// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utilities for random number generation //! //! The key functions are `random()` and `Rng::gen()`. These are polymorphic //! and so can be used to generate any type that implements `Rand`. Type inference //! means that often a simple call to `rand::random()` or `rng.gen()` will //! suffice, but sometimes an annotation is required, e.g. `rand::random::()`. //! //! See the `distributions` submodule for sampling random numbers from //! distributions like normal and exponential. //! //! # Task-local RNG //! //! There is built-in support for a RNG associated with each task stored //! in task-local storage. This RNG can be accessed via `task_rng`, or //! used implicitly via `random`. This RNG is normally randomly seeded //! from an operating-system source of randomness, e.g. `/dev/urandom` on //! Unix systems, and will automatically reseed itself from this source //! after generating 32 KiB of random data. //! //! # Cryptographic security //! //! An application that requires an entropy source for cryptographic purposes //! must use `OsRng`, which reads randomness from the source that the operating //! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on Windows). //! The other random number generators provided by this module are not suitable //! for such purposes. //! //! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`. //! This module uses `/dev/urandom` for the following reasons: //! //! - On Linux, `/dev/random` may block if entropy pool is empty; `/dev/urandom` will not block. //! This does not mean that `/dev/random` provides better output than //! `/dev/urandom`; the kernel internally runs a cryptographically secure pseudorandom //! number generator (CSPRNG) based on entropy pool for random number generation, //! so the "quality" of `/dev/random` is not better than `/dev/urandom` in most cases. //! However, this means that `/dev/urandom` can yield somewhat predictable randomness //! if the entropy pool is very small, such as immediately after first booting. //! If an application likely to be run soon after first booting, or on a system with very //! few entropy sources, one should consider using `/dev/random` via `ReaderRng`. //! - On some systems (e.g. FreeBSD, OpenBSD and Mac OS X) there is no difference //! between the two sources. (Also note that, on some systems e.g. FreeBSD, both `/dev/random` //! and `/dev/urandom` may block once if the CSPRNG has not seeded yet.) //! //! # Examples //! //! ```rust //! use std::rand; //! use std::rand::Rng; //! //! let mut rng = rand::task_rng(); //! if rng.gen() { // random bool //! println!("int: {}, uint: {}", rng.gen::(), rng.gen::()) //! } //! ``` //! //! ```rust //! use std::rand; //! //! let tuple = rand::random::<(f64, char)>(); //! println!("{}", tuple) //! ``` //! //! ## Monte Carlo estimation of pi //! //! For this example, imagine we have a square with sides of length 2 and a unit //! circle, both centered at the origin. Since the area of a unit circle is pi, //! the ratio //! //! (area of unit circle) / (area of square) //! //! is equal to pi / 4. So if we sample many points randomly from the square, //! roughly pi / 4 of them should be inside the circle. //! //! We can use the above fact to estimate the value of pi: pick many points in the //! square at random, calculate the fraction that fall within the circle, and //! multiply this fraction by 4. //! //! ``` //! use std::rand; //! use std::rand::distributions::{IndependentSample, Range}; //! //! fn dist(x: f64, y: f64) -> f64 { //! (x*x + y*y).sqrt() //! } //! //! fn main() { //! let between = Range::new(-1f64, 1.); //! let mut rng = rand::task_rng(); //! //! let total = 1_000_000u; //! let mut in_circle = 0u; //! //! for _ in range(0u, total) { //! let a = between.ind_sample(&mut rng); //! let b = between.ind_sample(&mut rng); //! if dist(a, b) <= 1. { //! in_circle += 1; //! } //! } //! //! // prints something close to 3.14159... //! println!