// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! UDP (User Datagram Protocol) network connections. //! //! This module contains the ability to open a UDP stream to a socket address. //! The destination and binding addresses can either be an IPv4 or IPv6 //! address. There is no corresponding notion of a server because UDP is a //! datagram protocol. use clone::Clone; use io::net::ip::{SocketAddr, IpAddr}; use io::{Reader, Writer, IoResult, IoError}; use kinds::Send; use boxed::Box; use option::Option; use result::{Ok, Err}; use rt::rtio::{RtioSocket, RtioUdpSocket, IoFactory, LocalIo}; use rt::rtio; /// A User Datagram Protocol socket. /// /// This is an implementation of a bound UDP socket. This supports both IPv4 and /// IPv6 addresses, and there is no corresponding notion of a server because UDP /// is a datagram protocol. /// /// # Example /// /// ```rust,no_run /// # #![allow(unused_must_use)] /// use std::io::net::udp::UdpSocket; /// use std::io::net::ip::{Ipv4Addr, SocketAddr}; /// /// let addr = SocketAddr { ip: Ipv4Addr(127, 0, 0, 1), port: 34254 }; /// let mut socket = match UdpSocket::bind(addr) { /// Ok(s) => s, /// Err(e) => fail!("couldn't bind socket: {}", e), /// }; /// /// let mut buf = [0, ..10]; /// match socket.recv_from(buf) { /// Ok((amt, src)) => { /// // Send a reply to the socket we received data from /// let buf = buf.mut_slice_to(amt); /// buf.reverse(); /// socket.send_to(buf, src); /// } /// Err(e) => println!("couldn't receive a datagram: {}", e) /// } /// drop(socket); // close the socket /// ``` pub struct UdpSocket { obj: Box, } impl UdpSocket { /// Creates a UDP socket from the given socket address. pub fn bind(addr: SocketAddr) -> IoResult { let SocketAddr { ip, port } = addr; LocalIo::maybe_raise(|io| { let addr = rtio::SocketAddr { ip: super::to_rtio(ip), port: port }; io.udp_bind(addr).map(|s| UdpSocket { obj: s }) }).map_err(IoError::from_rtio_error) } /// Receives data from the socket. On success, returns the number of bytes /// read and the address from whence the data came. pub fn recv_from(&mut self, buf: &mut [u8]) -> IoResult<(uint, SocketAddr)> { match self.obj.recv_from(buf) { Ok((amt, rtio::SocketAddr { ip, port })) => { Ok((amt, SocketAddr { ip: super::from_rtio(ip), port: port })) } Err(e) => Err(IoError::from_rtio_error(e)), } } #[allow(missing_doc)] #[deprecated = "renamed to `recv_from`"] pub fn recvfrom(&mut self, buf: &mut [u8]) -> IoResult<(uint, SocketAddr)> { self.recv_from(buf) } /// Sends data on the socket to the given address. Returns nothing on /// success. pub fn send_to(&mut self, buf: &[u8], dst: SocketAddr) -> IoResult<()> { self.obj.send_to(buf, rtio::SocketAddr { ip: super::to_rtio(dst.ip), port: dst.port, }).map_err(IoError::from_rtio_error) } #[allow(missing_doc)] #[deprecated = "renamed to `send_to`"] pub fn sendto(&mut self, buf: &[u8], dst: SocketAddr) -> IoResult<()> { self.send_to(buf, dst) } /// Creates a `UdpStream`, which allows use of the `Reader` and `Writer` /// traits to receive and send data from the same address. This transfers /// ownership of the socket to the stream. /// /// Note that this call does not perform any actual network communication, /// because UDP is a datagram protocol. pub fn connect(self, other: SocketAddr) -> UdpStream { UdpStream { socket: self, connected_to: other, } } /// Returns the socket address that this socket was created from. pub fn socket_name(&mut self) -> IoResult { match self.obj.socket_name() { Ok(a) => Ok(SocketAddr { ip: super::from_rtio(a.ip), port: a.port }), Err(e) => Err(IoError::from_rtio_error(e)) } } /// Joins a multicast IP address (becomes a member of it) #[experimental] pub fn join_multicast(&mut self, multi: IpAddr) -> IoResult<()> { let e = self.obj.join_multicast(super::to_rtio(multi)); e.map_err(IoError::from_rtio_error) } /// Leaves a multicast IP address (drops membership from it) #[experimental] pub fn leave_multicast(&mut self, multi: IpAddr) -> IoResult<()> { let e = self.obj.leave_multicast(super::to_rtio(multi)); e.map_err(IoError::from_rtio_error) } /// Set the multicast loop flag to the specified value /// /// This lets multicast packets loop back to local sockets (if enabled) #[experimental] pub fn set_multicast_loop(&mut self, on: bool) -> IoResult<()> { if on { self.obj.loop_multicast_locally() } else { self.obj.dont_loop_multicast_locally() }.map_err(IoError::from_rtio_error) } /// Sets the multicast TTL #[experimental] pub fn set_multicast_ttl(&mut self, ttl: int) -> IoResult<()> { self.obj.multicast_time_to_live(ttl).map_err(IoError::from_rtio_error) } /// Sets this socket's TTL #[experimental] pub fn set_ttl(&mut self, ttl: int) -> IoResult<()> { self.obj.time_to_live(ttl).map_err(IoError::from_rtio_error) } /// Sets the broadcast flag on or off #[experimental] pub fn set_broadcast(&mut self, broadcast: bool) -> IoResult<()> { if broadcast { self.obj.hear_broadcasts() } else { self.obj.ignore_broadcasts() }.map_err(IoError::from_rtio_error) } /// Sets the broadcast flag on or off #[deprecated="renamed to `set_broadcast`"] pub fn set_broadast(&mut self, broadcast: bool) -> IoResult<()> { self.set_broadcast(broadcast) } /// Sets the read/write timeout for this socket. /// /// For more information, see `TcpStream::set_timeout` #[experimental = "the timeout argument may change in type and value"] pub fn set_timeout(&mut self, timeout_ms: Option) { self.obj.set_timeout(timeout_ms) } /// Sets the read timeout for this socket. /// /// For more information, see `TcpStream::set_timeout` #[experimental = "the timeout argument may change in type and value"] pub fn set_read_timeout(&mut self, timeout_ms: Option) { self.obj.set_read_timeout(timeout_ms) } /// Sets the write timeout for this socket. /// /// For more information, see `TcpStream::set_timeout` #[experimental = "the timeout argument may change in type and value"] pub fn set_write_timeout(&mut self, timeout_ms: Option) { self.obj.set_write_timeout(timeout_ms) } } impl Clone for UdpSocket { /// Creates a new handle to this UDP socket, allowing for simultaneous /// reads and writes of the socket. /// /// The underlying UDP socket will not be closed until all handles to the /// socket have been deallocated. Two concurrent reads will not receive /// the same data. Instead, the first read will receive the first packet /// received, and the second read will receive the second packet. fn clone(&self) -> UdpSocket { UdpSocket { obj: self.obj.clone(), } } } /// A type that allows convenient usage of a UDP stream connected to one /// address via the `Reader` and `Writer` traits. pub struct UdpStream { socket: UdpSocket, connected_to: SocketAddr } impl UdpStream { /// Allows access to the underlying UDP socket owned by this stream. This /// is useful to, for example, use the socket to send data to hosts other /// than the one that this stream is connected to. pub fn as_socket(&mut self, f: |&mut UdpSocket| -> T) -> T { f(&mut self.socket) } /// Consumes this UDP stream and returns out the underlying socket. pub fn disconnect(self) -> UdpSocket { self.socket } } impl Reader for UdpStream { fn read(&mut