//! Propagates constants for early reporting of statically known //! assertion failures use std::cell::Cell; use rustc_ast::Mutability; use rustc_data_structures::fx::FxHashSet; use rustc_hir::def::DefKind; use rustc_hir::HirId; use rustc_index::bit_set::BitSet; use rustc_index::vec::IndexVec; use rustc_middle::mir::visit::{ MutVisitor, MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor, }; use rustc_middle::mir::{ AssertKind, BasicBlock, BinOp, Body, Constant, ConstantKind, Local, LocalDecl, LocalKind, Location, Operand, Place, Rvalue, SourceInfo, SourceScope, SourceScopeData, Statement, StatementKind, Terminator, TerminatorKind, UnOp, RETURN_PLACE, }; use rustc_middle::ty::layout::{LayoutError, LayoutOf, LayoutOfHelpers, TyAndLayout}; use rustc_middle::ty::subst::{InternalSubsts, Subst}; use rustc_middle::ty::{ self, ConstInt, ConstKind, Instance, ParamEnv, ScalarInt, Ty, TyCtxt, TypeFoldable, }; use rustc_session::lint; use rustc_span::{def_id::DefId, Span}; use rustc_target::abi::{HasDataLayout, Size, TargetDataLayout}; use rustc_target::spec::abi::Abi; use rustc_trait_selection::traits; use crate::MirPass; use rustc_const_eval::const_eval::ConstEvalErr; use rustc_const_eval::interpret::{ self, compile_time_machine, AllocId, Allocation, ConstValue, CtfeValidationMode, Frame, ImmTy, Immediate, InterpCx, InterpResult, LocalState, LocalValue, MemPlace, MemoryKind, OpTy, Operand as InterpOperand, PlaceTy, Scalar, ScalarMaybeUninit, StackPopCleanup, StackPopUnwind, }; /// The maximum number of bytes that we'll allocate space for a local or the return value. /// Needed for #66397, because otherwise we eval into large places and that can cause OOM or just /// Severely regress performance. const MAX_ALLOC_LIMIT: u64 = 1024; /// Macro for machine-specific `InterpError` without allocation. /// (These will never be shown to the user, but they help diagnose ICEs.) macro_rules! throw_machine_stop_str { ($($tt:tt)*) => {{ // We make a new local type for it. The type itself does not carry any information, // but its vtable (for the `MachineStopType` trait) does. struct Zst; // Printing this type shows the desired string. impl std::fmt::Display for Zst { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, $($tt)*) } } impl rustc_middle::mir::interpret::MachineStopType for Zst {} throw_machine_stop!(Zst) }}; } pub struct ConstProp; impl<'tcx> MirPass<'tcx> for ConstProp { fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { // will be evaluated by miri and produce its errors there if body.source.promoted.is_some() { return; } let def_id = body.source.def_id().expect_local(); let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); let is_fn_like = tcx.hir().get(hir_id).fn_kind().is_some(); let is_assoc_const = tcx.def_kind(def_id.to_def_id()) == DefKind::AssocConst; // Only run const prop on functions, methods, closures and associated constants if !is_fn_like && !is_assoc_const { // skip anon_const/statics/consts because they'll be evaluated by miri anyway trace!("ConstProp skipped for {:?}", def_id); return; } let is_generator = tcx.type_of(def_id.to_def_id()).is_generator(); // FIXME(welseywiser) const prop doesn't work on generators because of query cycles // computing their layout. if is_generator { trace!("ConstProp skipped for generator {:?}", def_id); return; } // Check if it's even possible to satisfy the 'where' clauses // for this item. // This branch will never be taken for any normal function. // However, it's possible to `#!feature(trivial_bounds)]` to write // a function with impossible to satisfy clauses, e.g.: // `fn foo() where String: Copy {}` // // We don't usually need to worry about this kind of case, // since we would get a compilation error if the user tried // to call it. However, since we can do const propagation // even without any calls to the function, we need to make // sure that it even makes sense to try to evaluate the body. // If there are unsatisfiable where clauses, then all bets are // off, and we just give up. // // We manually filter the predicates, skipping anything that's not // "global". We are in a potentially generic context // (e.g. we are evaluating a function without substituting generic // parameters, so this filtering serves two purposes: // // 1. We skip evaluating any predicates that we would // never be able prove are unsatisfiable (e.g. `` // 2. We avoid trying to normalize predicates involving generic // parameters (e.g. `::MyItem`). This can confuse // the normalization code (leading to cycle errors), since // it's usually never invoked in this way. let predicates = tcx .predicates_of(def_id.to_def_id()) .predicates .iter() .filter_map(|(p, _)| if p.is_global(tcx) { Some(*p) } else { None }); if traits::impossible_predicates( tcx, traits::elaborate_predicates(tcx, predicates).map(|o| o.predicate).collect(), ) { trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", def_id); return; } trace!("ConstProp starting for {:?}", def_id); let dummy_body = &Body::new( tcx, body.source, body.basic_blocks().clone(), body.source_scopes.clone(), body.local_decls.clone(), Default::default(), body.arg_count, Default::default(), body.span, body.generator_kind(), ); // FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold // constants, instead of just checking for const-folding succeeding. // That would require a uniform one-def no-mutation analysis // and RPO (or recursing when needing the value of a local). let mut optimization_finder = ConstPropagator::new(body, dummy_body, tcx); optimization_finder.visit_body(body); trace!("ConstProp done for {:?}", def_id); } } struct ConstPropMachine<'mir, 'tcx> { /// The virtual call stack. stack: Vec>, /// `OnlyInsideOwnBlock` locals that were written in the current block get erased at the end. written_only_inside_own_block_locals: FxHashSet, /// Locals that need to be cleared after every block terminates. only_propagate_inside_block_locals: BitSet, can_const_prop: IndexVec, } impl<'mir, 'tcx> ConstPropMachine<'mir, 'tcx> { fn new( only_propagate_inside_block_locals: BitSet, can_const_prop: IndexVec, ) -> Self { Self { stack: Vec::new(), written_only_inside_own_block_locals: Default::default(), only_propagate_inside_block_locals, can_const_prop, } } } impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for ConstPropMachine<'mir, 'tcx> { compile_time_machine!(<'mir, 'tcx>); const PANIC_ON_ALLOC_FAIL: bool = true; // all allocations are small (see `MAX_ALLOC_LIMIT`) type MemoryKind = !; type MemoryExtra = (); fn load_mir( _ecx: &InterpCx<'mir, 'tcx, Self>, _instance: ty::InstanceDef<'tcx>, ) -> InterpResult<'tcx, &'tcx Body<'tcx>> { throw_machine_stop_str!("calling functions isn't supported in ConstProp") } fn find_mir_or_eval_fn( _ecx: &mut InterpCx<'mir, 'tcx, Self>, _instance: ty::Instance<'tcx>, _abi: Abi, _args: &[OpTy<'tcx>], _ret: Option<(&PlaceTy<'tcx>, BasicBlock)>, _unwind: StackPopUnwind, ) -> InterpResult<'tcx, Option<&'mir Body<'tcx>>> { Ok(None) } fn call_intrinsic( _ecx: &mut InterpCx<'mir, 'tcx, Self>, _instance: ty::Instance<'tcx>, _args: &[OpTy<'tcx>], _ret: Option<(&PlaceTy<'tcx>, BasicBlock)>, _unwind: StackPopUnwind, ) -> InterpResult<'tcx> { throw_machine_stop_str!("calling intrinsics isn't supported in ConstProp") } fn assert_panic( _ecx: &mut InterpCx<'mir, 'tcx, Self>, _msg: &rustc_middle::mir::AssertMessage<'tcx>, _unwind: Option, ) -> InterpResult<'tcx> { bug!("panics terminators are not evaluated in ConstProp") } fn binary_ptr_op( _ecx: &InterpCx<'mir, 'tcx, Self>, _bin_op: BinOp, _left: &ImmTy<'tcx>, _right: &ImmTy<'tcx>, ) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> { // We can't do this because aliasing of memory can differ between const eval and llvm throw_machine_stop_str!("pointer arithmetic or comparisons aren't supported in ConstProp") } fn box_alloc( _ecx: &mut InterpCx<'mir, 'tcx, Self>, _dest: &PlaceTy<'tcx>, ) -> InterpResult<'tcx> { throw_machine_stop_str!("can't const prop heap allocations") } fn access_local( _ecx: &InterpCx<'mir, 'tcx, Self>, frame: &Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>, local: Local, ) -> InterpResult<'tcx, InterpOperand> { let l = &frame.locals[local]; if l.value == LocalValue::Uninitialized { throw_machine_stop_str!("tried to access an uninitialized local") } l.access() } fn access_local_mut<'a>( ecx: &'a mut InterpCx<'mir, 'tcx, Self>, frame: usize, local: Local, ) -> InterpResult<'tcx, Result<&'a mut LocalValue, MemPlace>> { if ecx.machine.can_const_prop[local] == ConstPropMode::NoPropagation { throw_machine_stop_str!("tried to write to a local that is marked as not propagatable") } if frame == 0 && ecx.machine.only_propagate_inside_block_locals.contains(local) { trace!( "mutating local {:?} which is restricted to its block. \ Will remove it from const-prop after block is finished.", local ); ecx.machine.written_only_inside_own_block_locals.insert(local); } ecx.machine.stack[frame].locals[local].access_mut() } fn before_access_global( _memory_extra: &(), _alloc_id: AllocId, allocation: &Allocation, _static_def_id: Option, is_write: bool, ) -> InterpResult<'tcx> { if is_write { throw_machine_stop_str!("can't write to global"); } // If the static allocation is mutable, then we can't const prop it as its content // might be different at runtime. if allocation.mutability == Mutability::Mut { throw_machine_stop_str!("can't access mutable globals in ConstProp"); } Ok(()) } #[inline(always)] fn init_frame_extra( _ecx: &mut InterpCx<'mir, 'tcx, Self>, frame: Frame<'mir, 'tcx>, ) -> InterpResult<'tcx, Frame<'mir, 'tcx>> { Ok(frame) } #[inline(always)] fn stack( ecx: &'a InterpCx<'mir, 'tcx, Self>, ) -> &'a [Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>] { &ecx.machine.stack } #[inline(always)] fn stack_mut( ecx: &'a mut InterpCx<'mir, 'tcx, Self>, ) -> &'a mut Vec> { &mut ecx.machine.stack } } /// Finds optimization opportunities on the MIR. struct ConstPropagator<'mir, 'tcx> { ecx: InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, // FIXME(eddyb) avoid cloning these two fields more than once, // by accessing them through `ecx` instead. source_scopes: IndexVec>, local_decls: IndexVec>, // Because we have `MutVisitor` we can't obtain the `SourceInfo` from a `Location`. So we store // the last known `SourceInfo` here and just keep revisiting it. source_info: Option, } impl<'mir, 'tcx> LayoutOfHelpers<'tcx> for ConstPropagator<'mir, 'tcx> { type LayoutOfResult = Result, LayoutError<'tcx>>; #[inline] fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> { err } } impl<'mir, 'tcx> HasDataLayout for ConstPropagator<'mir, 'tcx> { #[inline] fn data_layout(&self) -> &TargetDataLayout { &self.tcx.data_layout } } impl<'mir, 'tcx> ty::layout::HasTyCtxt<'tcx> for ConstPropagator<'mir, 'tcx> { #[inline] fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } } impl<'mir, 'tcx> ty::layout::HasParamEnv<'tcx> for ConstPropagator<'mir, 'tcx> { #[inline] fn param_env(&self) -> ty::ParamEnv<'tcx> { self.param_env } } impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> { fn new( body: &Body<'tcx>, dummy_body: &'mir Body<'tcx>, tcx: TyCtxt<'tcx>, ) -> ConstPropagator<'mir, 'tcx> { let def_id = body.source.def_id(); let substs = &InternalSubsts::identity_for_item(tcx, def_id); let param_env = tcx.param_env_reveal_all_normalized(def_id); let span = tcx.def_span(def_id); // FIXME: `CanConstProp::check` computes the layout of all locals, return those layouts // so we can write them to `ecx.frame_mut().locals.layout, reducing the duplication in // `layout_of` query invocations. let can_const_prop = CanConstProp::check(tcx, param_env, body); let mut only_propagate_inside_block_locals = BitSet::new_empty(can_const_prop.len()); for (l, mode) in can_const_prop.iter_enumerated() { if *mode == ConstPropMode::OnlyInsideOwnBlock { only_propagate_inside_block_locals.insert(l); } } let mut ecx = InterpCx::new( tcx, span, param_env, ConstPropMachine::new(only_propagate_inside_block_locals, can_const_prop), (), ); let ret = ecx .layout_of(body.return_ty().subst(tcx, substs)) .ok() // Don't bother allocating memory for ZST types which have no values // or for large values. .filter(|ret_layout| { !ret_layout.is_zst() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT) }) .map(|ret_layout| { ecx.allocate(ret_layout, MemoryKind::Stack) .expect("couldn't perform small allocation") .into() }); ecx.push_stack_frame( Instance::new(def_id, substs), dummy_body, ret.as_ref(), StackPopCleanup::None { cleanup: false }, ) .expect("failed to push initial stack frame"); ConstPropagator { ecx, tcx, param_env, // FIXME(eddyb) avoid cloning these two fields more than once, // by accessing them through `ecx` instead. source_scopes: body.source_scopes.clone(), //FIXME(wesleywiser) we can't steal this because `Visitor::super_visit_body()` needs it local_decls: body.local_decls.clone(), source_info: None, } } fn get_const(&self, place: Place<'tcx>) -> Option> { let op = match self.ecx.eval_place_to_op(place, None) { Ok(op) => op, Err(e) => { trace!("get_const failed: {}", e); return None; } }; // Try to read the local as an immediate so that if it is representable as a scalar, we can // handle it as such, but otherwise, just return the value as is. Some(match self.ecx.try_read_immediate(&op) { Ok(Ok(imm)) => imm.into(), _ => op, }) } /// Remove `local` from the pool of `Locals`. Allows writing to them, /// but not reading from them anymore. fn remove_const(ecx: &mut InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, local: Local) { ecx.frame_mut().locals[local] = LocalState { value: LocalValue::Uninitialized, layout: Cell::new(None) }; } fn lint_root(&self, source_info: SourceInfo) -> Option { source_info.scope.lint_root(&self.source_scopes) } fn use_ecx(&mut self, f: F) -> Option where F: FnOnce(&mut Self) -> InterpResult<'tcx, T>, { match f(self) { Ok(val) => Some(val), Err(error) => { trace!("InterpCx operation failed: {:?}", error); // Some errors shouldn't come up because creating them causes // an allocation, which we should avoid. When that happens, // dedicated error variants should be introduced instead. assert!( !error.kind().formatted_string(), "const-prop encountered formatting error: {}", error ); None } } } /// Returns the value, if any, of evaluating `c`. fn eval_constant(&mut self, c: &Constant<'tcx>, source_info: SourceInfo) -> Option> { // FIXME we need to revisit this for #67176 if c.definitely_needs_subst(self.tcx) { return None; } match self.ecx.mir_const_to_op(&c.literal, None) { Ok(op) => Some(op), Err(error) => { let tcx = self.ecx.tcx.at(c.span); let err = ConstEvalErr::new(&self.ecx, error, Some(c.span)); if let Some(lint_root) = self.lint_root(source_info) { let lint_only = match c.literal { ConstantKind::Ty(ct) => match ct.val { // Promoteds must lint and not error as the user didn't ask for them ConstKind::Unevaluated(ty::Unevaluated { def: _, substs_: _, promoted: Some(_), }) => true, // Out of backwards compatibility we cannot report hard errors in unused // generic functions using associated constants of the generic parameters. _ => c.literal.definitely_needs_subst(*tcx), }, ConstantKind::Val(_, ty) => ty.definitely_needs_subst(*tcx), }; if lint_only { // Out of backwards compatibility we cannot report hard errors in unused // generic functions using associated constants of the generic parameters. err.report_as_lint(tcx, "erroneous constant used", lint_root, Some(c.span)); } else { err.report_as_error(tcx, "erroneous constant used"); } } else { err.report_as_error(tcx, "erroneous constant used"); } None } } } /// Returns the value, if any, of evaluating `place`. fn eval_place(&mut self, place: Place<'tcx>) -> Option> { trace!("eval_place(place={:?})", place); self.use_ecx(|this| this.ecx.eval_place_to_op(place, None)) } /// Returns the value, if any, of evaluating `op`. Calls upon `eval_constant` /// or `eval_place`, depending on the variant of `Operand` used. fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option> { match *op { Operand::Constant(ref c) => self.eval_constant(c, source_info), Operand::Move(place) | Operand::Copy(place) => self.eval_place(place), } } fn report_assert_as_lint( &self, lint: &'static lint::Lint, source_info: SourceInfo, message: &'static str, panic: AssertKind, ) { if let Some(lint_root) = self.lint_root(source_info) { self.tcx.struct_span_lint_hir(lint, lint_root, source_info.span, |lint| { let mut err = lint.build(message); err.span_label(source_info.span, format!("{:?}", panic)); err.emit() }); } } fn check_unary_op( &mut self, op: UnOp, arg: &Operand<'tcx>, source_info: SourceInfo, ) -> Option<()> { if let (val, true) = self.use_ecx(|this| { let val = this.ecx.read_immediate(&this.ecx.eval_operand(arg, None)?)?; let (_res, overflow, _ty) = this.ecx.overflowing_unary_op(op, &val)?; Ok((val, overflow)) })? { // `AssertKind` only has an `OverflowNeg` variant, so make sure that is // appropriate to use. assert_eq!(op, UnOp::Neg, "Neg is the only UnOp that can overflow"); self.report_assert_as_lint( lint::builtin::ARITHMETIC_OVERFLOW, source_info, "this arithmetic operation will overflow", AssertKind::OverflowNeg(val.to_const_int()), ); return None; } Some(()) } fn check_binary_op( &mut self, op: BinOp, left: &Operand<'tcx>, right: &Operand<'tcx>, source_info: SourceInfo, ) -> Option<()> { let r = self.use_ecx(|this| this.ecx.read_immediate(&this.ecx.eval_operand(right, None)?)); let l = self.use_ecx(|this| this.ecx.read_immediate(&this.ecx.eval_operand(left, None)?)); // Check for exceeding shifts *even if* we cannot evaluate the LHS. if op == BinOp::Shr || op == BinOp::Shl { let r = r?; // We need the type of the LHS. We cannot use `place_layout` as that is the type // of the result, which for checked binops is not the same! let left_ty = left.ty(&self.local_decls, self.tcx); let left_size = self.ecx.layout_of(left_ty).ok()?.size; let right_size = r.layout.size; let r_bits = r.to_scalar().ok(); let r_bits = r_bits.and_then(|r| r.to_bits(right_size).ok()); if r_bits.map_or(false, |b| b >= left_size.bits() as u128) { debug!("check_binary_op: reporting assert for {:?}", source_info); self.report_assert_as_lint( lint::builtin::ARITHMETIC_OVERFLOW, source_info, "this arithmetic operation will overflow", AssertKind::Overflow( op, match l { Some(l) => l.to_const_int(), // Invent a dummy value, the diagnostic ignores it anyway None => ConstInt::new( ScalarInt::try_from_uint(1_u8, left_size).unwrap(), left_ty.is_signed(), left_ty.is_ptr_sized_integral(), ), }, r.to_const_int(), ), ); return None; } } if let (Some(l), Some(r)) = (&l, &r) { // The remaining operators are handled through `overflowing_binary_op`. if self.use_ecx(|this| { let (_res, overflow, _ty) = this.ecx.overflowing_binary_op(op, l, r)?; Ok(overflow) })? { self.report_assert_as_lint( lint::builtin::ARITHMETIC_OVERFLOW, source_info, "this arithmetic operation will overflow", AssertKind::Overflow(op, l.to_const_int(), r.to_const_int()), ); return None; } } Some(()) } fn propagate_operand(&mut self, operand: &mut Operand<'tcx>) { match *operand { Operand::Copy(l) | Operand::Move(l) => { if let Some(value) = self.get_const(l) { if self.should_const_prop(&value) { // FIXME(felix91gr): this code only handles `Scalar` cases. // For now, we're not handling `ScalarPair` cases because // doing so here would require a lot of code duplication. // We should hopefully generalize `Operand` handling into a fn, // and use it to do const-prop here and everywhere else // where it makes sense. if let interpret::Operand::Immediate(interpret::Immediate::Scalar( ScalarMaybeUninit::Scalar(scalar), )) = *value { *operand = self.operand_from_scalar( scalar, value.layout.ty, self.source_info.unwrap().span, ); } } } } Operand::Constant(_) => (), } } fn const_prop( &mut self, rvalue: &Rvalue<'tcx>, source_info: SourceInfo, place: Place<'tcx>, ) -> Option<()> { // Perform any special handling for specific Rvalue types. // Generally, checks here fall into one of two categories: // 1. Additional checking to provide useful lints to the user // - In this case, we will do some validation and then fall through to the // end of the function which evals the assignment. // 2. Working around bugs in other parts of the compiler // - In this case, we'll return `None` from this function to stop evaluation. match rvalue { // Additional checking: give lints to the user if an overflow would occur. // We do this here and not in the `Assert` terminator as that terminator is // only sometimes emitted (overflow checks can be disabled), but we want to always // lint. Rvalue::UnaryOp(op, arg) => { trace!("checking UnaryOp(op = {:?}, arg = {:?})", op, arg); self.check_unary_op(*op, arg, source_info)?; } Rvalue::BinaryOp(op, box (left, right)) => { trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right); self.check_binary_op(*op, left, right, source_info)?; } Rvalue::CheckedBinaryOp(op, box (left, right)) => { trace!( "checking CheckedBinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right ); self.check_binary_op(*op, left, right, source_info)?; } // Do not try creating references (#67862) Rvalue::AddressOf(_, place) | Rvalue::Ref(_, _, place) => { trace!("skipping AddressOf | Ref for {:?}", place); // This may be creating mutable references or immutable references to cells. // If that happens, the pointed to value could be mutated via that reference. // Since we aren't tracking references, the const propagator loses track of what // value the local has right now. // Thus, all locals that have their reference taken // must not take part in propagation. Self::remove_const(&mut self.ecx, place.local); return None; } Rvalue::ThreadLocalRef(def_id) => { trace!("skipping ThreadLocalRef({:?})", def_id); return None; } // There's no other checking to do at this time. Rvalue::Aggregate(..) | Rvalue::Use(..) | Rvalue::Repeat(..) | Rvalue::Len(..) | Rvalue::Cast(..) | Rvalue::ShallowInitBox(..) | Rvalue::Discriminant(..) | Rvalue::NullaryOp(..) => {} } // FIXME we need to revisit this for #67176 if rvalue.definitely_needs_subst(self.tcx) { return None; } if self.tcx.sess.mir_opt_level() >= 4 { self.eval_rvalue_with_identities(rvalue, place) } else { self.use_ecx(|this| this.ecx.eval_rvalue_into_place(rvalue, place)) } } // Attempt to use albegraic identities to eliminate constant expressions fn eval_rvalue_with_identities( &mut self, rvalue: &Rvalue<'tcx>, place: Place<'tcx>, ) -> Option<()> { self.use_ecx(|this| { match rvalue { Rvalue::BinaryOp(op, box (left, right)) | Rvalue::CheckedBinaryOp(op, box (left, right)) => { let l = this.ecx.eval_operand(left, None); let r = this.ecx.eval_operand(right, None); let const_arg = match (l, r) { (Ok(ref x), Err(_)) | (Err(_), Ok(ref x)) => this.ecx.read_immediate(x)?, (Err(e), Err(_)) => return Err(e), (Ok(_), Ok(_)) => { this.ecx.eval_rvalue_into_place(rvalue, place)?; return Ok(()); } }; let arg_value = const_arg.to_scalar()?.to_bits(const_arg.layout.size)?; let dest = this.ecx.eval_place(place)?; match op { BinOp::BitAnd => { if arg_value == 0 { this.ecx.write_immediate(*const_arg, &dest)?; } } BinOp::BitOr => { if arg_value == const_arg.layout.size.truncate(u128::MAX) || (const_arg.layout.ty.is_bool() && arg_value == 1) { this.ecx.write_immediate(*const_arg, &dest)?; } } BinOp::Mul => { if const_arg.layout.ty.is_integral() && arg_value == 0 { if let Rvalue::CheckedBinaryOp(_, _) = rvalue { let val = Immediate::ScalarPair( const_arg.to_scalar()?.into(), Scalar::from_bool(false).into(), ); this.ecx.write_immediate(val, &dest)?; } else { this.ecx.write_immediate(*const_arg, &dest)?; } } } _ => { this.ecx.eval_rvalue_into_place(rvalue, place)?; } } } _ => { this.ecx.eval_rvalue_into_place(rvalue, place)?; } } Ok(()) }) } /// Creates a new `Operand::Constant` from a `Scalar` value fn operand_from_scalar(&self, scalar: Scalar, ty: Ty<'tcx>, span: Span) -> Operand<'tcx> { Operand::Constant(Box::new(Constant { span, user_ty: None, literal: ty::Const::from_scalar(self.tcx, scalar, ty).into(), })) } fn replace_with_const( &mut self, rval: &mut Rvalue<'tcx>, value: &OpTy<'tcx>, source_info: SourceInfo, ) { if let Rvalue::Use(Operand::Constant(c)) = rval { match c.literal { ConstantKind::Ty(c) if matches!(c.val, ConstKind::Unevaluated(..)) => {} _ => { trace!("skipping replace of Rvalue::Use({:?} because it is already a const", c); return; } } } trace!("attempting to replace {:?} with {:?}", rval, value); if let Err(e) = self.ecx.const_validate_operand( value, vec![], // FIXME: is ref tracking too expensive? // FIXME: what is the point of ref tracking if we do not even check the tracked refs? &mut interpret::RefTracking::empty(), CtfeValidationMode::Regular, ) { trace!("validation error, attempt failed: {:?}", e); return; } // FIXME> figure out what to do when try_read_immediate fails let imm = self.use_ecx(|this| this.ecx.try_read_immediate(value)); if let Some(Ok(imm)) = imm { match *imm { interpret::Immediate::Scalar(ScalarMaybeUninit::Scalar(scalar)) => { *rval = Rvalue::Use(self.operand_from_scalar( scalar, value.layout.ty, source_info.span, )); } Immediate::ScalarPair( ScalarMaybeUninit::Scalar(_), ScalarMaybeUninit::Scalar(_), ) => { // Found a value represented as a pair. For now only do const-prop if the type // of `rvalue` is also a tuple with two scalars. // FIXME: enable the general case stated above ^. let ty = &value.layout.ty; // Only do it for tuples if let ty::Tuple(substs) = ty.kind() { // Only do it if tuple is also a pair with two scalars if substs.len() == 2 { let alloc = self.use_ecx(|this| { let ty1 = substs[0].expect_ty(); let ty2 = substs[1].expect_ty(); let ty_is_scalar = |ty| { this.ecx.layout_of(ty).ok().map(|layout| layout.abi.is_scalar()) == Some(true) }; if ty_is_scalar(ty1) && ty_is_scalar(ty2) { let alloc = this .ecx .intern_with_temp_alloc(value.layout, |ecx, dest| { ecx.write_immediate(*imm, dest) }) .unwrap(); Ok(Some(alloc)) } else { Ok(None) } }); if let Some(Some(alloc)) = alloc { // Assign entire constant in a single statement. // We can't use aggregates, as we run after the aggregate-lowering `MirPhase`. *rval = Rvalue::Use(Operand::Constant(Box::new(Constant { span: source_info.span, user_ty: None, literal: self .ecx .tcx .mk_const(ty::Const { ty, val: ty::ConstKind::Value(ConstValue::ByRef { alloc, offset: Size::ZERO, }), }) .into(), }))); } } } } // Scalars or scalar pairs that contain undef values are assumed to not have // successfully evaluated and are thus not propagated. _ => {} } } } /// Returns `true` if and only if this `op` should be const-propagated into. fn should_const_prop(&mut self, op: &OpTy<'tcx>) -> bool { let mir_opt_level = self.tcx.sess.mir_opt_level(); if mir_opt_level == 0 { return false; } if !self.tcx.consider_optimizing(|| format!("ConstantPropagation - OpTy: {:?}", op)) { return false; } match **op { interpret::Operand::Immediate(Immediate::Scalar(ScalarMaybeUninit::Scalar(s))) => { s.try_to_int().is_ok() } interpret::Operand::Immediate(Immediate::ScalarPair( ScalarMaybeUninit::Scalar(l), ScalarMaybeUninit::Scalar(r), )) => l.try_to_int().is_ok() && r.try_to_int().is_ok(), _ => false, } } } /// The mode that `ConstProp` is allowed to run in for a given `Local`. #[derive(Clone, Copy, Debug, PartialEq)] enum ConstPropMode { /// The `Local` can be propagated into and reads of this `Local` can also be propagated. FullConstProp, /// The `Local` can only be propagated into and from its own block. OnlyInsideOwnBlock, /// The `Local` can be propagated into but reads cannot be propagated. OnlyPropagateInto, /// The `Local` cannot be part of propagation at all. Any statement /// referencing it either for reading or writing will not get propagated. NoPropagation, } struct CanConstProp { can_const_prop: IndexVec, // False at the beginning. Once set, no more assignments are allowed to that local. found_assignment: BitSet, // Cache of locals' information local_kinds: IndexVec, } impl CanConstProp { /// Returns true if `local` can be propagated fn check( tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, body: &Body<'tcx>, ) -> IndexVec { let mut cpv = CanConstProp { can_const_prop: IndexVec::from_elem(ConstPropMode::FullConstProp, &body.local_decls), found_assignment: BitSet::new_empty(body.local_decls.len()), local_kinds: IndexVec::from_fn_n( |local| body.local_kind(local), body.local_decls.len(), ), }; for (local, val) in cpv.can_const_prop.iter_enumerated_mut() { let ty = body.local_decls[local].ty; match tcx.layout_of(param_env.and(ty)) { Ok(layout) if layout.size < Size::from_bytes(MAX_ALLOC_LIMIT) => {} // Either the layout fails to compute, then we can't use this local anyway // or the local is too large, then we don't want to. _ => { *val = ConstPropMode::NoPropagation; continue; } } // Cannot use args at all // Cannot use locals because if x < y { y - x } else { x - y } would // lint for x != y // FIXME(oli-obk): lint variables until they are used in a condition // FIXME(oli-obk): lint if return value is constant if cpv.local_kinds[local] == LocalKind::Arg { *val = ConstPropMode::OnlyPropagateInto; trace!( "local {:?} can't be const propagated because it's a function argument", local ); } else if cpv.local_kinds[local] == LocalKind::Var { *val = ConstPropMode::OnlyInsideOwnBlock; trace!( "local {:?} will only be propagated inside its block, because it's a user variable", local ); } } cpv.visit_body(&body); cpv.can_const_prop } } impl<'tcx> Visitor<'tcx> for CanConstProp { fn visit_local(&mut self, &local: &Local, context: PlaceContext, _: Location) { use rustc_middle::mir::visit::PlaceContext::*; match context { // Projections are fine, because `&mut foo.x` will be caught by // `MutatingUseContext::Borrow` elsewhere. MutatingUse(MutatingUseContext::Projection) // These are just stores, where the storing is not propagatable, but there may be later // mutations of the same local via `Store` | MutatingUse(MutatingUseContext::Call) // Actual store that can possibly even propagate a value | MutatingUse(MutatingUseContext::Store) => { if !self.found_assignment.insert(local) { match &mut self.can_const_prop[local] { // If the local can only get propagated in its own block, then we don't have // to worry about multiple assignments, as we'll nuke the const state at the // end of the block anyway, and inside the block we overwrite previous // states as applicable. ConstPropMode::OnlyInsideOwnBlock => {} ConstPropMode::NoPropagation => {} ConstPropMode::OnlyPropagateInto => {} other @ ConstPropMode::FullConstProp => { trace!( "local {:?} can't be propagated because of multiple assignments. Previous state: {:?}", local, other, ); *other = ConstPropMode::OnlyInsideOwnBlock; } } } } // Reading constants is allowed an arbitrary number of times NonMutatingUse(NonMutatingUseContext::Copy) | NonMutatingUse(NonMutatingUseContext::Move) | NonMutatingUse(NonMutatingUseContext::Inspect) | NonMutatingUse(NonMutatingUseContext::Projection) | NonUse(_) => {} // These could be propagated with a smarter analysis or just some careful thinking about // whether they'd be fine right now. MutatingUse(MutatingUseContext::AsmOutput) | MutatingUse(MutatingUseContext::Yield) | MutatingUse(MutatingUseContext::Drop) | MutatingUse(MutatingUseContext::Retag) // These can't ever be propagated under any scheme, as we can't reason about indirect // mutation. | NonMutatingUse(NonMutatingUseContext::SharedBorrow) | NonMutatingUse(NonMutatingUseContext::ShallowBorrow) | NonMutatingUse(NonMutatingUseContext::UniqueBorrow) | NonMutatingUse(NonMutatingUseContext::AddressOf) | MutatingUse(MutatingUseContext::Borrow) | MutatingUse(MutatingUseContext::AddressOf) => { trace!("local {:?} can't be propagaged because it's used: {:?}", local, context); self.can_const_prop[local] = ConstPropMode::NoPropagation; } } } } impl<'mir, 'tcx> MutVisitor<'tcx> for ConstPropagator<'mir, 'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn visit_body(&mut self, body: &mut Body<'tcx>) { for (bb, data) in body.basic_blocks_mut().iter_enumerated_mut() { self.visit_basic_block_data(bb, data); } } fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) { self.super_operand(operand, location); // Only const prop copies and moves on `mir_opt_level=3` as doing so // currently slightly increases compile time in some cases. if self.tcx.sess.mir_opt_level() >= 3 { self.propagate_operand(operand) } } fn visit_constant(&mut self, constant: &mut Constant<'tcx>, location: Location) { trace!("visit_constant: {:?}", constant); self.super_constant(constant, location); self.eval_constant(constant, self.source_info.unwrap()); } fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) { trace!("visit_statement: {:?}", statement); let source_info = statement.source_info; self.source_info = Some(source_info); if let StatementKind::Assign(box (place, ref mut rval)) = statement.kind { let can_const_prop = self.ecx.machine.can_const_prop[place.local]; if let Some(()) = self.const_prop(rval, source_info, place) { // This will return None if the above `const_prop` invocation only "wrote" a // type whose creation requires no write. E.g. a generator whose initial state // consists solely of uninitialized memory (so it doesn't capture any locals). if let Some(ref value) = self.get_const(place) { if self.should_const_prop(value) { trace!("replacing {:?} with {:?}", rval, value); self.replace_with_const(rval, value, source_info); if can_const_prop == ConstPropMode::FullConstProp || can_const_prop == ConstPropMode::OnlyInsideOwnBlock { trace!("propagated into {:?}", place); } } } match can_const_prop { ConstPropMode::OnlyInsideOwnBlock => { trace!( "found local restricted to its block. \ Will remove it from const-prop after block is finished. Local: {:?}", place.local ); } ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => { trace!("can't propagate into {:?}", place); if place.local != RETURN_PLACE { Self::remove_const(&mut self.ecx, place.local); } } ConstPropMode::FullConstProp => {} } } else { // Const prop failed, so erase the destination, ensuring that whatever happens // from here on, does not know about the previous value. // This is important in case we have // ```rust // let mut x = 42; // x = SOME_MUTABLE_STATIC; // // x must now be uninit // ``` // FIXME: we overzealously erase the entire local, because that's easier to // implement. trace!( "propagation into {:?} failed. Nuking the entire site from orbit, it's the only way to be sure", place, ); Self::remove_const(&mut self.ecx, place.local); } } else { match statement.kind { StatementKind::SetDiscriminant { ref place, .. } => { match self.ecx.machine.can_const_prop[place.local] { ConstPropMode::FullConstProp | ConstPropMode::OnlyInsideOwnBlock => { if self.use_ecx(|this| this.ecx.statement(statement)).is_some() { trace!("propped discriminant into {:?}", place); } else { Self::remove_const(&mut self.ecx, place.local); } } ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => { Self::remove_const(&mut self.ecx, place.local); } } } StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => { let frame = self.ecx.frame_mut(); frame.locals[local].value = if let StatementKind::StorageLive(_) = statement.kind { LocalValue::Uninitialized } else { LocalValue::Dead }; } _ => {} } } self.super_statement(statement, location); } fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) { let source_info = terminator.source_info; self.source_info = Some(source_info); self.super_terminator(terminator, location); match &mut terminator.kind { TerminatorKind::Assert { expected, ref msg, ref mut cond, .. } => { if let Some(ref value) = self.eval_operand(&cond, source_info) { trace!("assertion on {:?} should be {:?}", value, expected); let expected = ScalarMaybeUninit::from(Scalar::from_bool(*expected)); let value_const = self.ecx.read_scalar(&value).unwrap(); if expected != value_const { enum DbgVal { Val(T), Underscore, } impl std::fmt::Debug for DbgVal { fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Self::Val(val) => val.fmt(fmt), Self::Underscore => fmt.write_str("_"), } } } let mut eval_to_int = |op| { // This can be `None` if the lhs wasn't const propagated and we just // triggered the assert on the value of the rhs. self.eval_operand(op, source_info).map_or(DbgVal::Underscore, |op| { DbgVal::Val(self.ecx.read_immediate(&op).unwrap().to_const_int()) }) }; let msg = match msg { AssertKind::DivisionByZero(op) => { Some(AssertKind::DivisionByZero(eval_to_int(op))) } AssertKind::RemainderByZero(op) => { Some(AssertKind::RemainderByZero(eval_to_int(op))) } AssertKind::BoundsCheck { ref len, ref index } => { let len = eval_to_int(len); let index = eval_to_int(index); Some(AssertKind::BoundsCheck { len, index }) } // Overflow is are already covered by checks on the binary operators. AssertKind::Overflow(..) | AssertKind::OverflowNeg(_) => None, // Need proper const propagator for these. _ => None, }; // Poison all places this operand references so that further code // doesn't use the invalid value match cond { Operand::Move(ref place) | Operand::Copy(ref place) => { Self::remove_const(&mut self.ecx, place.local); } Operand::Constant(_) => {} } if let Some(msg) = msg { self.report_assert_as_lint( lint::builtin::UNCONDITIONAL_PANIC, source_info, "this operation will panic at runtime", msg, ); } } else { if self.should_const_prop(value) { if let ScalarMaybeUninit::Scalar(scalar) = value_const { *cond = self.operand_from_scalar( scalar, self.tcx.types.bool, source_info.span, ); } } } } } TerminatorKind::SwitchInt { ref mut discr, .. } => { // FIXME: This is currently redundant with `visit_operand`, but sadly // always visiting operands currently causes a perf regression in LLVM codegen, so // `visit_operand` currently only runs for propagates places for `mir_opt_level=4`. self.propagate_operand(discr) } // None of these have Operands to const-propagate. TerminatorKind::Goto { .. } | TerminatorKind::Resume | TerminatorKind::Abort | TerminatorKind::Return | TerminatorKind::Unreachable | TerminatorKind::Drop { .. } | TerminatorKind::DropAndReplace { .. } | TerminatorKind::Yield { .. } | TerminatorKind::GeneratorDrop | TerminatorKind::FalseEdge { .. } | TerminatorKind::FalseUnwind { .. } | TerminatorKind::InlineAsm { .. } => {} // Every argument in our function calls have already been propagated in `visit_operand`. // // NOTE: because LLVM codegen gives slight performance regressions with it, so this is // gated on `mir_opt_level=3`. TerminatorKind::Call { .. } => {} } // We remove all Locals which are restricted in propagation to their containing blocks and // which were modified in the current block. // Take it out of the ecx so we can get a mutable reference to the ecx for `remove_const`. let mut locals = std::mem::take(&mut self.ecx.machine.written_only_inside_own_block_locals); for &local in locals.iter() { Self::remove_const(&mut self.ecx, local); } locals.clear(); // Put it back so we reuse the heap of the storage self.ecx.machine.written_only_inside_own_block_locals = locals; if cfg!(debug_assertions) { // Ensure we are correctly erasing locals with the non-debug-assert logic. for local in self.ecx.machine.only_propagate_inside_block_locals.iter() { assert!( self.get_const(local.into()).is_none() || self .layout_of(self.local_decls[local].ty) .map_or(true, |layout| layout.is_zst()) ) } } } }