("{}", 4. * (in_circle as f64) / (total as f64)); //! } //! ``` //! //! ## Monty Hall Problem //! //! This is a simulation of the [Monty Hall Problem][]: //! //! > Suppose you're on a game show, and you're given the choice of three doors: //! > Behind one door is a car; behind the others, goats. You pick a door, say No. 1, //! > and the host, who knows what's behind the doors, opens another door, say No. 3, //! > which has a goat. He then says to you, "Do you want to pick door No. 2?" //! > Is it to your advantage to switch your choice? //! //! The rather unintuitive answer is that you will have a 2/3 chance of winning if //! you switch and a 1/3 chance of winning of you don't, so it's better to switch. //! //! This program will simulate the game show and with large enough simulation steps //! it will indeed confirm that it is better to switch. //! //! [Monty Hall Problem]: http://en.wikipedia.org/wiki/Monty_Hall_problem //! //! ``` //! use std::rand; //! use std::rand::Rng; //! use std::rand::distributions::{IndependentSample, Range}; //! //! struct SimulationResult { //! win: bool, //! switch: bool, //! } //! //! // Run a single simulation of the Monty Hall problem. //! fn simulate(random_door: &Range, rng: &mut R) -> SimulationResult { //! let car = random_door.ind_sample(rng); //! //! // This is our initial choice //! let mut choice = random_door.ind_sample(rng); //! //! // The game host opens a door //! let open = game_host_open(car, choice, rng); //! //! // Shall we switch? //! let switch = rng.gen(); //! if switch { //! choice = switch_door(choice, open); //! } //! //! SimulationResult { win: choice == car, switch: switch } //! } //! //! // Returns the door the game host opens given our choice and knowledge of //! // where the car is. The game host will never open the door with the car. //! fn game_host_open(car: uint, choice: uint, rng: &mut R) -> uint { //! let choices = free_doors(&[car, choice]); //! rand::sample(rng, choices.move_iter(), 1)[0] //! } //! //! // Returns the door we switch to, given our current choice and //! // the open door. There will only be one valid door. //! fn switch_door(choice: uint, open: uint) -> uint { //! free_doors(&[choice, open])[0] //! } //! //! fn free_doors(blocked: &[uint]) -> Vec { //! range(0u, 3).filter(|x| !blocked.contains(x)).collect() //! } //! //! fn main() { //! // The estimation will be more accurate with more simulations //! let num_simulations = 10000u; //! //! let mut rng = rand::task_rng(); //! let random_door = Range::new(0u, 3); //! //! let (mut switch_wins, mut switch_losses) = (0u, 0u); //! let (mut keep_wins, mut keep_losses) = (0u, 0u); //! //! println!("Running {} simulations...", num_simulations); //! for _ in range(0, num_simulations) { //! let result = simulate(&random_door, &mut rng); //! //! match (result.win, result.switch) { //! (true, true) => switch_wins += 1, //! (true, false) => keep_wins += 1, //! (false, true) => switch_losses += 1, //! (false, false) => keep_losses += 1, //! } //! } //! //! let total_switches = switch_wins + switch_losses; //! let total_keeps = keep_wins + keep_losses; //! //! println!("Switched door {} times with {} wins and {} losses", //! total_switches, switch_wins, switch_losses); //! //! println!