// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // FIXME(#4375): this shouldn't have to be a nested module named 'generated' #[macro_escape]; macro_rules! uint_module (($T:ty, $T_SIGNED:ty, $bits:expr) => (mod generated { #[allow(non_uppercase_statics)]; use num::BitCount; use num::{ToStrRadix, FromStrRadix}; use num::{CheckedDiv, Zero, One, strconv}; use prelude::*; use str; pub use cmp::{min, max}; pub static bits : uint = $bits; pub static bytes : uint = ($bits / 8); pub static min_value: $T = 0 as $T; pub static max_value: $T = 0 as $T - 1 as $T; impl CheckedDiv for $T { #[inline] fn checked_div(&self, v: &$T) -> Option<$T> { if *v == 0 { None } else { Some(self / *v) } } } enum Range { Closed, HalfOpen } #[inline] /// /// Iterate through a range with a given step value. /// /// Let `term` denote the closed interval `[stop-step,stop]` if `r` is Closed; /// otherwise `term` denotes the half-open interval `[stop-step,stop)`. /// Iterates through the range `[x_0, x_1, ..., x_n]` where /// `x_j == start + step*j`, and `x_n` lies in the interval `term`. /// /// If no such nonnegative integer `n` exists, then the iteration range /// is empty. /// fn range_step_core(start: $T, stop: $T, step: $T_SIGNED, r: Range, it: &fn($T) -> bool) -> bool { let mut i = start; if step == 0 { fail!("range_step called with step == 0"); } else if step == (1 as $T_SIGNED) { // elide bounds check to tighten loop while i < stop { if !it(i) { return false; } // no need for overflow check; // cannot have i + 1 > max_value because i < stop <= max_value i += (1 as $T); } } else if step == (-1 as $T_SIGNED) { // elide bounds check to tighten loop while i > stop { if !it(i) { return false; } // no need for underflow check; // cannot have i - 1 < min_value because i > stop >= min_value i -= (1 as $T); } } else if step > 0 { // ascending while i < stop { if !it(i) { return false; } // avoiding overflow. break if i + step > max_value if i > max_value - (step as $T) { return true; } i += step as $T; } } else { // descending while i > stop { if !it(i) { return false; } // avoiding underflow. break if i + step < min_value if i < min_value + ((-step) as $T) { return true; } i -= -step as $T; } } match r { HalfOpen => return true, Closed => return (i != stop || it(i)) } } #[inline] /// /// Iterate through the range [`start`..`stop`) with a given step value. /// /// Iterates through the range `[x_0, x_1, ..., x_n]` where /// - `x_i == start + step*i`, and /// - `n` is the greatest nonnegative integer such that `x_n < stop` /// /// (If no such `n` exists, then the iteration range is empty.) /// /// # Arguments /// /// * `start` - lower bound, inclusive /// * `stop` - higher bound, exclusive /// /// # Examples /// ~~~ {.rust} /// let nums = [1,2,3,4,5,6,7]; /// /// for uint::range_step(0, nums.len() - 1, 2) |i| { /// printfln!