// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // FIXME(#4375): this shouldn't have to be a nested module named 'generated' #[macro_escape]; macro_rules! int_module (($T:ty, $bits:expr) => (mod generated { #[allow(non_uppercase_statics)]; use num::{ToStrRadix, FromStrRadix}; use num::{Zero, One, strconv}; use prelude::*; use str; pub use cmp::{min, max}; pub static bits : uint = $bits; pub static bytes : uint = ($bits / 8); pub static min_value: $T = (-1 as $T) << (bits - 1); pub static max_value: $T = min_value - 1 as $T; enum Range { Closed, HalfOpen } #[inline] /// /// Iterate through a range with a given step value. /// /// Let `term` denote the closed interval `[stop-step,stop]` if `r` is Closed; /// otherwise `term` denotes the half-open interval `[stop-step,stop)`. /// Iterates through the range `[x_0, x_1, ..., x_n]` where /// `x_j == start + step*j`, and `x_n` lies in the interval `term`. /// /// If no such nonnegative integer `n` exists, then the iteration range /// is empty. /// fn range_step_core(start: $T, stop: $T, step: $T, r: Range, it: &fn($T) -> bool) -> bool { let mut i = start; if step == 0 { fail!(~"range_step called with step == 0"); } else if step == (1 as $T) { // elide bounds check to tighten loop while i < stop { if !it(i) { return false; } // no need for overflow check; // cannot have i + 1 > max_value because i < stop <= max_value i += (1 as $T); } } else if step == (-1 as $T) { // elide bounds check to tighten loop while i > stop { if !it(i) { return false; } // no need for underflow check; // cannot have i - 1 < min_value because i > stop >= min_value i -= (1 as $T); } } else if step > 0 { // ascending while i < stop { if !it(i) { return false; } // avoiding overflow. break if i + step > max_value if i > max_value - step { return true; } i += step; } } else { // descending while i > stop { if !it(i) { return false; } // avoiding underflow. break if i + step < min_value if i < min_value - step { return true; } i += step; } } match r { HalfOpen => return true, Closed => return (i != stop || it(i)) } } #[inline] /// /// Iterate through the range [`start`..`stop`) with a given step value. /// /// Iterates through the range `[x_0, x_1, ..., x_n]` where /// * `x_i == start + step*i`, and /// * `n` is the greatest nonnegative integer such that `x_n < stop` /// /// (If no such `n` exists, then the iteration range is empty.) /// /// # Arguments /// /// * `start` - lower bound, inclusive /// * `stop` - higher bound, exclusive /// /// # Examples /// ~~~ /// let mut sum = 0; /// for int::range(1, 5) |i| { /// sum += i; /// } /// assert!(sum == 10); /// ~~~ /// pub fn range_step(start: $T, stop: $T, step: $T, it: &fn($T) -> bool) -> bool { range_step_core(start, stop, step, HalfOpen, it) } #[inline] /// /// Iterate through a range with a given step value. /// /// Iterates through the range `[x_0, x_1, ..., x_n]` where /// `x_i == start + step*i` and `x_n <= last < step + x_n`. /// /// (If no such nonnegative integer `n` exists, then the iteration /// range is empty.) /// pub fn range_step_inclusive(start: $T, last: $T, step: $T, it: &fn($T) -> bool) -> bool { range_step_core(start, last, step, Closed, it) } #[inline] /// Iterate over the range [`lo`..