("Kept our choice {} times with {} wins and {} losses", //! total_keeps, keep_wins, keep_losses); //! //! // With a large number of simulations, the values should converge to //! // 0.667 and 0.333 respectively. //! println!("Estimated chance to win if we switch: {}", //! switch_wins as f32 / total_switches as f32); //! println!("Estimated chance to win if we don't: {}", //! keep_wins as f32 / total_keeps as f32); //! } //! ``` #![experimental] use cell::RefCell; use clone::Clone; use io::IoResult; use iter::Iterator; use mem; use option::{Some, None}; use rc::Rc; use result::{Ok, Err}; use vec::Vec; #[cfg(not(target_word_size="64"))] use IsaacWordRng = core_rand::IsaacRng; #[cfg(target_word_size="64")] use IsaacWordRng = core_rand::Isaac64Rng; pub use core_rand::{Rand, Rng, SeedableRng, Open01, Closed01}; pub use core_rand::{XorShiftRng, IsaacRng, Isaac64Rng}; pub use core_rand::{distributions, reseeding}; pub use rand::os::OsRng; pub mod os; pub mod reader; /// The standard RNG. This is designed to be efficient on the current /// platform. pub struct StdRng { rng: IsaacWordRng } impl StdRng { /// Create a randomly seeded instance of `StdRng`. /// /// This is a very expensive operation as it has to read /// randomness from the operating system and use this in an /// expensive seeding operation. If one is only generating a small /// number of random numbers, or doesn't need the utmost speed for /// generating each number, `task_rng` and/or `random` may be more /// appropriate. /// /// Reading the randomness from the OS may fail, and any error is /// propagated via the `IoResult` return value. pub fn new() -> IoResult { OsRng::new().map(|mut r| StdRng { rng: r.gen() }) } } impl Rng for StdRng { #[inline] fn next_u32(&mut self) -> u32 { self.rng.next_u32() } #[inline] fn next_u64(&mut self) -> u64 { self.rng.next_u64() } } impl<'a> SeedableRng<&'a [uint]> for StdRng { fn reseed(&mut self, seed: &'a [uint]) { // the internal RNG can just be seeded from the above // randomness. self.rng.reseed(unsafe {mem::transmute(seed)}) } fn from_seed(seed: &'a [uint]) -> StdRng { StdRng { rng: SeedableRng::from_seed(unsafe {mem::transmute(seed)}) } } } /// Create a weak random number generator with a default algorithm and seed. /// /// It returns the fastest `Rng` algorithm currently available in Rust without /// consideration for cryptography or security. If you require a specifically /// seeded `Rng` for consistency over time you should pick one algorithm and /// create the `Rng` yourself. /// /// This will read randomness from the operating system to seed the /// generator. pub fn weak_rng() -> XorShiftRng { match OsRng::new() { Ok(mut r) => r.gen(), Err(e) => fail!("weak_rng: failed to create seeded RNG: {}", e) } } /// Controls how the task-local RNG is reseeded. struct TaskRngReseeder; impl reseeding::Reseeder for TaskRngReseeder { fn reseed(&mut self, rng: &mut StdRng) { *rng = match StdRng::new() { Ok(r) => r, Err(e) => fail!("could not reseed task_rng: {}", e) } } } static TASK_RNG_RESEED_THRESHOLD: uint = 32_768; type TaskRngInner = reseeding::ReseedingRng; /// The task-local RNG. pub struct TaskRng { rng: Rc>, } /// Retrieve the lazily-initialized task-local random number /// generator, seeded by the system. Intended to be used in method /// chaining style, e.g. `task_rng().gen::()`. /// /// The RNG provided will reseed itself from the operating system /// after generating a certain amount of randomness. /// /// The internal RNG used is platform and architecture dependent, even /// if the operating system random number generator is rigged to give /// the same sequence always. If absolute consistency is required, /// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`. pub fn task_rng() -> TaskRng { // used to make space in TLS for a random number generator local_data_key!(TASK_RNG_KEY: Rc>) match TASK_RNG_KEY.get() { None => { let r = match StdRng::new() { Ok(r) => r, Err(e) => fail!("could not initialize task_rng: {}", e) }; let rng = reseeding::ReseedingRng::new(r, TASK_RNG_RESEED_THRESHOLD, TaskRngReseeder); let rng = Rc::new(RefCell::new(rng)); TASK_RNG_KEY.replace(Some(rng.clone())); TaskRng { rng: rng } } Some(rng) => TaskRng { rng: rng.clone() } } } impl Rng for TaskRng { fn next_u32(&mut self) -> u32 { self.rng.borrow_mut().next_u32() } fn next_u64(&mut self) -> u64 { self.rng.borrow_mut().next_u64() } #[inline] fn fill_bytes(&mut self, bytes: &mut [u8]) { self.rng.borrow_mut().fill_bytes(bytes) } } /// Generates a random value using the task-local random number generator. /// /// `random()` can generate various types of random things, and so may require /// type hinting to generate the specific type you want. /// /// # Examples /// /// ```rust /// use std::rand; /// /// let x = rand::random(); /// println!("{}", 2u * x); /// /// let y = rand::random::(); /// println!("{}", y); /// /// if rand::random() { // generates a boolean /// println!("Better lucky than good!"); /// } /// ``` #[inline] pub fn random() -> T { task_rng().gen() } /// Randomly sample up to `amount` elements from an iterator. /// /// # Example /// /// ```rust /// use std::rand::{task_rng, sample}; /// /// let mut rng = task_rng(); /// let sample = sample(&mut rng, range(1i, 100), 5); /// println!("{}", sample); /// ``` pub fn sample, R: Rng>(rng: &mut R, mut iter: I, amount: uint) -> Vec { let mut reservoir: Vec = iter.by_ref().take(amount).collect(); for (i, elem) in iter.enumerate() { let k = rng.gen_range(0, i + 1 + amount); if k < amount { *reservoir.get_mut(k) = elem; } } return reservoir; } #[cfg(test)] mod test { use prelude::*; use super::{Rng, task_rng, random, SeedableRng, StdRng, sample}; use iter::order; struct ConstRng { i: u64 } impl Rng for ConstRng { fn next_u32(&mut self) -> u32 { self.i as u32 } fn next_u64(&mut self) -> u64 { self.i } // no fill_bytes on purpose } #[test] fn test_fill_bytes_default() { let mut r = ConstRng { i: 0x11_22_33_44_55_66_77_88 }; // check every remainder mod 8, both in small and big vectors. let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87]; for &n in lengths.iter() { let mut v = Vec::from_elem(n, 0u8); r.fill_bytes(v.as_mut_slice()); // use this to get nicer error messages. for (i, &byte) in v.iter().enumerate() { if byte == 0 { fail!("byte {} of {} is zero", i, n) } } } } #[test] fn test_gen_range() { let mut r = task_rng(); for _ in range(0u, 1000) { let a = r.gen_range(-3i, 42); assert!(a >= -3 && a < 42); assert_eq!(r.gen_range(0i, 1), 0); assert_eq!(r.gen_range(-12i, -11), -12); } for _ in range(0u, 1000) { let a = r.gen_range(10i, 42); assert!(a >= 10 && a < 42); assert_eq!(r.gen_range(0i, 1), 0); assert_eq!(r.gen_range(3_000_000u, 3_000_001), 3_000_000); } } #[test] #[should_fail] fn test_gen_range_fail_int() { let mut r = task_rng(); r.gen_range(5i, -2); } #[test] #[should_fail] fn test_gen_range_fail_uint() { let mut r = task_rng(); r.gen_range(5u, 2u); } #[test] fn test_gen_f64() { let mut r = task_rng(); let a = r.gen::(); let b = r.gen::(); debug!("{}", (a, b)); } #[test] fn test_gen_weighted_bool() { let mut r = task_rng(); assert_eq!(r.gen_weighted_bool(0u), true); assert_eq!(r.gen_weighted_bool(1u), true); } #[test] fn test_gen_ascii_str() { let mut r = task_rng(); assert_eq!(r.gen_ascii_chars().take(0).count(), 0u); assert_eq!(r.gen_ascii_chars().take(10).count(), 10u); assert_eq!(r.gen_ascii_chars().take(16).count(), 16u); } #[test] fn test_gen_vec() { let mut r = task_rng(); assert_eq!(r.gen_iter::().take(0).count(), 0u); assert_eq!(r.gen_iter::().take(10).count(), 10u); assert_eq!(r.gen_iter::().take(16).count(), 16u); } #[test] fn test_choose() { let mut r = task_rng(); assert_eq!(r.choose([1i, 1, 1]).map(|&x|x), Some(1)); let v: &[int] = &[]; assert_eq!(r.choose(v), None); } #[test] fn test_shuffle() { let mut r = task_rng(); let empty: &mut [int] = &mut []; r.shuffle(empty); let mut one = [1i]; r.shuffle(one); assert_eq!(one.as_slice(), &[1]); let mut two = [1i, 2]; r.shuffle(two); assert!(two == [1, 2] || two == [2, 1]); let mut x = [1i, 1, 1]; r.shuffle(x); assert_eq!(x.as_slice(), &[1, 1, 1]); } #[test] fn test_task_rng() { let mut r = task_rng(); r.gen::(); let mut v = [1i, 1, 1]; r.shuffle(v); assert_eq!(v.as_slice(), &[1, 1, 1]); assert_eq!(r.gen_range(0u, 1u), 0u); } #[test] fn test_random() { // not sure how to test this aside from just getting some values let _n : uint = random(); let _f : f32 = random(); let _o : Option> = random(); let _many : ((), (uint, int, Option<(u32, (bool,))>), (u8, i8, u16, i16, u32, i32, u64, i64), (f32, (f64, (f64,)))) = random(); } #[test] fn test_sample() { let min_val = 1i; let max_val = 100i; let mut r = task_rng(); let vals = range(min_val, max_val).collect::>(); let small_sample = sample(&mut r, vals.iter(), 5); let large_sample = sample(&mut r, vals.iter(), vals.len() + 5); assert_eq!(small_sample.len(), 5); assert_eq!(large_sample.len(), vals.len()); assert!(small_sample.iter().all(|e| { **e >= min_val && **e <= max_val })); } #[test] fn test_std_rng_seeded() { let s = task_rng().gen_iter::().take(256).collect::>(); let mut ra: StdRng = SeedableRng::from_seed(s.as_slice()); let mut rb: StdRng = SeedableRng::from_seed(s.as_slice()); assert!(order::equals(ra.gen_ascii_chars().take(100), rb.gen_ascii_chars().take(100))); } #[test] fn test_std_rng_reseed() { let s = task_rng().gen_iter::().take(256).collect::>(); let mut r: StdRng = SeedableRng::from_seed(s.as_slice()); let string1 = r.gen_ascii_chars().take(100).collect::(); r.reseed(s.as_slice()); let string2 = r.gen_ascii_chars().take(100).collect::(); assert_eq!(string1, string2); } } #[cfg(test)] static RAND_BENCH_N: u64 = 100; #[cfg(test)] mod bench { extern crate test; use prelude::*; use self::test::Bencher; use super::{XorShiftRng, StdRng, IsaacRng, Isaac64Rng, Rng, RAND_BENCH_N}; use super::{OsRng, weak_rng}; use mem::size_of; #[bench] fn rand_xorshift(b: &mut Bencher) { let mut rng: XorShiftRng = OsRng::new().unwrap().gen(); b.iter(|| { for _ in range(0, RAND_BENCH_N) { rng.gen::(); } }); b.bytes = size_of::() as u64 * RAND_BENCH_N; } #[bench] fn rand_isaac(b: &mut Bencher) { let mut rng: IsaacRng = OsRng::new().unwrap().gen(); b.iter(|| { for _ in range(0, RAND_BENCH_N) { rng.gen::(); } }); b.bytes = size_of::() as u64 * RAND_BENCH_N; } #[bench] fn rand_isaac64(b: &mut Bencher) { let mut rng: Isaac64Rng = OsRng::new().unwrap().gen(); b.iter(|| { for _ in range(0, RAND_BENCH_N) { rng.gen::(); } }); b.bytes = size_of::() as u64 * RAND_BENCH_N; } #[bench] fn rand_std(b: &mut Bencher) { let mut rng = StdRng::new().unwrap(); b.iter(|| { for _ in range(0, RAND_BENCH_N) { rng.gen::(); } }); b.bytes = size_of::() as u64 * RAND_BENCH_N; } #[bench] fn rand_shuffle_100(b: &mut Bencher) { let mut rng = weak_rng(); let x : &mut[uint] = [1,..100]; b.iter(|| { rng.shuffle(x); }) } }