("%d & %d", nums[i], nums[i+1]); /// } /// ~~~ /// pub fn range_step(start: $T, stop: $T, step: $T_SIGNED, it: &fn($T) -> bool) -> bool { range_step_core(start, stop, step, HalfOpen, it) } #[inline] /// /// Iterate through a range with a given step value. /// /// Iterates through the range `[x_0, x_1, ..., x_n]` where /// `x_i == start + step*i` and `x_n <= last < step + x_n`. /// /// (If no such nonnegative integer `n` exists, then the iteration /// range is empty.) /// pub fn range_step_inclusive(start: $T, last: $T, step: $T_SIGNED, it: &fn($T) -> bool) -> bool { range_step_core(start, last, step, Closed, it) } impl Num for $T {} #[cfg(not(test))] impl Ord for $T { #[inline] fn lt(&self, other: &$T) -> bool { (*self) < (*other) } } #[cfg(not(test))] impl Eq for $T { #[inline] fn eq(&self, other: &$T) -> bool { return (*self) == (*other); } #[inline] fn ne(&self, other: &$T) -> bool { return (*self) != (*other); } } impl Orderable for $T { #[inline] fn min(&self, other: &$T) -> $T { if *self < *other { *self } else { *other } } #[inline] fn max(&self, other: &$T) -> $T { if *self > *other { *self } else { *other } } /// Returns the number constrained within the range `mn <= self <= mx`. #[inline] fn clamp(&self, mn: &$T, mx: &$T) -> $T { cond!( (*self > *mx) { *mx } (*self < *mn) { *mn } _ { *self } ) } } impl Zero for $T { #[inline] fn zero() -> $T { 0 } #[inline] fn is_zero(&self) -> bool { *self == 0 } } impl One for $T { #[inline] fn one() -> $T { 1 } } #[cfg(not(test))] impl Add<$T,$T> for $T { #[inline] fn add(&self, other: &$T) -> $T { *self + *other } } #[cfg(not(test))] impl Sub<$T,$T> for $T { #[inline] fn sub(&self, other: &$T) -> $T { *self - *other } } #[cfg(not(test))] impl Mul<$T,$T> for $T { #[inline] fn mul(&self, other: &$T) -> $T { *self * *other } } #[cfg(not(test))] impl Div<$T,$T> for $T { #[inline] fn div(&self, other: &$T) -> $T { *self / *other } } #[cfg(not(test))] impl Rem<$T,$T> for $T { #[inline] fn rem(&self, other: &$T) -> $T { *self % *other } } #[cfg(not(test))] impl Neg<$T> for $T { #[inline] fn neg(&self) -> $T { -*self } } impl Unsigned for $T {} impl Integer for $T { /// Calculates `div` (`\`) and `rem` (`%`) simultaneously #[inline] fn div_rem(&self, other: &$T) -> ($T,$T) { (*self / *other, *self % *other) } /// Unsigned integer division. Returns the same result as `div` (`/`). #[inline] fn div_floor(&self, other: &$T) -> $T { *self / *other } /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`). #[inline] fn mod_floor(&self, other: &$T) -> $T { *self % *other } /// Calculates `div_floor` and `mod_floor` simultaneously #[inline] fn div_mod_floor(&self, other: &$T) -> ($T,$T) { (*self / *other, *self % *other) } /// Calculates the Greatest Common Divisor (GCD) of the number and `other` #[inline] fn gcd(&self, other: &$T) -> $T { // Use Euclid's algorithm let mut m = *self; let mut n = *other; while m != 0 { let temp = m; m = n % temp; n = temp; } n } /// Calculates the Lowest Common Multiple (LCM) of the number and `other` #[inline] fn lcm(&self, other: &$T) -> $T { (*self * *other) / self.gcd(other) } /// Returns `true` if the number can be divided by `other` without leaving a remainder #[inline] fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 } /// Returns `true` if the number is divisible by `2` #[inline] fn is_even(&self) -> bool { self.is_multiple_of(&2) } /// Returns `true` if the number is not divisible by `2` #[inline] fn is_odd(&self) -> bool { !self.is_even() } } impl Bitwise for $T {} #[cfg(not(test))] impl BitOr<$T,$T> for $T { #[inline] fn bitor(&self, other: &$T) -> $T { *self | *other } } #[cfg(not(test))] impl BitAnd<$T,$T> for $T { #[inline] fn bitand(&self, other: &$T) -> $T { *self & *other } } #[cfg(not(test))] impl BitXor<$T,$T> for $T { #[inline] fn bitxor(&self, other: &$T) -> $T { *self ^ *other } } #[cfg(not(test))] impl Shl<$T,$T> for $T { #[inline] fn shl(&self, other: &$T) -> $T { *self << *other } } #[cfg(not(test))] impl Shr<$T,$T> for $T { #[inline] fn shr(&self, other: &$T) -> $T { *self >> *other } } #[cfg(not(test))] impl Not<$T> for $T { #[inline] fn not(&self) -> $T { !*self } } impl Bounded for $T { #[inline] fn min_value() -> $T { min_value } #[inline] fn max_value() -> $T { max_value } } impl Int for $T {} // String conversion functions and impl str -> num /// Parse a string as a number in base 10. #[inline] pub fn from_str(s: &str) -> Option<$T> { strconv::from_str_common(s, 10u, false, false, false, strconv::ExpNone, false, false) } /// Parse a string as a number in the given base. #[inline] pub fn from_str_radix(s: &str, radix: uint) -> Option<$T> { strconv::from_str_common(s, radix, false, false, false, strconv::ExpNone, false, false) } /// Parse a byte slice as a number in the given base. #[inline] pub fn parse_bytes(buf: &[u8], radix: uint) -> Option<$T> { strconv::from_str_bytes_common(buf, radix, false, false, false, strconv::ExpNone, false, false) } impl FromStr for $T { #[inline] fn from_str(s: &str) -> Option<$T> { from_str(s) } } impl FromStrRadix for $T { #[inline] fn from_str_radix(s: &str, radix: uint) -> Option<$T> { from_str_radix(s, radix) } } // String conversion functions and impl num -> str /// Convert to a string as a byte slice in a given base. #[inline] pub fn to_str_bytes(n: $T, radix: uint, f: &fn(v: &[u8]) -> U) -> U { // The radix can be as low as 2, so we need at least 64 characters for a // base 2 number. let mut buf = [0u8, ..64]; let mut cur = 0; do strconv::int_to_str_bytes_common(n, radix, strconv::SignNone) |i| { buf[cur] = i; cur += 1; } f(buf.slice(0, cur)) } impl ToStr for $T { /// Convert to a string in base 10. #[inline] fn to_str(&self) -> ~str { self.to_str_radix(10u) } } impl ToStrRadix for $T { /// Convert to a string in a given base. #[inline] fn to_str_radix(&self, radix: uint) -> ~str { let mut buf = ~[]; do strconv::int_to_str_bytes_common(*self, radix, strconv::SignNone) |i| { buf.push(i); } // We know we generated valid utf-8, so we don't need to go through that // check. unsafe { str::raw::from_bytes_owned(buf) } } } impl Primitive for $T { #[inline] fn bits() -> uint { bits } #[inline] fn bytes() -> uint { bits / 8 } } impl BitCount for $T { /// Counts the number of bits set. Wraps LLVM's `ctpop` intrinsic. #[inline] fn population_count(&self) -> $T { (*self as $T_SIGNED).population_count() as $T } /// Counts the number of leading zeros. Wraps LLVM's `ctlz` intrinsic. #[inline] fn leading_zeros(&self) -> $T { (*self as $T_SIGNED).leading_zeros() as $T } /// Counts the number of trailing zeros. Wraps LLVM's `cttz` intrinsic. #[inline] fn trailing_zeros(&self) -> $T { (*self as $T_SIGNED).trailing_zeros() as $T } } #[cfg(test)] mod tests { use super::*; use prelude::*; use num; use sys; use u16; use u32; use u64; use u8; #[test] fn test_num() { num::test_num(10 as $T, 2 as $T); } #[test] fn test_orderable() { assert_eq!((1 as $T).min(&(2 as $T)), 1 as $T); assert_eq!((2 as $T).min(&(1 as $T)), 1 as $T); assert_eq!((1 as $T).max(&(2 as $T)), 2 as $T); assert_eq!((2 as $T).max(&(1 as $T)), 2 as $T); assert_eq!