// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // // ignore-lexer-test FIXME #15883 use clone::Clone; use cmp::{max, Eq, Equiv, PartialEq}; use collections::{Collection, Mutable, MutableSet, Map, MutableMap}; use default::Default; use fmt::Show; use fmt; use hash::{Hash, Hasher, RandomSipHasher}; use iter::{Iterator, FromIterator, Extendable}; use iter; use mem::replace; use mem; use num; use ops::Deref; use option::{Some, None, Option}; use result::{Ok, Err}; use ops::Index; use core::result::Result; use super::table; use super::table::{ Bucket, Empty, EmptyBucket, Full, FullBucket, FullBucketImm, FullBucketMut, RawTable, SafeHash }; const INITIAL_LOG2_CAP: uint = 5; pub const INITIAL_CAPACITY: uint = 1 << INITIAL_LOG2_CAP; // 2^5 /// The default behavior of HashMap implements a load factor of 90.9%. /// This behavior is characterized by the following conditions: /// /// - if size > 0.909 * capacity: grow /// - if size < 0.25 * capacity: shrink (if this won't bring capacity lower /// than the minimum) #[deriving(Clone)] struct DefaultResizePolicy { /// Doubled minimal capacity. The capacity must never drop below /// the minimum capacity. (The check happens before the capacity /// is potentially halved.) minimum_capacity2: uint } impl DefaultResizePolicy { fn new(new_capacity: uint) -> DefaultResizePolicy { DefaultResizePolicy { minimum_capacity2: new_capacity << 1 } } #[inline] fn capacity_range(&self, new_size: uint) -> (uint, uint) { // Here, we are rephrasing the logic by specifying the ranges: // // - if `size * 1.1 < cap < size * 4`: don't resize // - if `cap < minimum_capacity * 2`: don't shrink // - otherwise, resize accordingly ((new_size * 11) / 10, max(new_size << 2, self.minimum_capacity2)) } #[inline] fn reserve(&mut self, new_capacity: uint) { self.minimum_capacity2 = new_capacity << 1; } } // The main performance trick in this hashmap is called Robin Hood Hashing. // It gains its excellent performance from one essential operation: // // If an insertion collides with an existing element, and that element's // "probe distance" (how far away the element is from its ideal location) // is higher than how far we've already probed, swap the elements. // // This massively lowers variance in probe distance, and allows us to get very // high load factors with good performance. The 90% load factor I use is rather // conservative. // // > Why a load factor of approximately 90%? // // In general, all the distances to initial buckets will converge on the mean. // At a load factor of α, the odds of finding the target bucket after k // probes is approximately 1-α^k. If we set this equal to 50% (since we converge // on the mean) and set k=8 (64-byte cache line / 8-byte hash), α=0.92. I round // this down to make the math easier on the CPU and avoid its FPU. // Since on average we start the probing in the middle of a cache line, this // strategy pulls in two cache lines of hashes on every lookup. I think that's // pretty good, but if you want to trade off some space, it could go down to one // cache line on average with an α of 0.84. // // > Wait, what? Where did you get 1-α^k from? // // On the first probe, your odds of a collision with an existing element is α. // The odds of doing this twice in a row is approximately α^2. For three times, // α^3, etc. Therefore, the odds of colliding k times is α^k. The odds of NOT // colliding after k tries is 1-α^k. // // The paper from 1986 cited below mentions an implementation which keeps track // of the distance-to-initial-bucket histogram. This approach is not suitable // for modern architectures because it requires maintaining an internal data // structure. This allows very good first guesses, but we are most concerned // with guessing entire cache lines, not individual indexes. Furthermore, array // accesses are no longer linear and in one direction, as we have now. There // is also memory and cache pressure that this would entail that would be very // difficult to properly see in a microbenchmark. // // Future Improvements (FIXME!) // ============================ // // Allow the load factor to be changed dynamically and/or at initialization. // // Also, would it be possible for us to reuse storage when growing the // underlying table? This is exactly the use case for 'realloc', and may // be worth exploring. // // Future Optimizations (FIXME!) // ============================= // // Another possible design choice that I made without any real reason is // parameterizing the raw table over keys and values. Technically, all we need // is the size and alignment of keys and values, and the code should be just as // efficient (well, we might need one for power-of-two size and one for not...). // This has the potential to reduce code bloat in rust executables, without // really losing anything except 4 words (key size, key alignment, val size, // val alignment) which can be passed in to every call of a `RawTable` function. // This would definitely be an avenue worth exploring if people start complaining // about the size of rust executables. // // Annotate exceedingly likely branches in `table::make_hash` // and `search_hashed_generic` to reduce instruction cache pressure // and mispredictions once it becomes possible (blocked on issue #11092). // // Shrinking the table could simply reallocate in place after moving buckets // to the first half. // // The growth algorithm (fragment of the Proof of Correctness) // -------------------- // // The growth algorithm is basically a fast path of the naive reinsertion- // during-resize algorithm. Other paths should never be taken. // // Consider growing a robin hood hashtable of capacity n. Normally, we do this // by allocating a new table of capacity `2n`, and then individually reinsert // each element in the old table into the new one. This guarantees that the // new table is a valid robin hood hashtable with all the desired statistical // properties. Remark that the order we reinsert the