// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use middle::subst::{Substs, VecPerParamSpace}; use middle::infer::InferCtxt; use middle::ty::{self, Ty, AsPredicate, ToPolyTraitRef}; use std::fmt; use std::rc::Rc; use syntax::ast; use syntax::codemap::Span; use util::common::ErrorReported; use util::nodemap::FnvHashSet; use util::ppaux::Repr; use super::{Obligation, ObligationCause, PredicateObligation, VtableImpl, VtableParam, VtableImplData, VtableDefaultImplData}; struct PredicateSet<'a,'tcx:'a> { tcx: &'a ty::ctxt<'tcx>, set: FnvHashSet>, } impl<'a,'tcx> PredicateSet<'a,'tcx> { fn new(tcx: &'a ty::ctxt<'tcx>) -> PredicateSet<'a,'tcx> { PredicateSet { tcx: tcx, set: FnvHashSet() } } fn insert(&mut self, pred: &ty::Predicate<'tcx>) -> bool { // We have to be careful here because we want // // for<'a> Foo<&'a int> // // and // // for<'b> Foo<&'b int> // // to be considered equivalent. So normalize all late-bound // regions before we throw things into the underlying set. let normalized_pred = match *pred { ty::Predicate::Trait(ref data) => ty::Predicate::Trait(ty::anonymize_late_bound_regions(self.tcx, data)), ty::Predicate::Equate(ref data) => ty::Predicate::Equate(ty::anonymize_late_bound_regions(self.tcx, data)), ty::Predicate::RegionOutlives(ref data) => ty::Predicate::RegionOutlives(ty::anonymize_late_bound_regions(self.tcx, data)), ty::Predicate::TypeOutlives(ref data) => ty::Predicate::TypeOutlives(ty::anonymize_late_bound_regions(self.tcx, data)), ty::Predicate::Projection(ref data) => ty::Predicate::Projection(ty::anonymize_late_bound_regions(self.tcx, data)), }; self.set.insert(normalized_pred) } } /////////////////////////////////////////////////////////////////////////// // `Elaboration` iterator /////////////////////////////////////////////////////////////////////////// /// "Elaboration" is the process of identifying all the predicates that /// are implied by a source predicate. Currently this basically means /// walking the "supertraits" and other similar assumptions. For /// example, if we know that `T : Ord`, the elaborator would deduce /// that `T : PartialOrd` holds as well. Similarly, if we have `trait /// Foo : 'static`, and we know that `T : Foo`, then we know that `T : /// 'static`. pub struct Elaborator<'cx, 'tcx:'cx> { tcx: &'cx ty::ctxt<'tcx>, stack: Vec>, visited: PredicateSet<'cx,'tcx>, } struct StackEntry<'tcx> { position: uint, predicates: Vec>, } pub fn elaborate_trait_ref<'cx, 'tcx>( tcx: &'cx ty::ctxt<'tcx>, trait_ref: ty::PolyTraitRef<'tcx>) -> Elaborator<'cx, 'tcx> { elaborate_predicates(tcx, vec![trait_ref.as_predicate()]) } pub fn elaborate_trait_refs<'cx, 'tcx>( tcx: &'cx ty::ctxt<'tcx>, trait_refs: &[ty::PolyTraitRef<'tcx>]) -> Elaborator<'cx, 'tcx> { let predicates = trait_refs.iter() .map(|trait_ref| trait_ref.as_predicate()) .collect(); elaborate_predicates(tcx, predicates) } pub fn elaborate_predicates<'cx, 'tcx>( tcx: &'cx ty::ctxt<'tcx>, mut predicates: Vec>) -> Elaborator<'cx, 'tcx> { let mut visited = PredicateSet::new(tcx); predicates.retain(|pred| visited.insert(pred)); let entry = StackEntry { position: 0, predicates: predicates }; Elaborator { tcx: tcx, stack: vec![entry], visited: visited } } impl<'cx, 'tcx> Elaborator<'cx, 'tcx> { pub fn filter_to_traits(self) -> Supertraits<'cx, 'tcx> { Supertraits { elaborator: self } } fn push(&mut self, predicate: &ty::Predicate<'tcx>) { match *predicate { ty::Predicate::Trait(ref data) => { let mut predicates = ty::predicates_for_trait_ref(self.tcx, &data.to_poly_trait_ref()); // Only keep those bounds that we haven't already // seen. This is necessary to prevent infinite // recursion in some cases. One common case is when // people define `trait Sized: Sized { }` rather than `trait // Sized { }`. predicates.retain(|r| self.visited.insert(r)); self.stack.push(StackEntry { position: 0, predicates: predicates }); } ty::Predicate::Equate(..) => { // Currently, we do not "elaborate" predicates like // `X == Y`, though conceivably we might. For example, // `&X == &Y` implies that `X == Y`. } ty::Predicate::Projection(..) => { // Nothing to elaborate in a projection predicate. } ty::Predicate::RegionOutlives(..) | ty::Predicate::TypeOutlives(..) => { // Currently, we do not "elaborate" predicates like // `'a : 'b` or `T : 'a`. We could conceivably do // more here. For example, // // &'a int : 'b // // implies that // // 'a : 'b // // and we could get even more if we took WF // constraints into account. For example, // // &'a &'b int : 'c // // implies that // // 'b : 'a // 'a : 'c } } } } impl<'cx, 'tcx> Iterator for Elaborator<'cx, 'tcx> { type Item = ty::Predicate<'tcx>; fn next(&mut self) -> Option> { loop { // Extract next item from top-most stack frame, if any. let next_predicate = match self.stack.last_mut() { None => { // No more stack frames. Done. return None; } Some(entry) => { let p = entry.position; if p < entry.predicates.len() { // Still more predicates left in the top stack frame. entry.position += 1; let next_predicate = entry.predicates[p].clone(); Some(next_predicate) } else { None } } }; match next_predicate { Some(next_predicate) => { self.push(&next_predicate); return Some(next_predicate); } None => { // Top stack frame is exhausted, pop it. self.stack.pop(); } } } } } /////////////////////////////////////////////////////////////////////////// // Supertrait iterator /////////////////////////////////////////////////////////////////////////// /// A filter around the `Elaborator` that just yields up supertrait references, /// not other kinds of predicates. pub struct Supertraits<'cx, 'tcx:'cx> { elaborator: Elaborator<'cx, 'tcx>, } pub fn supertraits<'cx, 'tcx>(tcx: &'cx ty::ctxt<'tcx>, trait_ref: ty::PolyTraitRef<'tcx>) -> Supertraits<'cx, 'tcx> { elaborate_trait_ref(tcx, trait_ref).filter_to_traits() } pub fn transitive_bounds<'cx, 'tcx>(tcx: &'cx ty::ctxt<'tcx>, bounds: &[ty::PolyTraitRef<'tcx>]) -> Supertraits<'cx, 'tcx> { elaborate_trait_refs(tcx, bounds).filter_to_traits() } impl<'cx, 'tcx> Iterator for Supertraits<'cx, 'tcx> { type Item = ty::PolyTraitRef<'tcx>; fn next(&mut self) -> Option> { loop { match self.elaborator.next() { None => { return None; } Some(ty::Predicate::Trait(data)) => { return Some(data.to_poly_trait_ref()); } Some(_) => { } } } } } /////////////////////////////////////////////////////////////////////////// // Other /////////////////////////////////////////////////////////////////////////// // determine the `self` type, using fresh variables for all variables // declared on the impl declaration e.g., `impl for Box<[(A,B)]>` // would return ($0, $1) where $0 and $1 are freshly instantiated type // variables. pub fn fresh_substs_for_impl<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>, span: Span, impl_def_id: ast::DefId) -> Substs<'tcx> { let tcx = infcx.tcx; let impl_generics = ty::lookup_item_type(tcx, impl_def_id).generics; infcx.fresh_substs_for_generics(span, &impl_generics) } impl<'tcx, N> fmt::Debug for VtableImplData<'tcx, N> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "VtableImpl({:?})", self.impl_def_id) } } impl<'tcx> fmt::Debug for super::VtableObjectData<'tcx> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "VtableObject(...)") } } /// See `super::obligations_for_generics` pub fn predicates_for_generics<'tcx>(tcx: &ty::ctxt<'tcx>, cause: ObligationCause<'tcx>, recursion_depth: uint, generic_bounds: &ty::InstantiatedPredicates<'tcx>) -> VecPerParamSpace> { debug!("predicates_for_generics(generic_bounds={})", generic_bounds.repr(tcx)); generic_bounds.predicates.map(|predicate| { Obligation { cause: cause.clone(), recursion_depth: recursion_depth, predicate: predicate.clone() } }) } pub fn trait_ref_for_builtin_bound<'tcx>( tcx: &ty::ctxt<'tcx>, builtin_bound: ty::BuiltinBound, param_ty: Ty<'tcx>) -> Result>, ErrorReported> { match tcx.lang_items.from_builtin_kind(builtin_bound) { Ok(def_id) => { Ok(Rc::new(ty::TraitRef { def_id: def_id, substs: tcx.mk_substs(Substs::empty().with_self_ty(param_ty)) })) } Err(e) => { tcx.sess.err(&e); Err(ErrorReported) } } } pub fn predicate_for_trait_ref<'tcx>( cause: ObligationCause<'tcx>, trait_ref: Rc>, recursion_depth: uint) -> Result, ErrorReported> { Ok(Obligation { cause: cause, recursion_depth: recursion_depth, predicate: trait_ref.as_predicate(), }) } pub fn predicate_for_trait_def<'tcx>( tcx: &ty::ctxt<'tcx>, cause: ObligationCause<'tcx>, trait_def_id: ast::DefId, recursion_depth: uint, param_ty: Ty<'tcx>) -> Result, ErrorReported> { let trait_ref = Rc::new(ty::TraitRef { def_id: trait_def_id, substs: tcx.mk_substs(Substs::empty().with_self_ty(param_ty)) }); predicate_for_trait_ref(cause, trait_ref, recursion_depth) } pub fn predicate_for_builtin_bound<'tcx>( tcx: &ty::ctxt<'tcx>, cause: ObligationCause<'tcx>, builtin_bound: ty::BuiltinBound, recursion_depth: uint, param_ty: Ty<'tcx>) -> Result, ErrorReported> { let trait_ref = try!(trait_ref_for_builtin_bound(tcx, builtin_bound, param_ty)); predicate_for_trait_ref(cause, trait_ref, recursion_depth) } /// Cast a trait reference into a reference to one of its super /// traits; returns `None` if `target_trait_def_id` is not a /// supertrait. pub fn upcast<'tcx>(tcx: &ty::ctxt<'tcx>, source_trait_ref: ty::PolyTraitRef<'tcx>, target_trait_def_id: ast::DefId) -> Option> { if source_trait_ref.def_id() == target_trait_def_id { return Some(source_trait_ref); // shorcut the most common case } for super_trait_ref in supertraits(tcx, source_trait_ref) { if super_trait_ref.def_id() == target_trait_def_id { return Some(super_trait_ref); } } None } /// Given an object of type `object_trait_ref`, returns the index of /// the method `n_method` found in the trait `trait_def_id` (which /// should be a supertrait of `object_trait_ref`) within the vtable /// for `object_trait_ref`. pub fn get_vtable_index_of_object_method<'tcx>(tcx: &ty::ctxt<'tcx>, object_trait_ref: ty::PolyTraitRef<'tcx>, trait_def_id: ast::DefId, method_offset_in_trait: uint) -> uint { // We need to figure the "real index" of the method in a // listing of all the methods of an object. We do this by // iterating down the supertraits of the object's trait until // we find the trait the method came from, counting up the // methods from them. let mut method_count = 0; for bound_ref in transitive_bounds(tcx, &[object_trait_ref]) { if bound_ref.def_id() == trait_def_id { break; } let trait_items = ty::trait_items(tcx, bound_ref.def_id()); for trait_item in &**trait_items { match *trait_item { ty::MethodTraitItem(_) => method_count += 1, ty::TypeTraitItem(_) => {} } } } // count number of methods preceding the one we are selecting and // add them to the total offset; skip over associated types. let trait_items = ty::trait_items(tcx, trait_def_id); for trait_item in trait_items.iter().take(method_offset_in_trait) { match *trait_item { ty::MethodTraitItem(_) => method_count += 1, ty::TypeTraitItem(_) => {} } } // the item at the offset we were given really ought to be a method assert!(match trait_items[method_offset_in_trait] { ty::MethodTraitItem(_) => true, ty::TypeTraitItem(_) => false }); method_count } pub enum TupleArgumentsFlag { Yes, No } pub fn closure_trait_ref_and_return_type<'tcx>( tcx: &ty::ctxt<'tcx>, fn_trait_def_id: ast::DefId, self_ty: Ty<'tcx>, sig: &ty::PolyFnSig<'tcx>, tuple_arguments: TupleArgumentsFlag) -> ty::Binder<(Rc>, Ty<'tcx>)> { let arguments_tuple = match tuple_arguments { TupleArgumentsFlag::No => sig.0.inputs[0], TupleArgumentsFlag::Yes => ty::mk_tup(tcx, sig.0.inputs.to_vec()), }; let trait_substs = Substs::new_trait(vec![arguments_tuple], vec![], self_ty); let trait_ref = Rc::new(ty::TraitRef { def_id: fn_trait_def_id, substs: tcx.mk_substs(trait_substs), }); ty::Binder((trait_ref, sig.0.output.unwrap())) } impl<'tcx,O:Repr<'tcx>> Repr<'tcx> for super::Obligation<'tcx, O> { fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String { format!("Obligation(predicate={},depth={})", self.predicate.repr(tcx), self.recursion_depth) } } impl<'tcx, N:Repr<'tcx>> Repr<'tcx> for super::Vtable<'tcx, N> { fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String { match *self { super::VtableImpl(ref v) => v.repr(tcx), super::VtableDefaultImpl(ref t) => t.repr(tcx), super::VtableClosure(ref d, ref s) => format!("VtableClosure({},{})", d.repr(tcx), s.repr(tcx)), super::VtableFnPointer(ref d) => format!("VtableFnPointer({})", d.repr(tcx)), super::VtableObject(ref d) => format!("VtableObject({})", d.repr(tcx)), super::VtableParam(ref n) => format!("VtableParam({})", n.repr(tcx)), super::VtableBuiltin(ref d) => d.repr(tcx) } } } impl<'tcx, N:Repr<'tcx>> Repr<'tcx> for super::VtableImplData<'tcx, N> { fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String { format!("VtableImpl(impl_def_id={}, substs={}, nested={})", self.impl_def_id.repr(tcx), self.substs.repr(tcx), self.nested.repr(tcx)) } } impl<'tcx, N:Repr<'tcx>> Repr<'tcx> for super::VtableBuiltinData { fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String { format!("VtableBuiltin(nested={})", self.nested.repr(tcx)) } } impl<'tcx, N:Repr<'tcx>> Repr<'tcx> for super::VtableDefaultImplData { fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String { format!("VtableDefaultImplData(trait_def_id={}, nested={})", self.trait_def_id.repr(tcx), self.nested.repr(tcx)) } } impl<'tcx> Repr<'tcx> for super::VtableObjectData<'tcx> { fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String { format!("VtableObject(object_ty={})", self.object_ty.repr(tcx)) } } impl<'tcx> Repr<'tcx> for super::SelectionError<'tcx> { fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String { match *self { super::Overflow => format!("Overflow"), super::Unimplemented => format!("Unimplemented"), super::OutputTypeParameterMismatch(ref a, ref b, ref c) => format!("OutputTypeParameterMismatch({},{},{})", a.repr(tcx), b.repr(tcx), c.repr(tcx)), } } } impl<'tcx> Repr<'tcx> for super::FulfillmentError<'tcx> { fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String { format!("FulfillmentError({},{})", self.obligation.repr(tcx), self.code.repr(tcx)) } } impl<'tcx> Repr<'tcx> for super::FulfillmentErrorCode<'tcx> { fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String { match *self { super::CodeSelectionError(ref o) => o.repr(tcx), super::CodeProjectionError(ref o) => o.repr(tcx), super::CodeAmbiguity => format!("Ambiguity") } } } impl<'tcx> fmt::Debug for super::FulfillmentErrorCode<'tcx> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { super::CodeSelectionError(ref e) => write!(f, "{:?}", e), super::CodeProjectionError(ref e) => write!(f, "{:?}", e), super::CodeAmbiguity => write!(f, "Ambiguity") } } } impl<'tcx> Repr<'tcx> for super::MismatchedProjectionTypes<'tcx> { fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String { self.err.repr(tcx) } } impl<'tcx> fmt::Debug for super::MismatchedProjectionTypes<'tcx> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "MismatchedProjectionTypes(..)") } }