use clippy_utils::diagnostics::span_lint_and_sugg; use clippy_utils::ty::same_type_and_consts; use clippy_utils::{is_from_proc_macro, meets_msrv, msrvs}; use if_chain::if_chain; use rustc_data_structures::fx::FxHashSet; use rustc_errors::Applicability; use rustc_hir::{ self as hir, def::{CtorOf, DefKind, Res}, def_id::LocalDefId, intravisit::{walk_inf, walk_ty, Visitor}, Expr, ExprKind, FnRetTy, FnSig, GenericArg, HirId, Impl, ImplItemKind, Item, ItemKind, Pat, PatKind, Path, QPath, TyKind, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_semver::RustcVersion; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::Span; use rustc_typeck::hir_ty_to_ty; declare_clippy_lint! { /// ### What it does /// Checks for unnecessary repetition of structure name when a /// replacement with `Self` is applicable. /// /// ### Why is this bad? /// Unnecessary repetition. Mixed use of `Self` and struct /// name /// feels inconsistent. /// /// ### Known problems /// - Unaddressed false negative in fn bodies of trait implementations /// - False positive with associated types in traits (#4140) /// /// ### Example /// ```rust /// struct Foo; /// impl Foo { /// fn new() -> Foo { /// Foo {} /// } /// } /// ``` /// could be /// ```rust /// struct Foo; /// impl Foo { /// fn new() -> Self { /// Self {} /// } /// } /// ``` #[clippy::version = "pre 1.29.0"] pub USE_SELF, nursery, "unnecessary structure name repetition whereas `Self` is applicable" } #[derive(Default)] pub struct UseSelf { msrv: Option, stack: Vec, } impl UseSelf { #[must_use] pub fn new(msrv: Option) -> Self { Self { msrv, ..Self::default() } } } #[derive(Debug)] enum StackItem { Check { impl_id: LocalDefId, in_body: u32, types_to_skip: FxHashSet, }, NoCheck, } impl_lint_pass!(UseSelf => [USE_SELF]); const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element"; impl<'tcx> LateLintPass<'tcx> for UseSelf { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &Item<'tcx>) { if matches!(item.kind, ItemKind::OpaqueTy(_)) { // skip over `ItemKind::OpaqueTy` in order to lint `foo() -> impl <..>` return; } // We push the self types of `impl`s on a stack here. Only the top type on the stack is // relevant for linting, since this is the self type of the `impl` we're currently in. To // avoid linting on nested items, we push `StackItem::NoCheck` on the stack to signal, that // we're in an `impl` or nested item, that we don't want to lint let stack_item = if_chain! { if let ItemKind::Impl(Impl { self_ty, .. }) = item.kind; if let TyKind::Path(QPath::Resolved(_, item_path)) = self_ty.kind; let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args; if parameters.as_ref().map_or(true, |params| { !params.parenthesized && !params.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_))) }); if !is_from_proc_macro(cx, item); // expensive, should be last check then { StackItem::Check { impl_id: item.def_id, in_body: 0, types_to_skip: std::iter::once(self_ty.hir_id).collect(), } } else { StackItem::NoCheck } }; self.stack.push(stack_item); } fn check_item_post(&mut self, _: &LateContext<'_>, item: &Item<'_>) { if !matches!(item.kind, ItemKind::OpaqueTy(_)) { self.stack.pop(); } } fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) { // We want to skip types in trait `impl`s that aren't declared as `Self` in the trait // declaration. The collection of those types is all this method implementation does. if_chain! { if let ImplItemKind::Fn(FnSig { decl, .. }, ..) = impl_item.kind; if let Some(&mut StackItem::Check { impl_id, ref mut types_to_skip, .. }) = self.stack.last_mut(); if let Some(impl_trait_ref) = cx.tcx.impl_trait_ref(impl_id); then { // `self_ty` is the semantic self type of `impl for `. This cannot be // `Self`. let self_ty = impl_trait_ref.self_ty(); // `trait_method_sig` is the signature of the function, how it is declared in the // trait, not in the impl of the trait. let trait_method = cx .tcx .associated_item(impl_item.def_id) .trait_item_def_id .expect("impl method matches a trait method"); let trait_method_sig = cx.tcx.fn_sig(trait_method); let trait_method_sig = cx.tcx.erase_late_bound_regions(trait_method_sig); // `impl_inputs_outputs` is an iterator over the types (`hir::Ty`) declared in the // implementation of the trait. let output_hir_ty = if let FnRetTy::Return(ty) = &decl.output { Some(&**ty) } else { None }; let impl_inputs_outputs = decl.inputs.iter().chain(output_hir_ty); // `impl_hir_ty` (of type `hir::Ty`) represents the type written in the signature. // // `trait_sem_ty` (of type `ty::Ty`) is the semantic type for the signature in the // trait declaration. This is used to check if `Self` was used in the trait // declaration. // // If `any`where in the `trait_sem_ty` the `self_ty` was used verbatim (as opposed // to `Self`), we want to skip linting that type and all subtypes of it. This // avoids suggestions to e.g. replace `Vec` with `Vec`, in an `impl Trait // for u8`, when the trait always uses `Vec`. // // See also https://github.com/rust-lang/rust-clippy/issues/2894. for (impl_hir_ty, trait_sem_ty) in impl_inputs_outputs.zip(trait_method_sig.inputs_and_output) { if trait_sem_ty.walk().any(|inner| inner == self_ty.into()) { let mut visitor = SkipTyCollector::default(); visitor.visit_ty(impl_hir_ty); types_to_skip.extend(visitor.types_to_skip); } } } } } fn check_body(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) { // `hir_ty_to_ty` cannot be called in `Body`s or it will panic (sometimes). But in bodies // we can use `cx.typeck_results.node_type(..)` to get the `ty::Ty` from a `hir::Ty`. // However the `node_type()` method can *only* be called in bodies. if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() { *in_body = in_body.saturating_add(1); } } fn check_body_post(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) { if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() { *in_body = in_body.saturating_sub(1); } } fn check_ty(&mut self, cx: &LateContext<'_>, hir_ty: &hir::Ty<'_>) { if_chain! { if !hir_ty.span.from_expansion(); if meets_msrv(self.msrv, msrvs::TYPE_ALIAS_ENUM_VARIANTS); if let Some(&StackItem::Check { impl_id, in_body, ref types_to_skip, }) = self.stack.last(); if let TyKind::Path(QPath::Resolved(_, path)) = hir_ty.kind; if !matches!(path.res, Res::SelfTy { .. } | Res::Def(DefKind::TyParam, _)); if !types_to_skip.contains(&hir_ty.hir_id); let ty = if in_body > 0 { cx.typeck_results().node_type(hir_ty.hir_id) } else { hir_ty_to_ty(cx.tcx, hir_ty) }; if same_type_and_consts(ty, cx.tcx.type_of(impl_id)); then { span_lint(cx, hir_ty.span); } } } fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) { if_chain! { if !expr.span.from_expansion(); if meets_msrv(self.msrv, msrvs::TYPE_ALIAS_ENUM_VARIANTS); if let Some(&StackItem::Check { impl_id, .. }) = self.stack.last(); if cx.typeck_results().expr_ty(expr) == cx.tcx.type_of(impl_id); then {} else { return; } } match expr.kind { ExprKind::Struct(QPath::Resolved(_, path), ..) => match path.res { Res::SelfTy { .. } => (), Res::Def(DefKind::Variant, _) => lint_path_to_variant(cx, path), _ => span_lint(cx, path.span), }, // tuple struct instantiation (`Foo(arg)` or `Enum::Foo(arg)`) ExprKind::Call(fun, _) => { if let ExprKind::Path(QPath::Resolved(_, path)) = fun.kind { if let Res::Def(DefKind::Ctor(ctor_of, _), ..) = path.res { match ctor_of { CtorOf::Variant => lint_path_to_variant(cx, path), CtorOf::Struct => span_lint(cx, path.span), } } } }, // unit enum variants (`Enum::A`) ExprKind::Path(QPath::Resolved(_, path)) => lint_path_to_variant(cx, path), _ => (), } } fn check_pat(&mut self, cx: &LateContext<'_>, pat: &Pat<'_>) { if_chain! { if !pat.span.from_expansion(); if meets_msrv(self.msrv, msrvs::TYPE_ALIAS_ENUM_VARIANTS); if let Some(&StackItem::Check { impl_id, .. }) = self.stack.last(); // get the path from the pattern if let PatKind::Path(QPath::Resolved(_, path)) | PatKind::TupleStruct(QPath::Resolved(_, path), _, _) | PatKind::Struct(QPath::Resolved(_, path), _, _) = pat.kind; if cx.typeck_results().pat_ty(pat) == cx.tcx.type_of(impl_id); then { match path.res { Res::Def(DefKind::Ctor(ctor_of, _), ..) => match ctor_of { CtorOf::Variant => lint_path_to_variant(cx, path), CtorOf::Struct => span_lint(cx, path.span), }, Res::Def(DefKind::Variant, ..) => lint_path_to_variant(cx, path), Res::Def(DefKind::Struct, ..) => span_lint(cx, path.span), _ => () } } } } extract_msrv_attr!(LateContext); } #[derive(Default)] struct SkipTyCollector { types_to_skip: Vec, } impl<'tcx> Visitor<'tcx> for SkipTyCollector { fn visit_infer(&mut self, inf: &hir::InferArg) { self.types_to_skip.push(inf.hir_id); walk_inf(self, inf); } fn visit_ty(&mut self, hir_ty: &hir::Ty<'_>) { self.types_to_skip.push(hir_ty.hir_id); walk_ty(self, hir_ty); } } fn span_lint(cx: &LateContext<'_>, span: Span) { span_lint_and_sugg( cx, USE_SELF, span, "unnecessary structure name repetition", "use the applicable keyword", "Self".to_owned(), Applicability::MachineApplicable, ); } fn lint_path_to_variant(cx: &LateContext<'_>, path: &Path<'_>) { if let [.., self_seg, _variant] = path.segments { let span = path .span .with_hi(self_seg.args().span_ext().unwrap_or(self_seg.ident.span).hi()); span_lint(cx, span); } }