/* * The compiler code necessary to support the #fmt extension. Eventually this * should all get sucked into either the standard library extfmt module or the * compiler syntax extension plugin interface. */ import std::ivec; import std::str; import std::vec; import std::option; import std::option::none; import std::option::some; import std::extfmt::ct::*; import base::*; import codemap::span; export expand_syntax_ext; fn expand_syntax_ext(cx: &ext_ctxt, sp: span, args: &(@ast::expr)[], body: option::t[str]) -> @ast::expr { if ivec::len[@ast::expr](args) == 0u { cx.span_fatal(sp, "#fmt requires a format string"); } let fmt = expr_to_str(cx, args.(0), "first argument to #fmt must be a " + "string literal."); let fmtspan = args.(0).span; log "Format string:"; log fmt; fn parse_fmt_err_(cx: &ext_ctxt, sp: span, msg: str) -> ! { cx.span_fatal(sp, msg); } let parse_fmt_err = bind parse_fmt_err_(cx, fmtspan, _); let pieces = parse_fmt_string(fmt, parse_fmt_err); ret pieces_to_expr(cx, sp, pieces, args); } // FIXME: A lot of these functions for producing expressions can probably // be factored out in common with other code that builds expressions. // FIXME: Cleanup the naming of these functions fn pieces_to_expr(cx: &ext_ctxt, sp: span, pieces: vec[piece], args: &(@ast::expr)[]) -> @ast::expr { fn make_new_lit(cx: &ext_ctxt, sp: span, lit: ast::lit_) -> @ast::expr { let sp_lit = @{node: lit, span: sp}; ret @{id: cx.next_id(), node: ast::expr_lit(sp_lit), span: sp}; } fn make_new_str(cx: &ext_ctxt, sp: span, s: str) -> @ast::expr { let lit = ast::lit_str(s, ast::sk_rc); ret make_new_lit(cx, sp, lit); } fn make_new_int(cx: &ext_ctxt, sp: span, i: int) -> @ast::expr { let lit = ast::lit_int(i); ret make_new_lit(cx, sp, lit); } fn make_new_uint(cx: &ext_ctxt, sp: span, u: uint) -> @ast::expr { let lit = ast::lit_uint(u); ret make_new_lit(cx, sp, lit); } fn make_add_expr(cx: &ext_ctxt, sp: span, lhs: @ast::expr, rhs: @ast::expr) -> @ast::expr { let binexpr = ast::expr_binary(ast::add, lhs, rhs); ret @{id: cx.next_id(), node: binexpr, span: sp}; } fn make_path_expr(cx: &ext_ctxt, sp: span, idents: &ast::ident[]) -> @ast::expr { let path = {global: false, idents: idents, types: ~[]}; let sp_path = {node: path, span: sp}; let pathexpr = ast::expr_path(sp_path); ret @{id: cx.next_id(), node: pathexpr, span: sp}; } fn make_vec_expr(cx: &ext_ctxt, sp: span, exprs: &(@ast::expr)[]) -> @ast::expr { let vecexpr = ast::expr_vec(exprs, ast::imm, ast::sk_rc); ret @{id: cx.next_id(), node: vecexpr, span: sp}; } fn make_call(cx: &ext_ctxt, sp: span, fn_path: &ast::ident[], args: &(@ast::expr)[]) -> @ast::expr { let pathexpr = make_path_expr(cx, sp, fn_path); let callexpr = ast::expr_call(pathexpr, args); ret @{id: cx.next_id(), node: callexpr, span: sp}; } fn make_rec_expr(cx: &ext_ctxt, sp: span, fields: vec[{ident: ast::ident, ex: @ast::expr}]) -> @ast::expr { let astfields: ast::field[] = ~[]; for field: {ident: ast::ident, ex: @ast::expr} in fields { let ident = field.ident; let val = field.ex; let astfield = {node: {mut: ast::imm, ident: ident, expr: val}, span: sp}; astfields += ~[astfield]; } let recexpr = ast::expr_rec(astfields, option::none[@ast::expr]); ret @{id: cx.next_id(), node: recexpr, span: sp}; } fn make_path_vec(cx: &ext_ctxt, ident: str) -> str[] { fn compiling_std(cx: &ext_ctxt) -> bool { ret str::find(cx.crate_file_name_hack, "std.rc") >= 0; } if compiling_std(cx) { ret ~["extfmt", "rt", ident]; } else { ret ~["std", "extfmt", "rt", ident]; } } fn make_rt_path_expr(cx: &ext_ctxt, sp: span, ident: str) -> @ast::expr { let path = make_path_vec(cx, ident); ret make_path_expr(cx, sp, path); } // Produces an AST expression that represents a RT::conv record, // which tells the RT::conv* functions how to perform the conversion fn make_rt_conv_expr(cx: &ext_ctxt, sp: span, cnv: &conv) -> @ast::expr { fn make_flags(cx: &ext_ctxt, sp: span, flags: vec[flag]) -> @ast::expr { let flagexprs: (@ast::expr)[] = ~[]; for f: flag in flags { let fstr; alt f { flag_left_justify. { fstr = "flag_left_justify"; } flag_left_zero_pad. { fstr = "flag_left_zero_pad"; } flag_space_for_sign. { fstr = "flag_space_for_sign"; } flag_sign_always. { fstr = "flag_sign_always"; } flag_alternate. { fstr = "flag_alternate"; } } flagexprs += ~[make_rt_path_expr(cx, sp, fstr)]; } // FIXME: 0-length vectors can't have their type inferred // through the rec that these flags are a member of, so // this is a hack placeholder flag if ivec::len[@ast::expr](flagexprs) == 0u { flagexprs += ~[make_rt_path_expr(cx, sp, "flag_none")]; } ret make_vec_expr(cx, sp, flagexprs); } fn make_count(cx: &ext_ctxt, sp: span, cnt: &count) -> @ast::expr { alt cnt { count_implied. { ret make_rt_path_expr(cx, sp, "count_implied"); } count_is(c) { let count_lit = make_new_int(cx, sp, c); let count_is_path = make_path_vec(cx, "count_is"); let count_is_args = ~[count_lit]; ret make_call(cx, sp, count_is_path, count_is_args); } _ { cx.span_unimpl(sp, "unimplemented #fmt conversion"); } } } fn make_ty(cx: &ext_ctxt, sp: span, t: &ty) -> @ast::expr { let rt_type; alt t { ty_hex(c) { alt c { case_upper. { rt_type = "ty_hex_upper"; } case_lower. { rt_type = "ty_hex_lower"; } } } ty_bits. { rt_type = "ty_bits"; } ty_octal. { rt_type = "ty_octal"; } _ { rt_type = "ty_default"; } } ret make_rt_path_expr(cx, sp, rt_type); } fn make_conv_rec(cx: &ext_ctxt, sp: span, flags_expr: @ast::expr, width_expr: @ast::expr, precision_expr: @ast::expr, ty_expr: @ast::expr) -> @ast::expr { ret make_rec_expr(cx, sp, [{ident: "flags", ex: flags_expr}, {ident: "width", ex: width_expr}, {ident: "precision", ex: precision_expr}, {ident: "ty", ex: ty_expr}]); } let rt_conv_flags = make_flags(cx, sp, cnv.flags); let rt_conv_width = make_count(cx, sp, cnv.width); let rt_conv_precision = make_count(cx, sp, cnv.precision); let rt_conv_ty = make_ty(cx, sp, cnv.ty); ret make_conv_rec(cx, sp, rt_conv_flags, rt_conv_width, rt_conv_precision, rt_conv_ty); } fn make_conv_call(cx: &ext_ctxt, sp: span, conv_type: str, cnv: &conv, arg: @ast::expr) -> @ast::expr { let fname = "conv_" + conv_type; let path = make_path_vec(cx, fname); let cnv_expr = make_rt_conv_expr(cx, sp, cnv); let args = ~[cnv_expr, arg]; ret make_call(cx, arg.span, path, args); } fn make_new_conv(cx: &ext_ctxt, sp: span, cnv: conv, arg: @ast::expr) -> @ast::expr { // FIXME: Extract all this validation into extfmt::ct fn is_signed_type(cnv: conv) -> bool { alt cnv.ty { ty_int(s) { alt s { signed. { ret true; } unsigned. { ret false; } } } _ { ret false; } } } let unsupported = "conversion not supported in #fmt string"; alt cnv.param { option::none. { } _ { cx.span_unimpl(sp, unsupported); } } for