`hi`) pub fn range(lo: $T, hi: $T, it: &fn($T) -> bool) -> bool { range_step(lo, hi, 1 as $T, it) } #[inline] /// Iterate over the range [`hi`..`lo`) pub fn range_rev(hi: $T, lo: $T, it: &fn($T) -> bool) -> bool { range_step(hi, lo, -1 as $T, it) } impl Num for $T {} #[cfg(not(test))] impl Ord for $T { #[inline] fn lt(&self, other: &$T) -> bool { return (*self) < (*other); } #[inline] fn le(&self, other: &$T) -> bool { return (*self) <= (*other); } #[inline] fn ge(&self, other: &$T) -> bool { return (*self) >= (*other); } #[inline] fn gt(&self, other: &$T) -> bool { return (*self) > (*other); } } #[cfg(not(test))] impl Eq for $T { #[inline] fn eq(&self, other: &$T) -> bool { return (*self) == (*other); } #[inline] fn ne(&self, other: &$T) -> bool { return (*self) != (*other); } } impl Orderable for $T { #[inline] fn min(&self, other: &$T) -> $T { if *self < *other { *self } else { *other } } #[inline] fn max(&self, other: &$T) -> $T { if *self > *other { *self } else { *other } } #[inline] fn clamp(&self, mn: &$T, mx: &$T) -> $T { if *self > *mx { *mx } else if *self < *mn { *mn } else { *self } } } impl Zero for $T { #[inline] fn zero() -> $T { 0 } #[inline] fn is_zero(&self) -> bool { *self == 0 } } impl One for $T { #[inline] fn one() -> $T { 1 } } #[cfg(not(test))] impl Add<$T,$T> for $T { #[inline] fn add(&self, other: &$T) -> $T { *self + *other } } #[cfg(not(test))] impl Sub<$T,$T> for $T { #[inline] fn sub(&self, other: &$T) -> $T { *self - *other } } #[cfg(not(test))] impl Mul<$T,$T> for $T { #[inline] fn mul(&self, other: &$T) -> $T { *self * *other } } #[cfg(not(test))] impl Div<$T,$T> for $T { /// /// Integer division, truncated towards 0. As this behaviour reflects the underlying /// machine implementation it is more efficient than `Integer::div_floor`. /// /// # Examples /// /// ~~~ /// assert!( 8 / 3 == 2); /// assert!( 8 / -3 == -2); /// assert!(-8 / 3 == -2); /// assert!(-8 / -3 == 2); /// assert!( 1 / 2 == 0); /// assert!( 1 / -2 == 0); /// assert!(-1 / 2 == 0); /// assert!(-1 / -2 == 0); /// ~~~ /// #[inline] fn div(&self, other: &$T) -> $T { *self / *other } } #[cfg(not(test))] impl Rem<$T,$T> for $T { /// /// Returns the integer remainder after division, satisfying: /// /// ~~~ /// assert!((n / d) * d + (n % d) == n) /// ~~~ /// /// # Examples /// /// ~~~ /// assert!( 8 % 3 == 2); /// assert!( 8 % -3 == 2); /// assert!(-8 % 3 == -2); /// assert!(-8 % -3 == -2); /// assert!( 1 % 2 == 1); /// assert!( 1 % -2 == 1); /// assert!(-1 % 2 == -1); /// assert!(-1 % -2 == -1); /// ~~~ /// #[inline] fn rem(&self, other: &$T) -> $T { *self % *other } } #[cfg(not(test))] impl Neg<$T> for $T { #[inline] fn neg(&self) -> $T { -*self } } impl Signed for $T { /// Computes the absolute value #[inline] fn abs(&self) -> $T { if self.is_negative() { -*self } else { *self } } /// /// The positive difference of two numbers. Returns `0` if the number is less than or /// equal to `other`, otherwise the difference between`self` and `other` is returned. /// #[inline] fn abs_sub(&self, other: &$T) -> $T { if *self <= *other { 0 } else { *self - *other } } /// /// # Returns /// /// - `0` if the number is zero /// - `1` if the number is positive /// - `-1` if the number is negative /// #[inline] fn signum(&self) -> $T { match *self { n if n > 0 => 1, 0 => 0, _ => -1, } } /// Returns true if the number is positive #[inline] fn is_positive(&self) -> bool { *self > 0 } /// Returns true if the number is negative #[inline] fn is_negative(&self) -> bool { *self < 0 } } impl Integer for $T { /// /// Floored integer division /// /// # Examples /// /// ~~~ /// assert!(( 8).div_floor( 3) == 2); /// assert!(( 8).div_floor(-3) == -3); /// assert!((-8).div_floor( 3) == -3); /// assert!((-8).div_floor(-3) == 2); /// /// assert!(( 1).div_floor( 2) == 0); /// assert!(( 1).div_floor(-2) == -1); /// assert!((-1).div_floor( 2) == -1); /// assert!((-1).div_floor(-2) == 0); /// ~~~ /// #[inline] fn div_floor(&self, other: &$T) -> $T { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match self.div_rem(other) { (d, r) if (r > 0 && *other < 0) || (r < 0 && *other > 0) => d - 1, (d, _) => d, } } /// /// Integer modulo, satisfying: /// /// ~~~ /// assert!(n.div_floor(d) * d + n.mod_floor(d) == n) /// ~~~ /// /// # Examples /// /// ~~~ /// assert!(( 8).mod_floor( 3) == 2); /// assert!(( 8).mod_floor(-3) == -1); /// assert!((-8).mod_floor( 3) == 1); /// assert!((-8).mod_floor(-3) == -2); /// /// assert!(( 1).mod_floor( 2) == 1); /// assert!(( 1).mod_floor(-2) == -1); /// assert!((-1).mod_floor( 2) == 1); /// assert!((-1).mod_floor(-2) == -1); /// ~~~ /// #[inline] fn mod_floor(&self, other: &$T) -> $T { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match *self % *other { r if (r > 0 && *other < 0) || (r < 0 && *other > 0) => r + *other, r => r, } } /// Calculates `div_floor` and `mod_floor` simultaneously #[inline] fn div_mod_floor(&self, other: &$T) -> ($T,$T) { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match self.div_rem(other) { (d, r) if (r > 0 && *other < 0) || (r < 0 && *other > 0) => (d - 1, r + *other), (d, r) => (d, r), } } /// Calculates `div` (`\`) and `rem` (`%`) simultaneously #[inline] fn div_rem(&self, other: &$T) -> ($T,$T) { (*self / *other, *self % *other) } /// /// Calculates the Greatest Common Divisor (GCD) of the number and `other` /// /// The result is always positive /// #[inline] fn gcd(&self, other: &$T) -> $T { // Use Euclid's algorithm let mut m = *self; let mut n = *other; while m != 0 { let temp = m; m = n % temp; n = temp; } n.abs() } /// /// Calculates the Lowest Common Multiple (LCM) of the number and `other` /// #[inline] fn lcm(&self, other: &$T) -> $T { ((*self * *other) / self.gcd(other)).abs() // should not have to recaluculate abs } /// Returns `true` if the number can be divided by `other` without leaving a remainder #[inline] fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 } /// Returns `true` if the number is divisible by `2` #[inline] fn is_even(&self) -> bool { self.is_multiple_of(&2) } /// Returns `true` if the number is not divisible by `2` #[inline] fn is_odd(&self) -> bool { !self.is_even() } } impl Bitwise for $T {} #[cfg(not(test))] impl BitOr<$T,$T> for $T { #[inline] fn bitor(&self, other: &$T) -> $T { *self | *other } } #[cfg(not(test))] impl BitAnd<$T,$T> for $T { #[inline] fn bitand(&self, other: &$T) -> $T { *self & *other } } #[cfg(not(test))] impl BitXor<$T,$T> for $T { #[inline] fn bitxor(&self, other: &$T) -> $T { *self ^ *other } } #[cfg(not(test))] impl Shl<$T,$T> for $T { #[inline] fn shl(&self, other: &$T) -> $T { *self << *other } } #[cfg(not(test))] impl Shr<$T,$T> for $T { #[inline] fn shr(&self, other: &$T) -> $T { *self >> *other } } #[cfg(not(test))] impl Not<$T> for $T { #[inline] fn not(&self) -> $T { !