case (ast::def_ty(_)) { ret false; } case (ast::def_ty_arg(_)) { ret false; } case (ast::def_binding(_)) { ret false; } case (ast::def_use(_)) { ret false; } case (ast::def_native_ty(_)) { ret false; } case (ast::def_native_fn(_)) { ret true; } } } // Tag information type variant_info = rec(vec[ty::t] args, ty::t ctor_ty, ast::def_id id); fn tag_variants(&ctxt cx, &ast::def_id id) -> vec[variant_info] { if (cx.sess.get_targ_crate_num() != id._0) { ret creader::get_tag_variants(cx, id); } assert (cx.items.contains_key(id)); alt (cx.items.get(id)) { case (any_item_rust(?item)) { alt (item.node) { case (ast::item_tag(?variants, _)) { let vec[variant_info] result = []; for (ast::variant variant in variants) { auto ctor_ty = ann_to_monotype(cx, variant.node.ann); let vec[t] arg_tys = []; if (vec::len[ast::variant_arg](variant.node.args) > 0u) { for (arg a in ty_fn_args(cx, ctor_ty)) { arg_tys += [a.ty]; } } auto did = variant.node.id; result += [rec(args=arg_tys, ctor_ty=ctor_ty, id=did)]; } ret result; } } } } } // Returns information about the tag variant with the given ID: fn tag_variant_with_id(&ctxt cx, &ast::def_id tag_id, &ast::def_id variant_id) -> variant_info { auto variants = tag_variants(cx, tag_id); auto i = 0u; while (i < vec::len[variant_info](variants)) { auto variant = variants.(i); if (def_eq(variant.id, variant_id)) { ret variant; } i += 1u; } cx.sess.bug("tag_variant_with_id(): no variant exists with that ID"); } // If the given item is in an external crate, looks up its type and adds it to // the type cache. Returns the type parameters and type. fn lookup_item_type(ctxt cx, ast::def_id did) -> ty_param_count_and_ty { if (did._0 == cx.sess.get_targ_crate_num()) { // The item is in this crate. The caller should have added it to the // type cache already; we simply return it. ret cx.tcache.get(did); } alt (cx.tcache.find(did)) { case (some(?tpt)) { ret tpt; } case (none) { auto tyt = creader::get_type(cx, did); cx.tcache.insert(did, tyt); ret tyt; } } } fn ret_ty_of_fn_ty(ctxt cx, t a_ty) -> t { alt (ty::struct(cx, a_ty)) { case (ty::ty_fn(_, _, ?ret_ty, _, _)) { ret ret_ty; } case (ty::ty_native_fn(_, _, ?ret_ty)) { ret ret_ty; } case (_) { cx.sess.bug("ret_ty_of_fn_ty() called on non-function type: " + ty_to_str(cx, a_ty)); } } } fn ret_ty_of_fn(ctxt cx, ast::ann ann) -> t { ret ret_ty_of_fn_ty(cx, ann_to_type(cx, ann)); } // NB: This function requires that the given type has no variables. So, inside // typeck, you should use typeck::strip_boxes() instead. fn strip_boxes(&ctxt cx, &ty::t t) -> ty::t { auto t1 = t; while (true) { alt (struct(cx, t1)) { case (ty::ty_box(?inner)) { t1 = inner.ty; } case (_) { ret t1; } } } fail; } // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: