import T = inst::T; import cmp::{eq, ord}; import num::num; export min_value, max_value; export min, max; export add, sub, mul, div, rem; export lt, le, eq, ne, ge, gt; export is_positive, is_negative; export is_nonpositive, is_nonnegative; export range; export compl; export to_str, to_str_bytes; export from_str, from_str_radix, str, parse_buf; export ord, eq, num; const min_value: T = 0 as T; const max_value: T = 0 as T - 1 as T; pure fn min(&&x: T, &&y: T) -> T { if x < y { x } else { y } } pure fn max(&&x: T, &&y: T) -> T { if x > y { x } else { y } } pure fn add(&&x: T, &&y: T) -> T { x + y } pure fn sub(&&x: T, &&y: T) -> T { x - y } pure fn mul(&&x: T, &&y: T) -> T { x * y } pure fn div(&&x: T, &&y: T) -> T { x / y } pure fn rem(&&x: T, &&y: T) -> T { x % y } pure fn lt(&&x: T, &&y: T) -> bool { x < y } pure fn le(&&x: T, &&y: T) -> bool { x <= y } pure fn eq(&&x: T, &&y: T) -> bool { x == y } pure fn ne(&&x: T, &&y: T) -> bool { x != y } pure fn ge(&&x: T, &&y: T) -> bool { x >= y } pure fn gt(&&x: T, &&y: T) -> bool { x > y } pure fn is_positive(x: T) -> bool { x > 0 as T } pure fn is_negative(x: T) -> bool { x < 0 as T } pure fn is_nonpositive(x: T) -> bool { x <= 0 as T } pure fn is_nonnegative(x: T) -> bool { x >= 0 as T } #[inline(always)] #[doc = "Iterate over the range [`lo`..`hi`)"] fn range(lo: T, hi: T, it: fn(T) -> bool) { let mut i = lo; while i < hi { if !it(i) { break } i += 1 as T; } } #[doc = "Computes the bitwise complement"] pure fn compl(i: T) -> T { max_value ^ i } impl ord of ord for T { fn lt(&&other: T) -> bool { ret self < other; } } impl eq of eq for T { fn eq(&&other: T) -> bool { ret self == other; } } impl num of num::num for T { fn add(&&other: T) -> T { ret self + other; } fn sub(&&other: T) -> T { ret self - other; } fn mul(&&other: T) -> T { ret self * other; } fn div(&&other: T) -> T { ret self / other; } fn modulo(&&other: T) -> T { ret self % other; } fn neg() -> T { ret -self; } fn to_int() -> int { ret self as int; } fn from_int(n: int) -> T { ret n as T; } } #[doc = " Parse a buffer of bytes # Arguments * buf - A byte buffer * radix - The base of the number # Failure `buf` must not be empty "] fn parse_buf(buf: [u8], radix: uint) -> option { if vec::len(buf) == 0u { ret none; } let mut i = vec::len(buf) - 1u; let mut power = 1u as T; let mut n = 0u as T; loop { alt char::to_digit(buf[i] as char, radix) { some(d) { n += d as T * power; } none { ret none; } } power *= radix as T; if i == 0u { ret some(n); } i -= 1u; }; } #[doc = "Parse a string to an int"] fn from_str(s: str) -> option { parse_buf(str::bytes(s), 10u) } #[doc = "Parse a string as an unsigned integer."] fn from_str_radix(buf: str, radix: u64) -> option { if str::len(buf) == 0u { ret none; } let mut i = str::len(buf) - 1u; let mut power = 1u64, n = 0u64; loop { alt char::to_digit(buf[i] as char, radix as uint) { some(d) { n += d as u64 * power; } none { ret none; } } power *= radix; if i == 0u { ret some(n); } i -= 1u; }; } #[doc = " Convert to a string in a given base # Failure Fails if `radix` < 2 or `radix` > 16 "] fn to_str(num: T, radix: uint) -> str unsafe { to_str_bytes(false, num, radix) {|slice| vec::unpack_slice(slice) {|p, len| str::unsafe::from_buf_len(p, len) } } } #[doc = "Low-level helper routine for string conversion."] fn to_str_bytes(neg: bool, num: T, radix: uint, f: fn([u8]/&) -> U) -> U unsafe { #[inline(always)] fn digit(n: T) -> u8 { if n <= 9u as T { n as u8 + '0' as u8 } else if n <= 15u as T { (n - 10 as T) as u8 + 'a' as u8 } else { fail; } } assert (1u < radix && radix <= 16u); // Enough room to hold any number in any radix. // Worst case: 64-bit number, binary-radix, with // a leading negative sign = 65 bytes. let buf : [mut u8]/65 = [mut 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8, 0u8,0u8,0u8,0u8,0u8 ]/65; // FIXME (#2649): post-snapshot, you can do this without the raw // pointers and unsafe bits, and the codegen will prove it's all // in-bounds, no extra cost. vec::unpack_slice(buf) {|p, len| let mp = p as *mut u8; let mut i = len; let mut n = num; let radix = radix as T; loop { i -= 1u; assert 0u < i && i < len; *ptr::mut_offset(mp, i) = digit(n % radix); n /= radix; if n == 0 as T { break; } } assert 0u < i && i < len; if neg { i -= 1u; *ptr::mut_offset(mp, i) = '-' as u8; } vec::unsafe::form_slice(ptr::offset(p, i), len - i, f) } } #[doc = "Convert to a string"] fn str(i: T) -> str { ret to_str(i, 10u); } #[test] fn test_to_str() { assert to_str(0 as T, 10u) == "0"; assert to_str(1 as T, 10u) == "1"; assert to_str(2 as T, 10u) == "2"; assert to_str(11 as T, 10u) == "11"; assert to_str(11 as T, 16u) == "b"; assert to_str(255 as T, 16u) == "ff"; assert to_str(0xff as T, 10u) == "255"; } #[test] #[ignore] fn test_from_str() { assert from_str("0") == some(0u as T); assert from_str("3") == some(3u as T); assert from_str("10") == some(10u as T); assert from_str("123456789") == some(123456789u as T); assert from_str("00100") == some(100u as T); assert from_str("") == none; assert from_str(" ") == none; assert from_str("x") == none; } #[test] #[ignore] fn test_parse_buf() { import str::bytes; assert parse_buf(bytes("123"), 10u) == some(123u as T); assert parse_buf(bytes("1001"), 2u) == some(9u as T); assert parse_buf(bytes("123"), 8u) == some(83u as T); assert parse_buf(bytes("123"), 16u) == some(291u as T); assert parse_buf(bytes("ffff"), 16u) == some(65535u as T); assert parse_buf(bytes("z"), 36u) == some(35u as T); assert parse_buf(str::bytes("Z"), 10u) == none; assert parse_buf(str::bytes("_"), 2u) == none; } #[test] #[should_fail] #[ignore(cfg(windows))] fn to_str_radix1() { uint::to_str(100u, 1u); } #[test] #[should_fail] #[ignore(cfg(windows))] fn to_str_radix17() { uint::to_str(100u, 17u); }