self, buf: &mut [u8]) -> IoResult { let peer = self.connected_to; self.as_socket(|sock| { match sock.recv_from(buf) { Ok((_nread, src)) if src != peer => Ok(0), Ok((nread, _src)) => Ok(nread), Err(e) => Err(e), } }) } } impl Writer for UdpStream { fn write(&mut self, buf: &[u8]) -> IoResult<()> { let connected_to = self.connected_to; self.as_socket(|sock| sock.send_to(buf, connected_to)) } } #[cfg(test)] #[allow(experimental)] mod test { use super::*; use io::net::ip::{SocketAddr}; // FIXME #11530 this fails on android because tests are run as root iotest!(fn bind_error() { let addr = SocketAddr { ip: Ipv4Addr(0, 0, 0, 0), port: 1 }; match UdpSocket::bind(addr) { Ok(..) => fail!(), Err(e) => assert_eq!(e.kind, PermissionDenied), } } #[ignore(cfg(windows))] #[ignore(cfg(target_os = "android"))]) iotest!(fn socket_smoke_test_ip4() { let server_ip = next_test_ip4(); let client_ip = next_test_ip4(); let (tx1, rx1) = channel(); let (tx2, rx2) = channel(); spawn(proc() { match UdpSocket::bind(client_ip) { Ok(ref mut client) => { rx1.recv(); client.send_to([99], server_ip).unwrap() } Err(..) => fail!() } tx2.send(()); }); match UdpSocket::bind(server_ip) { Ok(ref mut server) => { tx1.send(()); let mut buf = [0]; match server.recv_from(buf) { Ok((nread, src)) => { assert_eq!(nread, 1); assert_eq!(buf[0], 99); assert_eq!(src, client_ip); } Err(..) => fail!() } } Err(..) => fail!() } rx2.recv(); }) iotest!(fn socket_smoke_test_ip6() { let server_ip = next_test_ip6(); let client_ip = next_test_ip6(); let (tx, rx) = channel::<()>(); spawn(proc() { match UdpSocket::bind(client_ip) { Ok(ref mut client) => { rx.recv(); client.send_to([99], server_ip).unwrap() } Err(..) => fail!() } }); match UdpSocket::bind(server_ip) { Ok(ref mut server) => { tx.send(()); let mut buf = [0]; match server.recv_from(buf) { Ok((nread, src)) => { assert_eq!(nread, 1); assert_eq!(buf[0], 99); assert_eq!(src, client_ip); } Err(..) => fail!() } } Err(..) => fail!() } }) iotest!(fn stream_smoke_test_ip4() { let server_ip = next_test_ip4(); let client_ip = next_test_ip4(); let (tx1, rx1) = channel(); let (tx2, rx2) = channel(); spawn(proc() { match UdpSocket::bind(client_ip) { Ok(client) => { let client = box client; let mut stream = client.connect(server_ip); rx1.recv(); stream.write([99]).unwrap(); } Err(..) => fail!() } tx2.send(()); }); match UdpSocket::bind(server_ip) { Ok(server) => { let server = box server; let mut stream = server.connect(client_ip); tx1.send(()); let mut buf = [0]; match stream.read(buf) { Ok(nread) => { assert_eq!(nread, 1); assert_eq!(buf[0], 99); } Err(..) => fail!() } } Err(..) => fail!() } rx2.recv(); }) iotest!(fn stream_smoke_test_ip6() { let server_ip = next_test_ip6(); let client_ip = next_test_ip6(); let (tx1, rx1) = channel(); let (tx2, rx2) = channel(); spawn(proc() { match UdpSocket::bind(client_ip) { Ok(client) => { let client = box client; let mut stream = client.connect(server_ip); rx1.recv(); stream.write([99]).unwrap(); } Err(..) => fail!() } tx2.send(()); }); match UdpSocket::bind(server_ip) { Ok(server) => { let server = box server; let mut stream = server.connect(client_ip); tx1.send(()); let mut buf = [0]; match stream.read(buf) { Ok(nread) => { assert_eq!(nread, 1); assert_eq!(buf[0], 99); } Err(..) => fail!() } } Err(..) => fail!() } rx2.recv(); }) pub fn socket_name(addr: SocketAddr) { let server = UdpSocket::bind(addr); assert!(server.is_ok()); let mut server = server.unwrap(); // Make sure socket_name gives // us the socket we binded to. let so_name = server.socket_name(); assert!