*self } } impl Bounded for $T { #[inline] fn min_value() -> $T { min_value } #[inline] fn max_value() -> $T { max_value } } impl Int for $T {} impl Primitive for $T { #[inline] fn bits() -> uint { bits } #[inline] fn bytes() -> uint { bits / 8 } } // String conversion functions and impl str -> num /// Parse a string as a number in base 10. #[inline] pub fn from_str(s: &str) -> Option<$T> { strconv::from_str_common(s, 10u, true, false, false, strconv::ExpNone, false, false) } /// Parse a string as a number in the given base. #[inline] pub fn from_str_radix(s: &str, radix: uint) -> Option<$T> { strconv::from_str_common(s, radix, true, false, false, strconv::ExpNone, false, false) } /// Parse a byte slice as a number in the given base. #[inline] pub fn parse_bytes(buf: &[u8], radix: uint) -> Option<$T> { strconv::from_str_bytes_common(buf, radix, true, false, false, strconv::ExpNone, false, false) } impl FromStr for $T { #[inline] fn from_str(s: &str) -> Option<$T> { from_str(s) } } impl FromStrRadix for $T { #[inline] fn from_str_radix(s: &str, radix: uint) -> Option<$T> { from_str_radix(s, radix) } } // String conversion functions and impl num -> str /// Convert to a string as a byte slice in a given base. #[inline] pub fn to_str_bytes(n: $T, radix: uint, f: &fn(v: &[u8]) -> U) -> U { // The radix can be as low as 2, so we need at least 64 characters for a // base 2 number, and then we need another for a possible '-' character. let mut buf = [0u8, ..65]; let mut cur = 0; do strconv::int_to_str_bytes_common(n, radix, strconv::SignNeg) |i| { buf[cur] = i; cur += 1; } f(buf.slice(0, cur)) } /// Convert to a string in base 10. #[inline] pub fn to_str(num: $T) -> ~str { to_str_radix(num, 10u) } /// Convert to a string in a given base. #[inline] pub fn to_str_radix(num: $T, radix: uint) -> ~str { let mut buf: ~[u8] = ~[]; do strconv::int_to_str_bytes_common(num, radix, strconv::SignNeg) |i| { buf.push(i); } // We know we generated valid utf-8, so we don't need to go through that // check. unsafe { str::raw::from_bytes_owned(buf) } } impl ToStr for $T { #[inline] fn to_str(&self) -> ~str { to_str(*self) } } impl ToStrRadix for $T { #[inline] fn to_str_radix(&self, radix: uint) -> ~str { to_str_radix(*self, radix) } } #[cfg(test)] mod tests { use super::*; use prelude::*; use i16; use i32; use i64; use i8; use num; use sys; #[test] fn test_num() { num::test_num(10 as $T, 2 as $T); } #[test] fn test_orderable() { assert_eq!((1 as $T).min(&(2 as $T)), 1 as $T); assert_eq!((2 as $T).min(&(1 as $T)), 1 as $T); assert_eq!((1 as $T).max(&(2 as $T)), 2 as $T); assert_eq!((2 as $T).max(&(1 as $T)), 2 as $T); assert_eq!((1 as $T).clamp(&(2 as $T), &(4 as $T)), 2 as $T); assert_eq!((8 as $T).clamp(&(2 as $T), &(4 as $T)), 4 as $T); assert_eq!((3 as $T).clamp(&(2 as $T), &(4 as $T)), 3 as $T); } #[test] pub fn test_abs() { assert_eq!((1 as $T).abs(), 1 as $T); assert_eq!((0 as $T).abs(), 0 as $T); assert_eq!((-1 as $T).abs(), 1 as $T); } #[test] fn test_abs_sub() { assert_eq!((-1 as $T).abs_sub(&(1 as $T)), 0 as $T); assert_eq!((1 as $T).abs_sub(&(1 as $T)), 0 as $T); assert_eq!((1 as $T).abs_sub(&(0 as $T)), 1 as $T); assert_eq!((1 as $T).abs_sub(&(-1 as $T)), 2 as $T); } #[test] fn test_signum() { assert_eq!((1 as $T).signum(), 1 as $T); assert_eq!((0 as $T).signum(), 0 as $T); assert_eq!((-0 as $T).signum(), 0 as $T); assert_eq!((-1 as $T).signum(), -1 as $T); } #[test] fn test_is_positive() { assert!((1 as $T).is_positive()); assert!(!(0 as $T).is_positive()); assert!(!(-0 as $T).is_positive()); assert!(!(-1 as $T).is_positive()); } #[test] fn test_is_negative() { assert!(!(1 as $T).is_negative()); assert!(!(0 as $T).is_negative()); assert!(!(-0 as $T).is_negative()); assert!((-1 as $T).is_negative()); } /// /// Checks that the division rule holds for: /// /// - `n`: numerator (dividend) /// - `d`: denominator (divisor) /// - `qr`: quotient and remainder /// #[cfg(test)] fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) { assert_eq!(d * q + r, n); } #[test] fn test_div_rem() { fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) { let (n,d) = nd; let separate_div_rem = (n / d, n % d); let combined_div_rem = n.div_rem(&d); assert_eq!(separate_div_rem, qr); assert_eq!(combined_div_rem, qr); test_division_rule(nd, separate_div_rem); test_division_rule(nd, combined_div_rem); } test_nd_dr(( 8, 3), ( 2, 2)); test_nd_dr(( 8, -3), (-2, 2)); test_nd_dr((-8, 3), (-2, -2)); test_nd_dr((-8, -3), ( 2, -2)); test_nd_dr(( 1, 2), ( 0, 1)); test_nd_dr(( 1, -2), ( 0, 1)); test_nd_dr((-1, 2), ( 0, -1)); test_nd_dr((-1, -2), ( 0, -1)); } #[test] fn test_div_mod_floor() { fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) { let (n,d) = nd; let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d)); let combined_div_mod_floor = n.div_mod_floor(&d); assert_eq!(separate_div_mod_floor, dm); assert_eq!(combined_div_mod_floor, dm); test_division_rule(nd, separate_div_mod_floor); test_division_rule(nd, combined_div_mod_floor); } test_nd_dm(( 8, 3), ( 2, 2)); test_nd_dm(( 8, -3), (-3, -1)); test_nd_dm((-8, 3), (-3, 1)); test_nd_dm((-8, -3), ( 2, -2)); test_nd_dm(( 1, 2), ( 0, 1)); test_nd_dm(( 1, -2), (-1, -1)); test_nd_dm((-1, 2), (-1, 1)); test_nd_dm((-1, -2), ( 0, -1)); } #[test] fn test_gcd() { assert_eq!((10 as $T).gcd(&2), 2 as $T); assert_eq!((10 as $T).gcd(&3), 1 as $T); assert_eq!((0 as $T).gcd(&3), 3 as $T); assert_eq!((3 as $T).gcd(&3), 3 as $T); assert_eq!((56 as $T).gcd(&42), 14 as $T); assert_eq!((3 as $T).gcd(&-3), 3 as $T); assert_eq!((-6 as $T).gcd(&3), 3 as $T); assert_eq!((-4 as $T).gcd(&-2), 2 as $T); } #[test] fn test_lcm() { assert_eq!((1 as $T).lcm(&0), 0 as $T); assert_eq!((0 as $T).lcm(&1), 0 as $T); assert_eq!((1 as $T).lcm(&1), 1 as $T); assert_eq!((-1 as $T).lcm(&1), 1 as $T); assert_eq!((1 as $T).lcm(&-1), 1 as $T); assert_eq!((-1 as $T).lcm(&-1), 1 as $T); assert_eq!((8 as $T).lcm(&9), 72 as $T); assert_eq!((11 as $T).lcm(&5), 55 as $T); } #[test] fn test_bitwise() { assert_eq!(0b1110 as $T, (0b1100 as $T).bitor(&(0b1010 as $T))); assert_eq!(0b1000 as $T, (0b1100 as $T).bitand(&(0b1010 as $T))); assert_eq!(0b0110 as $T, (0b1100 as $T).bitxor(&(0b1010 as $T))); assert_eq!(0b1110 as $T, (0b0111 as $T).shl(&(1 as $T))); assert_eq!(0b0111 as $T, (0b1110 as $T).shr(&(1 as $T))); assert_eq!(-(0b11 as $T) - (1 as $T), (0b11 as $T).not()); } #[test] fn test_multiple_of() { assert!((6 as $T).is_multiple_of(&(6 as $T))); assert!((6 as $T).is_multiple_of(&(3 as $T))); assert!((6 as $T).is_multiple_of(&(1 as $T))); assert!((-8 as $T).is_multiple_of(&(4 as $T))); assert!((8 as $T).is_multiple_of(&(-1 as $T))); assert!((-8 as $T).is_multiple_of(&(-2 as $T))); } #[test] fn test_even() { assert_eq!((-4 as $T).is_even(), true); assert_eq!((-3 as $T).is_even(), false); assert_eq!((-2 as $T).is_even(), true); assert_eq!((-1 as $T).is_even(), false); assert_eq!((0 as $T).is_even(), true); assert_eq!((1 as $T).is_even(), false); assert_eq!((2 as $T).is_even(), true); assert_eq!((3 as $T).is_even(), false); assert_eq!((4 as $T).is_even(), true); } #[test] fn test_odd() { assert_eq!((-4 as $T).is_odd(), false); assert_eq!((-3 as $T).is_odd(), true); assert_eq!((-2 as $T).is_odd(), false); assert_eq!((-1 as $T).is_odd(), true); assert_eq!((0 as $T).is_odd(), false); assert_eq!((1 as $T).is_odd(), true); assert_eq!((2 as $T).is_odd(), false); assert_eq!((3 as $T).is_odd(), true); assert_eq!((4 as $T).is_odd(), false); } #[test] fn test_bitcount() { assert_eq!((0b010101 as $T).population_count(), 3); } #[test] fn test_primitive() { assert_eq!(Primitive::bits::<$T>(), sys::size_of::<$T>() * 8); assert_eq!(Primitive::bytes::<$T>(), sys::size_of::<$T>()); } #[test] fn test_from_str() { assert_eq!(from_str("0"), Some(0 as $T)); assert_eq!(from_str("3"), Some(3 as $T)); assert_eq!(from_str("10"), Some(10 as $T)); assert_eq!(i32::from_str("123456789"), Some(123456789 as i32)); assert_eq!(from_str("00100"), Some(100 as $T)); assert_eq!(from_str("-1"), Some(-1 as $T)); assert_eq!(from_str("-3"), Some(-3 as $T)); assert_eq!(from_str("-10"), Some(-10 as $T)); assert_eq!(i32::from_str("-123456789"), Some(-123456789 as i32)); assert_eq!(from_str("-00100"), Some(-100 as $T)); assert!(from_str(" ").is_none()); assert!(from_str("x").is_none()); } #[test] fn test_parse_bytes() { use str::StrSlice; assert_eq!(parse_bytes("123".as_bytes(), 10u), Some(123 as $T)); assert_eq!(parse_bytes("1001".as_bytes(), 2u), Some(9 as $T)); assert_eq!(parse_bytes("123".as_bytes(), 8u), Some(83 as $T)); assert_eq!(i32::parse_bytes("123".as_bytes(), 16u), Some(291 as i32)); assert_eq!(i32::parse_bytes("ffff".as_bytes(), 16u), Some(65535 as i32)); assert_eq!(i32::parse_bytes("FFFF".as_bytes(), 16u), Some(65535 as i32)); assert_eq!(parse_bytes("z".as_bytes(), 36u), Some(35 as $T)); assert_eq!(parse_bytes("Z".as_bytes(), 36u), Some(35 as $T)); assert_eq!(parse_bytes("-123".as_bytes(), 10u), Some(-123 as $T)); assert_eq!(parse_bytes("-1001".as_bytes(), 2u), Some(-9 as $T)); assert_eq!(parse_bytes("-123".as_bytes(), 8u), Some(-83 as $T)); assert_eq!(i32::parse_bytes("-123".as_bytes(), 16u), Some(-291 as i32)); assert_eq!(i32::parse_bytes("-ffff".as_bytes(), 16u), Some(-65535 as i32)); assert_eq!(i32::parse_bytes("-FFFF".as_bytes(), 16u), Some(-65535 as i32)); assert_eq!(parse_bytes("-z".as_bytes(), 36u), Some(-35 as $T)); assert_eq!(parse_bytes("-Z".as_bytes(), 36u), Some(-35 as $T)); assert!(parse_bytes("Z".as_bytes(), 35u).is_none()); assert!(parse_bytes("-9".as_bytes(), 2u).is_none()); } #[test] fn test_to_str() { assert_eq!(to_str_radix(0 as $T, 10u), ~"0"); assert_eq!(to_str_radix(1 as $T, 10u), ~"1"); assert_eq!(to_str_radix(-1 as $T, 10u), ~"-1"); assert_eq!(to_str_radix(127 as $T, 16u), ~"7f"); assert_eq!(to_str_radix(100 as $T, 10u), ~"100"); } #[test] fn test_int_to_str_overflow() { let mut i8_val: i8 = 127_i8; assert_eq!(i8::to_str(i8_val), ~"127"); i8_val += 1 as i8; assert_eq!(i8::to_str(i8_val), ~"-128"); let mut i16_val: i16 = 32_767_i16; assert_eq!(i16::to_str(i16_val), ~"32767"); i16_val += 1 as i16; assert_eq!(i16::to_str(i16_val), ~"-32768"); let mut i32_val: i32 = 2_147_483_647_i32; assert_eq!(i32::to_str(i32_val), ~"2147483647"); i32_val += 1 as i32; assert_eq!(i32::to_str(i32_val), ~"-2147483648"); let mut i64_val: i64 = 9_223_372_036_854_775_807_i64; assert_eq!(i64::to_str(i64_val), ~"9223372036854775807"); i64_val += 1 as i64; assert_eq!(i64::to_str(i64_val), ~"-9223372036854775808"); } #[test] fn test_int_from_str_overflow() { let mut i8_val: i8 = 127_i8; assert_eq!(i8::from_str("127"), Some(i8_val)); assert!(i8::from_str("128").is_none()); i8_val += 1 as i8; assert_eq!(i8::from_str("-128"), Some(i8_val)); assert!(i8::from_str("-129").is_none()); let mut i16_val: i16 = 32_767_i16; assert_eq!(i16::from_str("32767"), Some(i16_val)); assert!(i16::from_str("32768").is_none()); i16_val += 1 as i16; assert_eq!(i16::from_str("-32768"), Some(i16_val)); assert!(i16::from_str("-32769").is_none()); let mut i32_val: i32 = 2_147_483_647_i32; assert_eq!(i32::from_str("2147483647"), Some(i32_val)); assert!(i32::from_str("2147483648").is_none()); i32_val += 1 as i32; assert_eq!(i32::from_str("-2147483648"), Some(i32_val)); assert!(i32::from_str("-2147483649").is_none()); let mut i64_val: i64 = 9_223_372_036_854_775_807_i64; assert_eq!(i64::from_str("9223372036854775807"), Some(i64_val)); assert!(i64::from_str("9223372036854775808").is_none()); i64_val += 1 as i64; assert_eq!(i64::from_str("-9223372036854775808"), Some(i64_val)); assert!(i64::from_str("-9223372036854775809").is_none()); } #[test] fn test_ranges() { let mut l = ~[]; for range(0,3) |i| { l.push(i); } for range_rev(13,10) |i| { l.push(i); } for range_step(20,26,2) |i| { l.push(i); } for range_step(36,30,-2) |i| { l.push(i); } for range_step(max_value - 2, max_value, 2) |i| { l.push(i); } for range_step(max_value - 3, max_value, 2) |i| { l.push(i); } for range_step(min_value + 2, min_value, -2) |i| { l.push(i); } for range_step(min_value + 3, min_value, -2) |i| { l.push(i); } assert_eq!(l, ~[0,1,2, 13,12,11, 20,22,24, 36,34,32, max_value-2, max_value-3,max_value-1, min_value+2, min_value+3,min_value+1]); // None of the `fail`s should execute. for range(10,0) |_i| { fail!(~"unreachable"); } for range_rev(0,10) |_i| { fail!(~"unreachable"); } for range_step(10,0,1) |_i| { fail!(~"unreachable"); } for range_step(0,10,-1) |_i| { fail!(~"unreachable"); } } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_range_step_zero_step() { for range_step(0,10,0) |_i| {} } } }))