f: flag in cnv.flags { alt f { flag_left_justify. { } flag_sign_always. { if !is_signed_type(cnv) { cx.span_fatal(sp, "+ flag only valid in " + "signed #fmt conversion"); } } flag_space_for_sign. { if !is_signed_type(cnv) { cx.span_fatal(sp, "space flag only valid in " + "signed #fmt conversions"); } } flag_left_zero_pad. { } _ { cx.span_unimpl(sp, unsupported); } } } alt cnv.width { count_implied. { } count_is(_) { } _ { cx.span_unimpl(sp, unsupported); } } alt cnv.precision { count_implied. { } count_is(_) { } _ { cx.span_unimpl(sp, unsupported); } } alt cnv.ty { ty_str. { ret make_conv_call(cx, arg.span, "str", cnv, arg); } ty_int(sign) { alt sign { signed. { ret make_conv_call(cx, arg.span, "int", cnv, arg); } unsigned. { ret make_conv_call(cx, arg.span, "uint", cnv, arg); } } } ty_bool. { ret make_conv_call(cx, arg.span, "bool", cnv, arg); } ty_char. { ret make_conv_call(cx, arg.span, "char", cnv, arg); } ty_hex(_) { ret make_conv_call(cx, arg.span, "uint", cnv, arg); } ty_bits. { ret make_conv_call(cx, arg.span, "uint", cnv, arg); } ty_octal. { ret make_conv_call(cx, arg.span, "uint", cnv, arg); } _ { cx.span_unimpl(sp, unsupported); } } } fn log_conv(c: conv) { alt c.param { some(p) { log "param: " + std::int::to_str(p, 10u); } _ { log "param: none"; } } for f: flag in c.flags { alt f { flag_left_justify. { log "flag: left justify"; } flag_left_zero_pad. { log "flag: left zero pad"; } flag_space_for_sign. { log "flag: left space pad"; } flag_sign_always. { log "flag: sign always"; } flag_alternate. { log "flag: alternate"; } } } alt c.width { count_is(i) { log "width: count is " + std::int::to_str(i, 10u); } count_is_param(i) { log "width: count is param " + std::int::to_str(i, 10u); } count_is_next_param. { log "width: count is next param"; } count_implied. { log "width: count is implied"; } } alt c.precision { count_is(i) { log "prec: count is " + std::int::to_str(i, 10u); } count_is_param(i) { log "prec: count is param " + std::int::to_str(i, 10u); } count_is_next_param. { log "prec: count is next param"; } count_implied. { log "prec: count is implied"; } } alt c.ty { ty_bool. { log "type: bool"; } ty_str. { log "type: str"; } ty_char. { log "type: char"; } ty_int(s) { alt s { signed. { log "type: signed"; } unsigned. { log "type: unsigned"; } } } ty_bits. { log "type: bits"; } ty_hex(cs) { alt cs { case_upper. { log "type: uhex"; } case_lower. { log "type: lhex"; } } } ty_octal. { log "type: octal"; } } } let fmt_sp = args.(0).span; let n = 0u; let tmp_expr = make_new_str(cx, sp, ""); let nargs = ivec::len[@ast::expr](args); for pc: piece in pieces { alt pc { piece_string(s) { let s_expr = make_new_str(cx, fmt_sp, s); tmp_expr = make_add_expr(cx, fmt_sp, tmp_expr, s_expr); } piece_conv(conv) { n += 1u; if n >= nargs { cx.span_fatal(sp, "not enough arguments to #fmt " + "for the given format string"); } log "Building conversion:"; log_conv(conv); let arg_expr = args.(n); let c_expr = make_new_conv(cx, fmt_sp, conv, arg_expr); tmp_expr = make_add_expr(cx, fmt_sp, tmp_expr, c_expr); } } } let expected_nargs = n + 1u; // n conversions + the fmt string if expected_nargs < nargs { cx.span_fatal (sp, #fmt("too many arguments to #fmt. found %u, expected %u", nargs, expected_nargs)); } ret tmp_expr; } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //