// FIXME: Ideally these suggestions would be fixed via rustfix. Blocked by rust-lang/rust#53934 // // run-rustfix #![warn(clippy::significant_drop_in_scrutinee)] #![allow(clippy::single_match)] #![allow(clippy::match_single_binding)] #![allow(unused_assignments)] #![allow(dead_code)] use std::ops::Deref; use std::sync::atomic::{AtomicU64, Ordering}; use std::sync::{Mutex, MutexGuard}; struct State {} impl State { fn foo(&self) -> bool { true } fn bar(&self) {} } fn should_not_trigger_lint_with_mutex_guard_outside_match() { let mutex = Mutex::new(State {}); // Should not trigger lint because the temporary should drop at the `;` on line before the match let is_foo = mutex.lock().unwrap().foo(); match is_foo { true => { mutex.lock().unwrap().bar(); }, false => {}, }; } fn should_not_trigger_lint_with_mutex_guard_when_taking_ownership_in_match() { let mutex = Mutex::new(State {}); // Should not trigger lint because the scrutinee is explicitly returning the MutexGuard, // so its lifetime should not be surprising. match mutex.lock() { Ok(guard) => { guard.foo(); mutex.lock().unwrap().bar(); }, _ => {}, }; } fn should_trigger_lint_with_mutex_guard_in_match_scrutinee() { let mutex = Mutex::new(State {}); // Should trigger lint because the lifetime of the temporary MutexGuard is surprising because it // is preserved until the end of the match, but there is no clear indication that this is the // case. match mutex.lock().unwrap().foo() { true => { mutex.lock().unwrap().bar(); }, false => {}, }; } fn should_not_trigger_lint_for_insignificant_drop() { // Should not trigger lint because there are no temporaries whose drops have a significant // side effect. match 1u64.to_string().is_empty() { true => { println!("It was empty") }, false => { println!("It was not empty") }, } } struct StateWithMutex { m: Mutex, } struct MutexGuardWrapper<'a> { mg: MutexGuard<'a, u64>, } impl<'a> MutexGuardWrapper<'a> { fn get_the_value(&self) -> u64 { *self.mg.deref() } } struct MutexGuardWrapperWrapper<'a> { mg: MutexGuardWrapper<'a>, } impl<'a> MutexGuardWrapperWrapper<'a> { fn get_the_value(&self) -> u64 { *self.mg.mg.deref() } } impl StateWithMutex { fn lock_m(&self) -> MutexGuardWrapper<'_> { MutexGuardWrapper { mg: self.m.lock().unwrap(), } } fn lock_m_m(&self) -> MutexGuardWrapperWrapper<'_> { MutexGuardWrapperWrapper { mg: MutexGuardWrapper { mg: self.m.lock().unwrap(), }, } } fn foo(&self) -> bool { true } fn bar(&self) {} } fn should_trigger_lint_with_wrapped_mutex() { let s = StateWithMutex { m: Mutex::new(1) }; // Should trigger lint because a temporary contains a type with a significant drop and its // lifetime is not obvious. Additionally, it is not obvious from looking at the scrutinee that // the temporary contains such a type, making it potentially even more surprising. match s.lock_m().get_the_value() { 1 => { println!("Got 1. Is it still 1?"); println!("{}", s.lock_m().get_the_value()); }, 2 => { println!("Got 2. Is it still 2?"); println!("{}", s.lock_m().get_the_value()); }, _ => {}, } println!("All done!"); } fn should_trigger_lint_with_double_wrapped_mutex() { let s = StateWithMutex { m: Mutex::new(1) }; // Should trigger lint because a temporary contains a type which further contains a type with a // significant drop and its lifetime is not obvious. Additionally, it is not obvious from // looking at the scrutinee that the temporary contains such a type, making it potentially even // more surprising. match s.lock_m_m().get_the_value() { 1 => { println!("Got 1. Is it still 1?"); println!("{}", s.lock_m().get_the_value()); }, 2 => { println!("Got 2. Is it still 2?"); println!("{}", s.lock_m().get_the_value()); }, _ => {}, } println!("All done!"); } struct Counter { i: AtomicU64, } #[clippy::has_significant_drop] struct CounterWrapper<'a> { counter: &'a Counter, } impl<'a> CounterWrapper<'a> { fn new(counter: &Counter) -> CounterWrapper { counter.i.fetch_add(1, Ordering::Relaxed); CounterWrapper { counter } } } impl<'a> Drop for CounterWrapper<'a> { fn drop(&mut self) { self.counter.i.fetch_sub(1, Ordering::Relaxed); } } impl Counter { fn temp_increment(&self) -> Vec { vec![CounterWrapper::new(self), CounterWrapper::new(self)] } } fn should_trigger_lint_for_vec() { let counter = Counter { i: AtomicU64::new(0) }; // Should trigger lint because the temporary in the scrutinee returns a collection of types // which have significant drops. The types with significant drops are also non-obvious when // reading the expression in the scrutinee. match counter.temp_increment().len() { 2 => { let current_count = counter.i.load(Ordering::Relaxed); println!("Current count {}", current_count); assert_eq!(current_count, 0); }, 1 => {}, 3 => {}, _ => {}, }; } struct StateWithField { s: String, } // Should trigger lint only on the type in the tuple which is created using a temporary // with a significant drop. Additionally, this test ensures that the format of the tuple // is preserved correctly in the suggestion. fn should_trigger_lint_for_tuple_in_scrutinee() { let mutex1 = Mutex::new(StateWithField { s: "one".to_owned() }); { match (mutex1.lock().unwrap().s.len(), true) { (3, _) => { println!("started"); mutex1.lock().unwrap().s.len(); println!("done"); }, (_, _) => {}, }; match (true, mutex1.lock().unwrap().s.len(), true) { (_, 3, _) => { println!("started"); mutex1.lock().unwrap().s.len(); println!("done"); }, (_, _, _) => {}, }; let mutex2 = Mutex::new(StateWithField { s: "two".to_owned() }); match (mutex1.lock().unwrap().s.len(), true, mutex2.lock().unwrap().s.len()) { (3, _, 3) => { println!("started"); mutex1.lock().unwrap().s.len(); mutex2.lock().unwrap().s.len(); println!("done"); }, (_, _, _) => {}, }; let mutex3 = Mutex::new(StateWithField { s: "three".to_owned() }); match mutex3.lock().unwrap().s.as_str() { "three" => { println!("started"); mutex1.lock().unwrap().s.len(); mutex2.lock().unwrap().s.len(); println!("done"); }, _ => {}, }; match (true, mutex3.lock().unwrap().s.as_str()) { (_, "three") => { println!("started"); mutex1.lock().unwrap().s.len(); mutex2.lock().unwrap().s.len(); println!("done"); }, (_, _) => {}, }; } } // Should trigger lint when either side of a binary operation creates a temporary with a // significant drop. // To avoid potential unnecessary copies or creating references that would trigger the significant // drop problem, the lint recommends moving the entire binary operation. fn should_trigger_lint_for_accessing_field_in_mutex_in_one_side_of_binary_op() { let mutex = Mutex::new(StateWithField { s: "state".to_owned() }); match mutex.lock().unwrap().s.len() > 1 { true => { mutex.lock().unwrap().s.len(); }, false => {}, }; match 1 < mutex.lock().unwrap().s.len() { true => { mutex.lock().unwrap().s.len(); }, false => {}, }; } // Should trigger lint when both sides of a binary operation creates a temporary with a // significant drop. // To avoid potential unnecessary copies or creating references that would trigger the significant // drop problem, the lint recommends moving the entire binary operation. fn should_trigger_lint_for_accessing_fields_in_mutex_in_both_sides_of_binary_op() { let mutex1 = Mutex::new(StateWithField { s: "state".to_owned() }); let mutex2 = Mutex::new(StateWithField { s: "statewithfield".to_owned(), }); match mutex1.lock().unwrap().s.len() < mutex2.lock().unwrap().s.len() { true => { println!( "{} < {}", mutex1.lock().unwrap().s.len(), mutex2.lock().unwrap().s.len() ); }, false => {}, }; match mutex1.lock().unwrap().s.len() >= mutex2.lock().unwrap().s.len() { true => { println!( "{} >= {}", mutex1.lock().unwrap().s.len(), mutex2.lock().unwrap().s.len() ); }, false => {}, }; } fn should_not_trigger_lint_for_closure_in_scrutinee() { let mutex1 = Mutex::new(StateWithField { s: "one".to_owned() }); let get_mutex_guard = || mutex1.lock().unwrap().s.len(); // Should not trigger lint because the temporary with a significant drop will be dropped // at the end of the closure, so the MutexGuard will be unlocked and not have a potentially // surprising lifetime. match get_mutex_guard() > 1 { true => { mutex1.lock().unwrap().s.len(); }, false => {}, }; } fn should_trigger_lint_for_return_from_closure_in_scrutinee() { let mutex1 = Mutex::new(StateWithField { s: "one".to_owned() }); let get_mutex_guard = || mutex1.lock().unwrap(); // Should trigger lint because the temporary with a significant drop is returned from the // closure but not used directly in any match arms, so it has a potentially surprising lifetime. match get_mutex_guard().s.len() > 1 { true => { mutex1.lock().unwrap().s.len(); }, false => {}, }; } fn should_trigger_lint_for_return_from_match_in_scrutinee() { let mutex1 = Mutex::new(StateWithField { s: "one".to_owned() }); let mutex2 = Mutex::new(StateWithField { s: "two".to_owned() }); let i = 100; // Should trigger lint because the nested match within the scrutinee returns a temporary with a // significant drop is but not used directly in any match arms, so it has a potentially // surprising lifetime. match match i { 100 => mutex1.lock().unwrap(), _ => mutex2.lock().unwrap(), } .s .len() > 1 { true => { mutex1.lock().unwrap().s.len(); }, false => { println!("nothing to do here"); }, }; } fn should_trigger_lint_for_return_from_if_in_scrutinee() { let mutex1 = Mutex::new(StateWithField { s: "one".to_owned() }); let mutex2 = Mutex::new(StateWithField { s: "two".to_owned() }); let i = 100; // Should trigger lint because the nested if-expression within the scrutinee returns a temporary // with a significant drop is but not used directly in any match arms, so it has a potentially // surprising lifetime. match if i > 1 { mutex1.lock().unwrap() } else { mutex2.lock().unwrap() } .s .len() > 1 { true => { mutex1.lock().unwrap().s.len(); }, false => {}, }; } fn should_not_trigger_lint_for_if_in_scrutinee() { let mutex = Mutex::new(StateWithField { s: "state".to_owned() }); let i = 100; // Should not trigger the lint because the temporary with a significant drop *is* dropped within // the body of the if-expression nested within the match scrutinee, and therefore does not have // a potentially surprising lifetime. match if i > 1 { mutex.lock().unwrap().s.len() > 1 } else { false } { true => { mutex.lock().unwrap().s.len(); }, false => {}, }; } struct StateWithBoxedMutexGuard { u: Mutex, } impl StateWithBoxedMutexGuard { fn new() -> StateWithBoxedMutexGuard { StateWithBoxedMutexGuard { u: Mutex::new(42) } } fn lock(&self) -> Box> { Box::new(self.u.lock().unwrap()) } } fn should_trigger_lint_for_boxed_mutex_guard() { let s = StateWithBoxedMutexGuard::new(); // Should trigger lint because a temporary Box holding a type with a significant drop in a match // scrutinee may have a potentially surprising lifetime. match s.lock().deref().deref() { 0 | 1 => println!("Value was less than 2"), _ => println!("Value is {}", s.lock().deref()), }; } struct StateStringWithBoxedMutexGuard { s: Mutex, } impl StateStringWithBoxedMutexGuard { fn new() -> StateStringWithBoxedMutexGuard { StateStringWithBoxedMutexGuard { s: Mutex::new("A String".to_owned()), } } fn lock(&self) -> Box> { Box::new(self.s.lock().unwrap()) } } fn should_trigger_lint_for_boxed_mutex_guard_holding_string() { let s = StateStringWithBoxedMutexGuard::new(); let matcher = String::from("A String"); // Should trigger lint because a temporary Box holding a type with a significant drop in a match // scrutinee may have a potentially surprising lifetime. match s.lock().deref().deref() { matcher => println!("Value is {}", s.lock().deref()), _ => println!("Value was not a match"), }; } struct StateWithIntField { i: u64, } // Should trigger lint when either side of an assign expression contains a temporary with a // significant drop, because the temporary's lifetime will be extended to the end of the match. // To avoid potential unnecessary copies or creating references that would trigger the significant // drop problem, the lint recommends moving the entire binary operation. fn should_trigger_lint_in_assign_expr() { let mutex = Mutex::new(StateWithIntField { i: 10 }); let mut i = 100; match mutex.lock().unwrap().i = i { _ => { println!("{}", mutex.lock().unwrap().i); }, }; match i = mutex.lock().unwrap().i { _ => { println!("{}", mutex.lock().unwrap().i); }, }; match mutex.lock().unwrap().i += 1 { _ => { println!("{}", mutex.lock().unwrap().i); }, }; match i += mutex.lock().unwrap().i { _ => { println!("{}", mutex.lock().unwrap().i); }, }; } #[derive(Debug)] enum RecursiveEnum { Foo(Option>), } #[derive(Debug)] enum GenericRecursiveEnum { Foo(T, Option>>), } fn should_not_cause_stack_overflow() { // Test that when a type recursively contains itself, a stack overflow does not occur when // checking sub-types for significant drops. let f = RecursiveEnum::Foo(Some(Box::new(RecursiveEnum::Foo(None)))); match f { RecursiveEnum::Foo(Some(f)) => { println!("{:?}", f) }, RecursiveEnum::Foo(f) => { println!("{:?}", f) }, } let f = GenericRecursiveEnum::Foo(1u64, Some(Box::new(GenericRecursiveEnum::Foo(2u64, None)))); match f { GenericRecursiveEnum::Foo(i, Some(f)) => { println!("{} {:?}", i, f) }, GenericRecursiveEnum::Foo(i, f) => { println!("{} {:?}", i, f) }, } } fn main() {}