elements in should not // matter. For simplicity and efficiency, we will consider only linear // reinsertions, which consist of reinserting all elements in the old table // into the new one by increasing order of index. However we will not be // starting our reinsertions from index 0 in general. If we start from index // i, for the purpose of reinsertion we will consider all elements with real // index j < i to have virtual index n + j. // // Our hash generation scheme consists of generating a 64-bit hash and // truncating the most significant bits. When moving to the new table, we // simply introduce a new bit to the front of the hash. Therefore, if an // elements has ideal index i in the old table, it can have one of two ideal // locations in the new table. If the new bit is 0, then the new ideal index // is i. If the new bit is 1, then the new ideal index is n + i. Intutively, // we are producing two independent tables of size n, and for each element we // independently choose which table to insert it into with equal probability. // However the rather than wrapping around themselves on overflowing their // indexes, the first table overflows into the first, and the first into the // second. Visually, our new table will look something like: // // [yy_xxx_xxxx_xxx|xx_yyy_yyyy_yyy] // // Where x's are elements inserted into the first table, y's are elements // inserted into the second, and _'s are empty sections. We now define a few // key concepts that we will use later. Note that this is a very abstract // perspective of the table. A real resized table would be at least half // empty. // // Theorem: A linear robin hood reinsertion from the first ideal element // produces identical results to a linear naive reinsertion from the same // element. // // FIXME(Gankro, pczarn): review the proof and put it all in a separate doc.rs /// A hash map implementation which uses linear probing with Robin /// Hood bucket stealing. /// /// The hashes are all keyed by the task-local random number generator /// on creation by default. This means that the ordering of the keys is /// randomized, but makes the tables more resistant to /// denial-of-service attacks (Hash DoS). This behaviour can be /// overridden with one of the constructors. /// /// It is required that the keys implement the `Eq` and `Hash` traits, although /// this can frequently be achieved by using `#[deriving(Eq, Hash)]`. /// /// Relevant papers/articles: /// /// 1. Pedro Celis. ["Robin Hood Hashing"](https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf) /// 2. Emmanuel Goossaert. ["Robin Hood /// hashing"](http://codecapsule.com/2013/11/11/robin-hood-hashing/) /// 3. Emmanuel Goossaert. ["Robin Hood hashing: backward shift /// deletion"](http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/) /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// // type inference lets us omit an explicit type signature (which /// // would be `HashMap<&str, &str>` in this example). /// let mut book_reviews = HashMap::new(); /// /// // review some books. /// book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book."); /// book_reviews.insert("Grimms' Fairy Tales", "Masterpiece."); /// book_reviews.insert("Pride and Prejudice", "Very enjoyable."); /// book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot."); /// /// // check for a specific one. /// if !book_reviews.contains_key(&("Les Misérables")) { /// println!("We've got {} reviews, but Les Misérables ain't one.", /// book_reviews.len()); /// } /// /// // oops, this review has a lot of spelling mistakes, let's delete it. /// book_reviews.remove(&("The Adventures of Sherlock Holmes")); /// /// // look up the values associated with some keys. /// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; /// for book in to_find.iter() { /// match book_reviews.find(book) { /// Some(review) => println!("{}: {}", *book, *review), /// None => println!("{} is unreviewed.", *book) /// } /// } /// /// // iterate over everything. /// for (book, review) in book_reviews.iter() { /// println!("{}: \"{}\"", *book, *review); /// } /// ``` /// /// The easiest way to use `HashMap` with a custom type is to derive `Eq` and `Hash`. /// We must also derive `PartialEq`. /// /// ``` /// use std::collections::HashMap; /// /// #[deriving(Hash, Eq, PartialEq, Show)] /// struct Viking<'a> { /// name: &'a str, /// power: uint, /// } /// /// let mut vikings = HashMap::new(); /// /// vikings.insert("Norway", Viking { name: "Einar", power: 9u }); /// vikings.insert("Denmark", Viking { name: "Olaf", power: 4u }); /// vikings.insert("Iceland", Viking { name: "Harald", power: 8u }); /// /// // Use derived implementation to print the vikings. /// for (land, viking) in vikings.iter() { /// println!("{} at {}", viking, land); /// } /// ``` #[deriving(Clone)] pub struct HashMap { // All hashes are keyed on these values, to prevent hash collision attacks. hasher: H, table: RawTable, // We keep this at the end since it might as well have tail padding. resize_policy: DefaultResizePolicy, } /// Search for a pre-hashed key. fn search_hashed_generic>>(table: M, hash: &SafeHash, is_match: |&K| -> bool) -> SearchResult { let size = table.size(); let mut probe = Bucket::new(table, hash); let ib = probe.index(); while probe.index() != ib + size { let full = match probe.peek() { Empty(b) => return TableRef(b.into_table()), // hit an empty bucket Full(b) => b }; if full.distance() + ib < full.index() { // We can finish the search early if we hit any bucket // with a lower distance to initial bucket than we've probed. return TableRef(full.into_table()); } // If the hash doesn't match, it can't be this one.. if *hash == full.hash() { let matched = { let (k, _) = full.read(); is_match(k) }; // If the key doesn't match, it can't be this one.. if matched { return FoundExisting(full); } } probe = full.next(); } TableRef(probe.into_table()) } fn search_hashed>>(table: M, hash: &SafeHash, k: &K) -> SearchResult { search_hashed_generic(table, hash, |k_| *k == *k_) } fn pop_internal(starting_bucket: FullBucketMut) -> (K, V) { let (empty, retkey, retval) = starting_bucket.take(); let mut gap = match empty.gap_peek() { Some(b) => b, None => return (retkey, retval) }; while gap.full().distance() != 0 { gap = match gap.shift() { Some(b) => b, None => break }; } // Now we've done all our shifting. Return the value we grabbed earlier. return (retkey, retval); } /// Perform robin hood bucket stealing at the given `bucket`. You must /// also pass the position of that bucket's initial bucket so we don't have /// to recalculate it. /// /// `hash`, `k`, and `v` are the elements to "robin hood" into the hashtable. fn robin_hood<'a, K: 'a, V: 'a>(mut bucket: FullBucketMut<'a, K, V>, mut ib: uint, mut hash: SafeHash, mut k: K, mut v: V) -> &'a mut V { let starting_index = bucket.index(); let size = { let table = bucket.table(); // FIXME "lifetime too short". table.size() }; // There can be at most `size - dib` buckets to displace, because // in the worst case, there are `size` elements and we already are // `distance` buckets away from the initial one. let idx_end = starting_index + size - bucket.distance(); loop { let (old_hash, old_key, old_val) = bucket.replace(hash, k, v); loop { let probe = bucket.next(); assert!(probe.index() != idx_end); let full_bucket = match probe.peek() { table::Empty(bucket) => { // Found a hole! let b = bucket.put(old_hash, old_key, old_val); // Now that it's stolen, just read the value's pointer // right out of the table! let (_, v) = Bucket::at_index(b.into_table(), starting_index).peek() .expect_full() .into_mut_refs(); return v; }, table::Full(bucket) => bucket }; let probe_ib = full_bucket.index() - full_bucket.distance(); bucket = full_bucket; // Robin hood! Steal the spot. if ib < probe_ib { ib = probe_ib; hash = old_hash; k = old_key; v = old_val; break; } } } } /// A result that works like Option> but preserves /// the reference that grants us access to the table in any case. enum SearchResult { // This is an entry that holds the given key: FoundExisting(FullBucket), // There was no such entry. The reference is given back: TableRef(M) } impl SearchResult { fn into_option(self) -> Option> { match self { FoundExisting(bucket) => Some(bucket), TableRef(_) => None } } } impl, V, S, H: Hasher> HashMap { fn make_hash>(&self, x: &X) -> SafeHash { table::make_hash(&self.hasher, x) } fn search_equiv<'a, Q: Hash + Equiv>(&'a self, q: &Q) -> Option> { let hash = self.make_hash(q); search_hashed_generic(&self.table, &hash, |k| q.equiv(k)).into_option() } fn search_equiv_mut<'a, Q: Hash + Equiv>(&'a mut self, q: &Q) -> Option> { let hash = self.make_hash(q); search_hashed_generic(&mut self.table, &hash, |k| q.equiv(k)).into_option() } /// Search for a key, yielding the index if it's found in the hashtable. /// If you already have the hash for the key lying around, use /// search_hashed. fn search<'a>(&'a self, k: &K) -> Option> { let hash = self.make_hash(k); search_hashed(&self.table, &hash, k).into_option() } fn search_mut<'a>(&'a mut self, k: &K) -> Option> { let hash = self.make_hash(k); search_hashed(&mut self.table, &hash, k).into_option() } // The caller should ensure that invariants by Robin Hood Hashing hold. fn insert_hashed_ordered(&mut self, hash: SafeHash, k: K, v: V) { let cap = self.table.capacity(); let mut buckets = Bucket::new(&mut self.table, &hash); let ib = buckets.index(); while buckets.index() != ib + cap { // We don't need to compare hashes for value swap. // Not even DIBs for Robin Hood. buckets = match buckets.peek() { Empty(empty) => { empty.put(hash, k, v); return; } Full(b) => b.into_bucket() }; buckets.next(); } fail!("Internal HashMap error: Out of space."); } } impl, V, S, H: Hasher> Collection for HashMap { /// Return the number of elements in the map. fn len(&self) -> uint { self.table.size() } } impl, V, S, H: Hasher> Mutable for HashMap { /// Clear the map, removing all key-value pairs. Keeps the allocated memory /// for reuse. fn clear(&mut self) { // Prevent reallocations from happening from now on. Makes it possible // for the map to be reused but has a downside: reserves permanently. self.resize_policy.reserve(self.table.size()); let cap = self.table.capacity(); let mut buckets = Bucket::first(&mut self.table); while buckets.index() != cap { buckets = match buckets.peek() { Empty(b) => b.next(), Full(full) => { let (b, _, _) = full.take(); b.next() } }; } } } impl, V, S, H: Hasher> Map for HashMap { fn find<'a>(&'a self, k: &K) -> Option<&'a V> { self.search(k).map(|bucket| { let (_, v) = bucket.into_refs(); v }) } fn contains_key(&self, k: &K) -> bool { self.search(k).is_some() } } impl, V, S, H: Hasher> MutableMap for HashMap { fn find_mut<'a>(&'a mut self, k: &K) -> Option<&'a mut V> { match self.search_mut(k) { Some(bucket) => { let (_, v) = bucket.into_mut_refs(); Some(v) } _ => None } } fn swap(&mut self, k: K, v: V) -> Option { let hash = self.make_hash(&k); let potential_new_size = self.table.size() + 1; self.make_some_room(potential_new_size); let mut retval = None; self.insert_or_replace_with(hash, k, v, |_, val_ref, val| { retval = Some(replace(val_ref, val)); }); retval } fn pop(&mut self, k: &K) -> Option { if self.table.size() == 0 { return None } let potential_new_size = self.table.size() - 1; self.make_some_room(potential_new_size); self.search_mut(k).map(|bucket| { let (_k, val) = pop_internal(bucket); val }) } } impl HashMap { /// Create an empty HashMap. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, int> = HashMap::with_capacity(10); /// ``` #[inline] pub fn new() -> HashMap { let hasher = RandomSipHasher::new(); HashMap::with_hasher(hasher) } /// Creates an empty hash map with the given initial capacity. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, int> = HashMap::with_capacity(10); /// ``` #[inline] pub fn with_capacity(capacity: uint) -> HashMap { let hasher = RandomSipHasher::new(); HashMap::with_capacity_and_hasher(capacity, hasher) } } impl, V, S, H: Hasher> HashMap { /// Creates an empty hashmap which will use the given hasher to hash keys. /// /// The creates map has the default initial capacity. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// use std::hash::sip::SipHasher; /// /// let h = SipHasher::new(); /// let mut map = HashMap::with_hasher(h); /// map.insert(1i, 2u); /// ``` #[inline] pub fn with_hasher(hasher: H) -> HashMap { HashMap { hasher: hasher, resize_policy: DefaultResizePolicy::new(INITIAL_CAPACITY), table: RawTable::new(0), } } /// Create an empty HashMap with space for at least `capacity` /// elements, using `hasher` to hash the keys. /// /// Warning: `hasher` is normally randomly generated, and /// is designed to allow HashMaps to be resistant to attacks that /// cause many collisions and very poor performance. Setting it /// manually using this function can expose a DoS attack vector. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// use std::hash::sip::SipHasher; /// /// let h = SipHasher::new(); /// let mut map = HashMap::with_capacity_and_hasher(10, h); /// map.insert(1i, 2u); /// ``` #[inline] pub fn with_capacity_and_hasher(capacity: uint, hasher: H) -> HashMap { let cap = num::next_power_of_two(max(INITIAL_CAPACITY, capacity)); HashMap { hasher: hasher, resize_policy: DefaultResizePolicy::new(cap), table: RawTable::new(cap), } } /// The hashtable will never try to shrink below this size. You can use /// this function to reduce reallocations if your hashtable frequently /// grows and shrinks by large amounts. /// /// This function has no effect on the operational semantics of the /// hashtable, only on performance. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, int> = HashMap::new(); /// map.reserve(10); /// ``` pub fn reserve(&mut self, new_minimum_capacity: uint) { let cap = num::next_power_of_two( max(INITIAL_CAPACITY, new_minimum_capacity)); self.resize_policy.reserve(cap); if self.table.capacity() < cap { self.resize(cap); } } /// Resizes the internal vectors to a new capacity. It's your responsibility to: /// 1) Make sure the new capacity is enough for all the elements, accounting /// for the load factor. /// 2) Ensure new_capacity is a power of two. fn resize(&mut self, new_capacity: uint) { assert!(self.table.size() <= new_capacity); assert!(num::is_power_of_two(new_capacity)); let mut old_table = replace(&mut self.table, RawTable::new(new_capacity)); let old_size = old_table.size(); if old_table.capacity() == 0 || old_table.size() == 0 { return; } if new_capacity < old_table.capacity() { // Shrink the table. Naive algorithm for resizing: for (h, k, v) in old_table.into_iter() { self.insert_hashed_nocheck(h, k, v); } } else { // Grow the table. // Specialization of the other branch. let mut bucket = Bucket::first(&mut old_table); // "So a few of the first shall be last: for many be called, // but few chosen." // // We'll most likely encounter a few buckets at the beginning that // have their initial buckets near the end of the table. They were // placed at the beginning as the probe wrapped around the table // during insertion. We must skip forward to a bucket that won't // get reinserted too early and won't unfairly steal others spot. // This eliminates the need for robin hood. loop { bucket = match bucket.peek() { Full(full) => { if full.distance() == 0 { // This bucket occupies its ideal spot. // It indicates the start of another "cluster". bucket = full.into_bucket(); break; } // Leaving this bucket in the last cluster for later. full.into_bucket() } Empty(b) => { // Encountered a hole between clusters. b.into_bucket() } }; bucket.next(); } // This is how the buckets might be laid out in memory: // ($ marks an initialized bucket) // ________________ // |$$$_$$$$$$_$$$$$| // // But we've skipped the entire initial cluster of buckets // and will continue iteration in this order: // ________________ // |$$$$$$_$$$$$ // ^ wrap around once end is reached // ________________ // $$$_____________| // ^ exit once table.size == 0 loop { bucket = match bucket.peek() { Full(bucket) => { let h = bucket.hash(); let (b, k, v) = bucket.take(); self.insert_hashed_ordered(h, k, v); { let t = b.table(); // FIXME "lifetime too short". if t.size() == 0 { break } }; b.into_bucket() } Empty(b) => b.into_bucket() }; bucket.next(); } } assert_eq!(self.table.size(), old_size); } /// Performs any necessary resize operations, such that there's space for /// new_size elements. fn make_some_room(&mut self, new_size: uint) { let (grow_at, shrink_at) = self.resize_policy.capacity_range(new_size); let cap = self.table.capacity(); // An invalid value shouldn't make us run out of space. debug_assert!(grow_at >= new_size); if cap <= grow_at { let new_capacity = max(cap << 1, INITIAL_CAPACITY); self.resize(new_capacity); } else if shrink_at <= cap { let new_capacity = cap >> 1; self.resize(new_capacity); } } /// Insert a pre-hashed key-value pair, without first checking /// that there's enough room in the buckets. Returns a reference to the /// newly insert value. /// /// If the key already exists, the hashtable will be returned untouched /// and a reference to the existing element will be returned. fn insert_hashed_nocheck(&mut self, hash: SafeHash, k: K, v: V) -> &mut V { self.insert_or_replace_with(hash, k, v, |_, _, _| ()) } fn insert_or_replace_with<'a>(&'a mut self, hash: SafeHash, k: K, v: V, found_existing: |&mut K, &mut V, V|) -> &'a mut V { // Worst case, we'll find one empty bucket among `size + 1` buckets. let size = self.table.size(); let mut probe = Bucket::new(&mut self.table, &hash); let ib = probe.index(); loop { let mut bucket = match probe.peek() { Empty(bucket) => { // Found a hole! let bucket = bucket.put(hash, k, v); let (_, val) = bucket.into_mut_refs(); return val; }, Full(bucket) => bucket }; if bucket.hash() == hash { let found_match = { let (bucket_k, _) = bucket.read_mut(); k == *bucket_k }; if found_match { let (bucket_k, bucket_v) = bucket.into_mut_refs(); debug_assert!