((1 as $T).clamp(&(2 as $T), &(4 as $T)), 2 as $T); assert_eq!((8 as $T).clamp(&(2 as $T), &(4 as $T)), 4 as $T); assert_eq!((3 as $T).clamp(&(2 as $T), &(4 as $T)), 3 as $T); } #[test] fn test_div_mod_floor() { assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T); assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T); assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T)); assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T); assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T); assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T)); assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T); assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T); assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T)); } #[test] fn test_gcd() { assert_eq!((10 as $T).gcd(&2), 2 as $T); assert_eq!((10 as $T).gcd(&3), 1 as $T); assert_eq!((0 as $T).gcd(&3), 3 as $T); assert_eq!((3 as $T).gcd(&3), 3 as $T); assert_eq!((56 as $T).gcd(&42), 14 as $T); } #[test] fn test_lcm() { assert_eq!((1 as $T).lcm(&0), 0 as $T); assert_eq!((0 as $T).lcm(&1), 0 as $T); assert_eq!((1 as $T).lcm(&1), 1 as $T); assert_eq!((8 as $T).lcm(&9), 72 as $T); assert_eq!((11 as $T).lcm(&5), 55 as $T); assert_eq!((99 as $T).lcm(&17), 1683 as $T); } #[test] fn test_multiple_of() { assert!((6 as $T).is_multiple_of(&(6 as $T))); assert!((6 as $T).is_multiple_of(&(3 as $T))); assert!((6 as $T).is_multiple_of(&(1 as $T))); } #[test] fn test_even() { assert_eq!((0 as $T).is_even(), true); assert_eq!((1 as $T).is_even(), false); assert_eq!((2 as $T).is_even(), true); assert_eq!((3 as $T).is_even(), false); assert_eq!((4 as $T).is_even(), true); } #[test] fn test_odd() { assert_eq!((0 as $T).is_odd(), false); assert_eq!((1 as $T).is_odd(), true); assert_eq!((2 as $T).is_odd(), false); assert_eq!((3 as $T).is_odd(), true); assert_eq!((4 as $T).is_odd(), false); } #[test] fn test_bitwise() { assert_eq!(0b1110 as $T, (0b1100 as $T).bitor(&(0b1010 as $T))); assert_eq!(0b1000 as $T, (0b1100 as $T).bitand(&(0b1010 as $T))); assert_eq!(0b0110 as $T, (0b1100 as $T).bitxor(&(0b1010 as $T))); assert_eq!(0b1110 as $T, (0b0111 as $T).shl(&(1 as $T))); assert_eq!(0b0111 as $T, (0b1110 as $T).shr(&(1 as $T))); assert_eq!(max_value - (0b1011 as $T), (0b1011 as $T).not()); } #[test] fn test_bitcount() { assert_eq!((0b010101 as $T).population_count(), 3); } #[test] fn test_primitive() { assert_eq!(Primitive::bits::<$T>(), sys::size_of::<$T>() * 8); assert_eq!(Primitive::bytes::<$T>(), sys::size_of::<$T>()); } #[test] pub fn test_to_str() { assert_eq!((0 as $T).to_str_radix(10u), ~"0"); assert_eq!((1 as $T).to_str_radix(10u), ~"1"); assert_eq!((2 as $T).to_str_radix(10u), ~"2"); assert_eq!((11 as $T).to_str_radix(10u), ~"11"); assert_eq!((11 as $T).to_str_radix(16u), ~"b"); assert_eq!((255 as $T).to_str_radix(16u), ~"ff"); assert_eq!((0xff as $T).to_str_radix(10u), ~"255"); } #[test] pub fn test_from_str() { assert_eq!(from_str("0"), Some(0u as $T)); assert_eq!(from_str("3"), Some(3u as $T)); assert_eq!(from_str("10"), Some(10u as $T)); assert_eq!(u32::from_str("123456789"), Some(123456789 as u32)); assert_eq!(from_str("00100"), Some(100u as $T)); assert!(from_str("").is_none()); assert!(from_str(" ").is_none()); assert!(from_str("x").is_none()); } #[test] pub fn test_parse_bytes() { use str::StrSlice; assert_eq!(parse_bytes("123".as_bytes(), 10u), Some(123u as $T)); assert_eq!(parse_bytes("1001".as_bytes(), 2u), Some(9u as $T)); assert_eq!(parse_bytes("123".as_bytes(), 8u), Some(83u as $T)); assert_eq!(u16::parse_bytes("123".as_bytes(), 16u), Some(291u as u16)); assert_eq!(u16::parse_bytes("ffff".as_bytes(), 16u), Some(65535u as u16)); assert_eq!(parse_bytes("z".as_bytes(), 36u), Some(35u as $T)); assert!(parse_bytes("Z".as_bytes(), 10u).is_none()); assert!(parse_bytes("_".as_bytes(), 2u).is_none()); } #[test] fn test_uint_to_str_overflow() { let mut u8_val: u8 = 255_u8; assert_eq!(u8_val.to_str(), ~"255"); u8_val += 1 as u8; assert_eq!(u8_val.to_str(), ~"0"); let mut u16_val: u16 = 65_535_u16; assert_eq!(u16_val.to_str(), ~"65535"); u16_val += 1 as u16; assert_eq!(u16_val.to_str(), ~"0"); let mut u32_val: u32 = 4_294_967_295_u32; assert_eq!(u32_val.to_str(), ~"4294967295"); u32_val += 1 as u32; assert_eq!(u32_val.to_str(), ~"0"); let mut u64_val: u64 = 18_446_744_073_709_551_615_u64; assert_eq!(u64_val.to_str(), ~"18446744073709551615"); u64_val += 1 as u64; assert_eq!(u64_val.to_str(), ~"0"); } #[test] fn test_uint_from_str_overflow() { let mut u8_val: u8 = 255_u8; assert_eq!(u8::from_str("255"), Some(u8_val)); assert!(u8::from_str("256").is_none()); u8_val += 1 as u8; assert_eq!(u8::from_str("0"), Some(u8_val)); assert!(u8::from_str("-1").is_none()); let mut u16_val: u16 = 65_535_u16; assert_eq!(u16::from_str("65535"), Some(u16_val)); assert!(u16::from_str("65536").is_none()); u16_val += 1 as u16; assert_eq!(u16::from_str("0"), Some(u16_val)); assert!(u16::from_str("-1").is_none()); let mut u32_val: u32 = 4_294_967_295_u32; assert_eq!(u32::from_str("4294967295"), Some(u32_val)); assert!(u32::from_str("4294967296").is_none()); u32_val += 1 as u32; assert_eq!(u32::from_str("0"), Some(u32_val)); assert!(u32::from_str("-1").is_none()); let mut u64_val: u64 = 18_446_744_073_709_551_615_u64; assert_eq!(u64::from_str("18446744073709551615"), Some(u64_val)); assert!(u64::from_str("18446744073709551616").is_none()); u64_val += 1 as u64; assert_eq!(u64::from_str("0"), Some(u64_val)); assert!(u64::from_str("-1").is_none()); } #[test] #[should_fail] pub fn to_str_radix1() { 100u.to_str_radix(1u); } #[test] #[should_fail] pub fn to_str_radix37() { 100u.to_str_radix(37u); } #[test] pub fn test_ranges() { let mut l = ~[]; do range_step(20,26,2) |i| { l.push(i); true }; do range_step(36,30,-2) |i| { l.push(i); true }; do range_step(max_value - 2, max_value, 2) |i| { l.push(i); true }; do range_step(max_value - 3, max_value, 2) |i| { l.push(i); true }; do range_step(min_value + 2, min_value, -2) |i| { l.push(i); true }; do range_step(min_value + 3, min_value, -2) |i| { l.push(i); true }; assert_eq!(l, ~[20,22,24, 36,34,32, max_value-2, max_value-3,max_value-1, min_value+2, min_value+3,min_value+1]); // None of the `fail`s should execute. do range_step(10,0,1) |_i| { fail!("unreachable"); }; do range_step(0,1,-10) |_i| { fail!("unreachable"); }; } #[test] #[should_fail] fn test_range_step_zero_step_up() { do range_step(0,10,0) |_i| { true }; } #[test] #[should_fail] fn test_range_step_zero_step_down() { do range_step(0,-10,0) |_i| { true }; } #[test] fn test_unsigned_checked_div() { assert_eq!(10u.checked_div(&2), Some(5)); assert_eq!(5u.checked_div(&0), None); } } }))