(k == *bucket_k); // Key already exists. Get its reference. found_existing(bucket_k, bucket_v, v); return bucket_v; } } let robin_ib = bucket.index() as int - bucket.distance() as int; if (ib as int) < robin_ib { // Found a luckier bucket than me. Better steal his spot. return robin_hood(bucket, robin_ib as uint, hash, k, v); } probe = bucket.next(); assert!(probe.index() != ib + size + 1); } } /// Retrieves a mutable value for the given key. /// See [`find_mut`](../trait.MutableMap.html#tymethod.find_mut) for a non-failing alternative. /// /// # Failure /// /// Fails if the key is not present. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1i); /// { /// // val will freeze map to prevent usage during its lifetime /// let val = map.get_mut(&"a"); /// *val = 40; /// } /// assert_eq!(map["a"], 40); /// /// // A more direct way could be: /// *map.get_mut(&"a") = -2; /// assert_eq!(map["a"], -2); /// ``` pub fn get_mut<'a>(&'a mut self, k: &K) -> &'a mut V { match self.find_mut(k) { Some(v) => v, None => fail!("no entry found for key") } } /// Return true if the map contains a value for the specified key, /// using equivalence. /// /// See [pop_equiv](#method.pop_equiv) for an extended example. pub fn contains_key_equiv + Equiv>(&self, key: &Q) -> bool { self.search_equiv(key).is_some() } /// Return the value corresponding to the key in the map, using /// equivalence. /// /// See [pop_equiv](#method.pop_equiv) for an extended example. pub fn find_equiv<'a, Q: Hash + Equiv>(&'a self, k: &Q) -> Option<&'a V> { match self.search_equiv(k) { None => None, Some(bucket) => { let (_, v_ref) = bucket.into_refs(); Some(v_ref) } } } /// Remove an equivalent key from the map, returning the value at the /// key if the key was previously in the map. /// /// # Example /// /// This is a slightly silly example where we define the number's /// parity as the equivalence class. It is important that the /// values hash the same, which is why we implement `Hash`. /// /// ``` /// use std::collections::HashMap; /// use std::hash::Hash; /// use std::hash::sip::SipState; /// /// #[deriving(Eq, PartialEq)] /// struct EvenOrOdd { /// num: uint /// }; /// /// impl Hash for EvenOrOdd { /// fn hash(&self, state: &mut SipState) { /// let parity = self.num % 2; /// parity.hash(state); /// } /// } /// /// impl Equiv for EvenOrOdd { /// fn equiv(&self, other: &EvenOrOdd) -> bool { /// self.num % 2 == other.num % 2 /// } /// } /// /// let mut map = HashMap::new(); /// map.insert(EvenOrOdd { num: 3 }, "foo"); /// /// assert!(map.contains_key_equiv(&EvenOrOdd { num: 1 })); /// assert!(!map.contains_key_equiv(&EvenOrOdd { num: 4 })); /// /// assert_eq!(map.find_equiv(&EvenOrOdd { num: 5 }), Some(&"foo")); /// assert_eq!(map.find_equiv(&EvenOrOdd { num: 2 }), None); /// /// assert_eq!(map.pop_equiv(&EvenOrOdd { num: 1 }), Some("foo")); /// assert_eq!(map.pop_equiv(&EvenOrOdd { num: 2 }), None); /// /// ``` #[experimental] pub fn pop_equiv + Equiv>(&mut self, k: &Q) -> Option { if self.table.size() == 0 { return None } let potential_new_size = self.table.size() - 1; self.make_some_room(potential_new_size); match self.search_equiv_mut(k) { Some(bucket) => { let (_k, val) = pop_internal(bucket); Some(val) } _ => None } } /// An iterator visiting all keys in arbitrary order. /// Iterator element type is `&'a K`. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1i); /// map.insert("b", 2); /// map.insert("c", 3); /// /// for key in map.keys() { /// println!("{}", key); /// } /// ``` pub fn keys(&self) -> Keys { self.iter().map(|(k, _v)| k) } /// An iterator visiting all values in arbitrary order. /// Iterator element type is `&'a V`. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1i); /// map.insert("b", 2); /// map.insert("c", 3); /// /// for key in map.values() { /// println!("{}", key); /// } /// ``` pub fn values(&self) -> Values { self.iter().map(|(_k, v)| v) } /// An iterator visiting all key-value pairs in arbitrary order. /// Iterator element type is `(&'a K, &'a V)`. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1i); /// map.insert("b", 2); /// map.insert("c", 3); /// /// for (key, val) in map.iter() { /// println!("key: {} val: {}", key, val); /// } /// ``` pub fn iter(&self) -> Entries { Entries { inner: self.table.iter() } } /// An iterator visiting all key-value pairs in arbitrary order, /// with mutable references to the values. /// Iterator element type is `(&'a K, &'a mut V)`. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1i); /// map.insert("b", 2); /// map.insert("c", 3); /// /// // Update all values /// for (_, val) in map.iter_mut() { /// *val *= 2; /// } /// /// for (key, val) in map.iter() { /// println!("key: {} val: {}", key, val); /// } /// ``` pub fn iter_mut(&mut self) -> MutEntries { MutEntries { inner: self.table.iter_mut() } } /// Creates a consuming iterator, that is, one that moves each key-value /// pair out of the map in arbitrary order. The map cannot be used after /// calling this. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert("a", 1i); /// map.insert("b", 2); /// map.insert("c", 3); /// /// // Not possible with .iter() /// let vec: Vec<(&str, int)> = map.into_iter().collect(); /// ``` pub fn into_iter(self) -> MoveEntries { MoveEntries { inner: self.table.into_iter().map(|(_, k, v)| (k, v)) } } /// Gets the given key's corresponding entry in the map for in-place manipulation pub fn entry<'a>(&'a mut self, key: K) -> Entry<'a, K, V> { // Gotta resize now, and we don't know which direction, so try both? let size = self.table.size(); self.make_some_room(size + 1); if size > 0 { self.make_some_room(size - 1); } let hash = self.make_hash(&key); search_entry_hashed(&mut self.table, hash, key) } } fn search_entry_hashed<'a, K: Eq, V>(table: &'a mut RawTable, hash: SafeHash, k: K) -> Entry<'a, K, V> { // Worst case, we'll find one empty bucket among `size + 1` buckets. let size = table.size(); let mut probe = Bucket::new(table, &hash); let ib = probe.index(); loop { let bucket = match probe.peek() { Empty(bucket) => { // Found a hole! return Vacant(VacantEntry { hash: hash, key: k, elem: NoElem(bucket), }); }, Full(bucket) => bucket }; if bucket.hash() == hash { let is_eq = { let (bucket_k, _) = bucket.read(); k == *bucket_k }; if is_eq { return Occupied(OccupiedEntry{ elem: bucket, }); } } let robin_ib = bucket.index() as int - bucket.distance() as int; if (ib as int) < robin_ib { // Found a luckier bucket than me. Better steal his spot. return Vacant(VacantEntry { hash: hash, key: k, elem: NeqElem(bucket, robin_ib as uint), }); } probe = bucket.next(); assert!(probe.index() != ib + size + 1); } } impl, V: Clone, S, H: Hasher> HashMap { /// Return a copy of the value corresponding to the key. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap = HashMap::new(); /// map.insert(1u, "foo".to_string()); /// let s: String = map.find_copy(&1).unwrap(); /// ``` pub fn find_copy(&self, k: &K) -> Option { self.find(k).map(|v| (*v).clone()) } /// Return a copy of the value corresponding to the key. /// /// # Failure /// /// Fails if the key is not present. /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap = HashMap::new(); /// map.insert(1u, "foo".to_string()); /// let s: String = map.get_copy(&1); /// ``` pub fn get_copy(&self, k: &K) -> V { self[*k].clone() } } impl, V: PartialEq, S, H: Hasher> PartialEq for HashMap { fn eq(&self, other: &HashMap) -> bool { if self.len() != other.len() { return false; } self.iter().all(|(key, value)| other.find(key).map_or(false, |v| *value == *v) ) } } impl, V: Eq, S, H: Hasher> Eq for HashMap {} impl + Show, V: Show, S, H: Hasher> Show for HashMap { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "{{")); for (i, (k, v)) in self.iter().enumerate() { if i != 0 { try!(write!(f, ", ")); } try!(write!(f, "{}: {}", *k, *v)); } write!(f, "}}") } } impl, V, S, H: Hasher + Default> Default for HashMap { fn default() -> HashMap { HashMap::with_hasher(Default::default()) } } impl, V, S, H: Hasher> Index for HashMap { #[inline] fn index<'a>(&'a self, index: &K) -> &'a V { self.find(index).expect("no entry found for key") } } // FIXME(#12825) Indexing will always try IndexMut first and that causes issues. /*impl, V, S, H: Hasher> ops::IndexMut for HashMap { #[inline] fn index_mut<'a>(&'a mut self, index: &K) -> &'a mut V { self.get_mut(index) } }*/ /// HashMap iterator pub struct Entries<'a, K: 'a, V: 'a> { inner: table::Entries<'a, K, V> } /// HashMap mutable values iterator pub struct MutEntries<'a, K: 'a, V: 'a> { inner: table::MutEntries<'a, K, V> } /// HashMap move iterator pub struct MoveEntries { inner: iter::Map<'static, (SafeHash, K, V), (K, V), table::MoveEntries> } /// A view into a single occupied location in a HashMap pub struct OccupiedEntry<'a, K:'a, V:'a> { elem: FullBucket>, } /// A view into a single empty location in a HashMap pub struct VacantEntry<'a, K:'a, V:'a> { hash: SafeHash, key: K, elem: VacantEntryState>, } /// A view into a single location in a map, which may be vacant or occupied pub enum Entry<'a, K:'a, V:'a> { /// An occupied Entry Occupied(OccupiedEntry<'a, K, V>), /// A vacant Entry Vacant(VacantEntry<'a, K, V>), } /// Possible states of a VacantEntry enum VacantEntryState { /// The index is occupied, but the key to insert has precedence, /// and will kick the current one out on insertion NeqElem(FullBucket, uint), /// The index is genuinely vacant NoElem(EmptyBucket), } impl<'a, K, V> Iterator<(&'a K, &'a V)> for Entries<'a, K, V> { #[inline] fn next(&mut self) -> Option<(&'a K, &'a V)> { self.inner.next() } #[inline] fn size_hint(&self) -> (uint, Option) { self.inner.size_hint() } } impl<'a, K, V> Iterator<(&'a K, &'a mut V)> for MutEntries<'a, K, V> { #[inline] fn next(&mut self) -> Option<(&'a K, &'a mut V)> { self.inner.next() } #[inline] fn size_hint(&self) -> (uint, Option) { self.inner.size_hint() } } impl Iterator<(K, V)> for MoveEntries { #[inline] fn next(&mut self) -> Option<(K, V)> { self.inner.next() } #[inline] fn size_hint(&self) -> (uint, Option) { self.inner.size_hint() } } impl<'a, K, V> OccupiedEntry<'a, K, V> { /// Gets a reference to the value in the entry pub fn get(&self) -> &V { let (_, v) = self.elem.read(); v } /// Gets a mutable reference to the value in the entry pub fn get_mut(&mut self) -> &mut V { let (_, v) = self.elem.read_mut(); v } /// Converts the OccupiedEntry into a mutable reference to the value in the entry /// with a lifetime bound to the map itself pub fn into_mut(self) -> &'a mut V { let (_, v) = self.elem.into_mut_refs(); v } /// Sets the value of the entry, and returns the entry's old value pub fn set(&mut self, mut value: V) -> V { let old_value = self.get_mut(); mem::swap(&mut value, old_value); value } /// Takes the value out of the entry, and returns it pub fn take(self) -> V { let (_, _, v) = self.elem.take(); v } } impl<'a, K, V> VacantEntry<'a, K, V> { /// Sets the value of the entry with the VacantEntry's key, /// and returns a mutable reference to it pub fn set(self, value: V) -> &'a mut V { match self.elem { NeqElem(bucket, ib) => { robin_hood(bucket, ib, self.hash, self.key, value) } NoElem(bucket) => { let full = bucket.put(self.hash, self.key, value); let (_, v) = full.into_mut_refs(); v } } } } /// HashMap keys iterator pub type Keys<'a, K, V> = iter::Map<'static, (&'a K, &'a V), &'a K, Entries<'a, K, V>>; /// HashMap values iterator pub type Values<'a, K, V> = iter::Map<'static, (&'a K, &'a V), &'a V, Entries<'a, K, V>>; impl, V, S, H: Hasher + Default> FromIterator<(K, V)> for HashMap { fn from_iter>(iter: T) -> HashMap { let (lower, _) = iter.size_hint(); let mut map = HashMap::with_capacity_and_hasher(lower, Default::default()); map.extend(iter); map } } impl, V, S, H: Hasher + Default> Extendable<(K, V)> for HashMap { fn extend>(&mut self, mut iter: T) { for (k, v) in iter { self.insert(k, v); } } } #[cfg(test)] mod test_map { use prelude::*; use super::HashMap; use super::{Occupied, Vacant}; use cmp::Equiv; use hash; use iter::{Iterator,range_inclusive,range_step_inclusive}; use cell::RefCell; struct KindaIntLike(int); impl Equiv for KindaIntLike { fn equiv(&self, other: &int) -> bool { let KindaIntLike(this) = *self; this == *other } } impl hash::Hash for KindaIntLike { fn hash(&self, state: &mut S) { let KindaIntLike(this) = *self; this.hash(state) } } #[test] fn test_create_capacity_zero() { let mut m = HashMap::with_capacity(0); assert!(m.insert(1i, 1i)); assert!(m.contains_key(&1)); assert!(!m.contains_key(&0)); } #[test] fn test_insert() { let mut m = HashMap::new(); assert_eq!(m.len(), 0); assert!(m.insert(1i, 2i)); assert_eq!(m.len(), 1); assert!(m.insert(2i, 4i)); assert_eq!(m.len(), 2); assert_eq!(*m.find(&1).unwrap(), 2); assert_eq!(*m.find(&2).unwrap(), 4); } local_data_key!(drop_vector: RefCell>) #[deriving(Hash, PartialEq, Eq)] struct Dropable { k: uint } impl Dropable { fn new(k: uint) -> Dropable { let v = drop_vector.get().unwrap(); v.borrow_mut().as_mut_slice()[k] += 1; Dropable { k: k } } } impl Drop for Dropable { fn drop(&mut self) { let v = drop_vector.get().unwrap(); v.borrow_mut().as_mut_slice()[self.k] -= 1; } } impl Clone for Dropable { fn clone(&self) -> Dropable { Dropable::new(self.k) } } #[test] fn test_drops() { drop_vector.replace(Some(RefCell::new(Vec::from_elem(200, 0i)))); { let mut m = HashMap::new(); let v = drop_vector.get().unwrap(); for i in range(0u, 200) { assert_eq!(v.borrow().as_slice()[i], 0); } drop(v); for i in range(0u, 100) { let d1 = Dropable::new(i); let d2 = Dropable::new(i+100); m.insert(d1, d2); } let v = drop_vector.get().unwrap(); for i in range(0u, 200) { assert_eq!(v.borrow().as_slice()[i], 1); } drop(v); for i in range(0u, 50) { let k = Dropable::new(i); let v = m.pop(&k); assert!(v.is_some()); let v = drop_vector.get().unwrap(); assert_eq!(v.borrow().as_slice()[i], 1); assert_eq!(v.borrow().as_slice()[i+100], 1); } let v = drop_vector.get().unwrap(); for i in range(0u, 50) { assert_eq!(v.borrow().as_slice()[i], 0); assert_eq!(v.borrow().as_slice()[i+100], 0); } for i in range(50u, 100) { assert_eq!(v.borrow().as_slice()[i], 1); assert_eq!(v.borrow().as_slice()[i+100], 1); } } let v = drop_vector.get().unwrap(); for i in range(0u, 200) { assert_eq!(v.borrow().as_slice()[i], 0); } } #[test] fn test_move_iter_drops() { drop_vector.replace(Some(RefCell::new(Vec::from_elem(200, 0i)))); let hm = { let mut hm = HashMap::new(); let v = drop_vector.get().unwrap(); for i in range(0u, 200) { assert_eq!(v.borrow().as_slice()[i], 0); } drop(v); for i in range(0u, 100) { let d1 = Dropable::new(i); let d2 = Dropable::new(i+100); hm.insert(d1, d2); } let v = drop_vector.get().unwrap(); for i in range(0u, 200) { assert_eq!(v.borrow().as_slice()[i], 1); } drop(v); hm }; // By the way, ensure that cloning doesn't screw up the dropping. drop(hm.clone()); { let mut half = hm.into_iter().take(50); let v = drop_vector.get().unwrap(); for i in range(0u, 200) { assert_eq!(v.borrow().as_slice()[i], 1); } drop(v); for _ in half {} let v = drop_vector.get().unwrap(); let nk = range(0u, 100).filter(|&i| { v.borrow().as_slice()[i] == 1 }).count(); let nv = range(0u, 100).filter(|&i| { v.borrow().as_slice()[i+100] == 1 }).count(); assert_eq!(nk, 50); assert_eq!(nv, 50); }; let v = drop_vector.get().unwrap(); for i in range(0u, 200) { assert_eq!(v.borrow().as_slice()[i], 0); } } #[test] fn test_empty_pop() { let mut m: HashMap = HashMap::new(); assert_eq!(m.pop(&0), None); } #[test] fn test_lots_of_insertions() { let mut m = HashMap::new(); // Try this a few times to make sure we never screw up the hashmap's // internal state. for _ in range(0i, 10) { assert!(m.is_empty()); for i in range_inclusive(1i, 1000) { assert!(m.insert(i, i)); for j in range_inclusive(1, i) { let r = m.find(&j); assert_eq!(r, Some(&j)); } for j in range_inclusive(i+1, 1000) { let r = m.find(&j); assert_eq!(r, None); } } for i in range_inclusive(1001i, 2000) { assert!(!m.contains_key(&i)); } // remove forwards for i in range_inclusive(1i, 1000) { assert!(m.remove(&i)); for j in range_inclusive(1, i) { assert!(!m.contains_key(&j)); } for j in range_inclusive(i+1, 1000) { assert!(m.contains_key(&j)); } } for i in range_inclusive(1i, 1000) { assert!(!m.contains_key(&i)); } for i in range_inclusive(1i, 1000) { assert!(m.insert(i, i)); } // remove backwards for i in range_step_inclusive(1000i, 1, -1) { assert!(m.remove(&i)); for j in range_inclusive(i, 1000) { assert!(!m.contains_key(&j)); } for j in range_inclusive(1, i-1) { assert!(m.contains_key(&j)); } } } } #[test] fn test_find_mut() { let mut m = HashMap::new(); assert!(m.insert(1i, 12i)); assert!(m.insert(2i, 8i)); assert!(m.insert(5i, 14i)); let new = 100; match m.find_mut(&5) { None => fail!(), Some(x) => *x = new } assert_eq!(m.find(&5), Some(&new)); } #[test] fn test_insert_overwrite() { let mut m = HashMap::new(); assert!(m.insert(1i, 2i)); assert_eq!(*m.find(&1).unwrap(), 2); assert!(!m.insert(1i, 3i)); assert_eq!(*m.find(&1).unwrap(), 3); } #[test] fn test_insert_conflicts() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1i, 2i)); assert!(m.insert(5i, 3i)); assert!(m.insert(9i, 4i)); assert_eq!(*m.find(&9).unwrap(), 4); assert_eq!(*m.find(&5).unwrap(), 3); assert_eq!(*m.find(&1).unwrap(), 2); } #[test] fn test_conflict_remove() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1i, 2i)); assert_eq!(*m.find(&1).unwrap(), 2); assert!(m.insert(5, 3)); assert_eq!(*m.find(&1).unwrap(), 2); assert_eq!(*m.find(&5).unwrap(), 3); assert!(m.insert(9, 4)); assert_eq!(*m.find(&1).unwrap(), 2); assert_eq!(*m.find(&5).unwrap(), 3); assert_eq!(*m.find(&9).unwrap(), 4); assert!(m.remove(&1)); assert_eq!(*m.find(&9).unwrap(), 4); assert_eq!(*m.find(&5).unwrap(), 3); } #[test] fn test_is_empty() { let mut m = HashMap::with_capacity(4); assert!(m.insert(1i, 2i)); assert!(!m.is_empty()); assert!(m.remove(&1)); assert!(m.is_empty()); } #[test] fn test_pop() { let mut m = HashMap::new(); m.insert(1i, 2i); assert_eq!(m.pop(&1), Some(2)); assert_eq!(m.pop(&1), None); } #[test] #[allow(experimental)] fn test_pop_equiv() { let mut m = HashMap::new(); m.insert(1i, 2i); assert_eq!(m.pop_equiv(&KindaIntLike(1)), Some(2)); assert_eq!(m.pop_equiv(&KindaIntLike(1)), None); } #[test] fn test_swap() { let mut m = HashMap::new(); assert_eq!(m.swap(1i, 2i), None); assert_eq!(m.swap(1i, 3i), Some(2)); assert_eq!(m.swap(1i, 4i), Some(3)); } #[test] fn test_iterate() { let mut m = HashMap::with_capacity(4); for i in range(0u, 32) { assert!(m.insert(i, i*2)); } assert_eq!(m.len(), 32); let mut observed: u32 = 0; for (k, v) in m.iter() { assert_eq!(*v, *k * 2); observed |= 1 << *k; } assert_eq!(observed, 0xFFFF_FFFF); } #[test] fn test_keys() { let vec = vec![(1i, 'a'), (2i, 'b'), (3i, 'c')]; let map = vec.into_iter().collect::>(); let keys = map.keys().map(|&k| k).collect::>(); assert_eq!(keys.len(), 3); assert!(keys.contains(&1)); assert!(keys.contains(&2)); assert!(keys.contains(&3)); } #[test] fn test_values() { let vec = vec![(1i, 'a'), (2i, 'b'), (3i, 'c')]; let map = vec.into_iter().collect::>(); let values = map.values().map(|&v| v).collect::>(); assert_eq!(values.len(), 3); assert!(values.contains(&'a')); assert!(values.contains(&'b')); assert!(values.contains(&'c')); } #[test] fn test_find() { let mut m = HashMap::new(); assert!(m.find(&1i).is_none()); m.insert(1i, 2i); match m.find(&1) { None => fail!(), Some(v) => assert_eq!(*v, 2) } } #[test] fn test_find_copy() { let mut m = HashMap::new(); assert!(m.find(&1i).is_none()); for i in range(1i, 10000) { m.insert(i, i + 7); match m.find_copy(&i) { None => fail!(), Some(v) => assert_eq!(v, i + 7) } for j in range(1i, i/100) { match m.find_copy(&j) { None => fail!(), Some(v) => assert_eq!(v, j + 7) } } } } #[test] fn test_eq() { let mut m1 = HashMap::new(); m1.insert(1i, 2i); m1.insert(2i, 3i); m1.insert(3i, 4i); let mut m2 = HashMap::new(); m2.insert(1i, 2i); m2.insert(2i, 3i); assert!(m1 != m2); m2.insert(3i, 4i); assert_eq!(m1, m2); } #[test] fn test_show() { let mut map: HashMap = HashMap::new(); let empty: HashMap = HashMap::new(); map.insert(1i, 2i); map.insert(3i, 4i); let map_str = format!("{}", map); assert!(map_str == "{1: 2, 3: 4}".to_string() || map_str == "{3: 4, 1: 2}".to_string()); assert_eq!(format!("{}", empty), "{}".to_string()); } #[test] fn test_expand() { let mut m = HashMap::new(); assert_eq!(m.len(), 0); assert!(m.is_empty()); let mut i = 0u; let old_cap = m.table.capacity(); while old_cap == m.table.capacity() { m.insert(i, i); i += 1; } assert_eq!(m.len(), i); assert!(!m.is_empty()); } #[test] fn test_resize_policy() { let mut m = HashMap::new(); assert_eq!(m.len(), 0); assert_eq!(m.table.capacity(), 0); assert!(m.is_empty()); m.insert(0, 0); m.remove(&0); assert!(m.is_empty()); let initial_cap = m.table.capacity(); m.reserve(initial_cap * 2); let cap = m.table.capacity(); assert_eq!(cap, initial_cap * 2); let mut i = 0u; for _ in range(0, cap * 3 / 4) { m.insert(i, i); i += 1; } // three quarters full assert_eq!(m.len(), i); assert_eq!(m.table.capacity(), cap); for _ in range(0, cap / 4) { m.insert(i, i); i += 1; } // half full let new_cap = m.table.capacity(); assert_eq!(new_cap, cap * 2); for _ in range(0, cap / 2 - 1) { i -= 1; m.remove(&i); assert_eq!(m.table.capacity(), new_cap); } // A little more than one quarter full. // Shrinking starts as we remove more elements: for _ in range(0, cap / 2 - 1) { i -= 1; m.remove(&i); } assert_eq!(m.len(), i); assert!(!m.is_empty()); assert_eq!(m.table.capacity(), cap); } #[test] fn test_find_equiv() { let mut m = HashMap::new(); let (foo, bar, baz) = (1i,2i,3i); m.insert("foo".to_string(), foo); m.insert("bar".to_string(), bar); m.insert("baz".to_string(), baz); assert_eq!(m.find_equiv(&("foo")), Some(&foo)); assert_eq!(m.find_equiv(&("bar")), Some(&bar)); assert_eq!(m.find_equiv(&("baz")), Some(&baz)); assert_eq!(m.find_equiv(&("qux")), None); } #[test] fn test_from_iter() { let xs = [(1i, 1i), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let map: HashMap = xs.iter().map(|&x| x).collect(); for &(k, v) in xs.iter() { assert_eq!(map.find(&k), Some(&v)); } } #[test] fn test_size_hint() { let xs = [(1i, 1i), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let map: HashMap = xs.iter().map(|&x| x).collect(); let mut iter = map.iter(); for _ in iter.by_ref().take(3) {} assert_eq!(iter.size_hint(), (3, Some(3))); } #[test] fn test_mut_size_hint() { let xs = [(1i, 1i), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; let mut map: HashMap = xs.iter().map(|&x| x).collect(); let mut iter = map.iter_mut(); for _ in iter.by_ref().take(3) {} assert_eq!(iter.size_hint(), (3, Some(3))); } #[test] fn test_index() { let mut map: HashMap = HashMap::new(); map.insert(1, 2); map.insert(2, 1); map.insert(3, 4); assert_eq!(map[2], 1); } #[test] #[should_fail] fn test_index_nonexistent() { let mut map: HashMap = HashMap::new(); map.insert(1, 2); map.insert(2, 1); map.insert(3, 4); map[4]; } #[test] fn test_entry(){ let xs = [(1i, 10i), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; let mut map: HashMap = xs.iter().map(|&x| x).collect(); // Existing key (insert) match map.entry(1) { Vacant(_) => unreachable!(), Occupied(mut view) => { assert_eq!(view.get(), &10); assert_eq!(view.set(100), 10); } } assert_eq!(map.find(&1).unwrap(), &100); assert_eq!(map.len(), 6); // Existing key (update) match map.entry(2) { Vacant(_) => unreachable!(), Occupied(mut view) => { let v = view.get_mut(); let new_v = (*v) * 10; *v = new_v; } } assert_eq!(map.find(&2).unwrap(), &200); assert_eq!(map.len(), 6); // Existing key (take) match map.entry(3) { Vacant(_) => unreachable!(), Occupied(view) => { assert_eq!(view.take(), 30); } } assert_eq!(map.find(&3), None); assert_eq!(map.len(), 5); // Inexistent key (insert) match map.entry(10) { Occupied(_) => unreachable!(), Vacant(view) => { assert_eq!(*view.set(1000), 1000); } } assert_eq!(map.find(&10).unwrap(), &1000); assert_eq!(map.len(), 6); } }