(so_name.is_ok()); assert_eq!(addr, so_name.unwrap()); } iotest!(fn socket_name_ip4() { socket_name(next_test_ip4()); }) iotest!(fn socket_name_ip6() { socket_name(next_test_ip6()); }) iotest!(fn udp_clone_smoke() { let addr1 = next_test_ip4(); let addr2 = next_test_ip4(); let mut sock1 = UdpSocket::bind(addr1).unwrap(); let sock2 = UdpSocket::bind(addr2).unwrap(); spawn(proc() { let mut sock2 = sock2; let mut buf = [0, 0]; assert_eq!(sock2.recv_from(buf), Ok((1, addr1))); assert_eq!(buf[0], 1); sock2.send_to([2], addr1).unwrap(); }); let sock3 = sock1.clone(); let (tx1, rx1) = channel(); let (tx2, rx2) = channel(); spawn(proc() { let mut sock3 = sock3; rx1.recv(); sock3.send_to([1], addr2).unwrap(); tx2.send(()); }); tx1.send(()); let mut buf = [0, 0]; assert_eq!(sock1.recv_from(buf), Ok((1, addr2))); rx2.recv(); }) iotest!(fn udp_clone_two_read() { let addr1 = next_test_ip4(); let addr2 = next_test_ip4(); let mut sock1 = UdpSocket::bind(addr1).unwrap(); let sock2 = UdpSocket::bind(addr2).unwrap(); let (tx1, rx) = channel(); let tx2 = tx1.clone(); spawn(proc() { let mut sock2 = sock2; sock2.send_to([1], addr1).unwrap(); rx.recv(); sock2.send_to([2], addr1).unwrap(); rx.recv(); }); let sock3 = sock1.clone(); let (done, rx) = channel(); spawn(proc() { let mut sock3 = sock3; let mut buf = [0, 0]; sock3.recv_from(buf).unwrap(); tx2.send(()); done.send(()); }); let mut buf = [0, 0]; sock1.recv_from(buf).unwrap(); tx1.send(()); rx.recv(); }) iotest!(fn udp_clone_two_write() { let addr1 = next_test_ip4(); let addr2 = next_test_ip4(); let mut sock1 = UdpSocket::bind(addr1).unwrap(); let sock2 = UdpSocket::bind(addr2).unwrap(); let (tx, rx) = channel(); let (serv_tx, serv_rx) = channel(); spawn(proc() { let mut sock2 = sock2; let mut buf = [0, 1]; rx.recv(); match sock2.recv_from(buf) { Ok(..) => {} Err(e) => fail!("failed receive: {}", e), } serv_tx.send(()); }); let sock3 = sock1.clone(); let (done, rx) = channel(); let tx2 = tx.clone(); spawn(proc() { let mut sock3 = sock3; match sock3.send_to([1], addr2) { Ok(..) => { let _ = tx2.send_opt(()); } Err(..) => {} } done.send(()); }); match sock1.send_to([2], addr2) { Ok(..) => { let _ = tx.send_opt(()); } Err(..) => {} } drop(tx); rx.recv(); serv_rx.recv(); }) iotest!(fn recv_from_timeout() { let addr1 = next_test_ip4(); let addr2 = next_test_ip4(); let mut a = UdpSocket::bind(addr1).unwrap(); let (tx, rx) = channel(); let (tx2, rx2) = channel(); spawn(proc() { let mut a = UdpSocket::bind(addr2).unwrap(); assert_eq!(a.recv_from([0]), Ok((1, addr1))); assert_eq!(a.send_to([0], addr1), Ok(())); rx.recv(); assert_eq!(a.send_to([0], addr1), Ok(())); tx2.send(()); }); // Make sure that reads time out, but writes can continue a.set_read_timeout(Some(20)); assert_eq!(a.recv_from([0]).err().unwrap().kind, TimedOut); assert_eq!(a.recv_from([0]).err().unwrap().kind, TimedOut); assert_eq!(a.send_to([0], addr2), Ok(())); // Cloned handles should be able to block let mut a2 = a.clone(); assert_eq!(a2.recv_from([0]), Ok((1, addr2))); // Clearing the timeout should allow for receiving a.set_timeout(None); tx.send(()); assert_eq!(a2.recv_from([0]), Ok((1, addr2))); // Make sure the child didn't die rx2.recv(); }) iotest!(fn send_to_timeout() { let addr1 = next_test_ip4(); let addr2 = next_test_ip4(); let mut a = UdpSocket::bind(addr1).unwrap(); let _b = UdpSocket::bind(addr2).unwrap(); a.set_write_timeout(Some(1000)); for _ in range(0u, 100) { match a.send_to([0, ..4*1024], addr2) { Ok(()) | Err(IoError { kind: ShortWrite(..), .. }) => {}, Err(IoError { kind: TimedOut, .. }) => break, Err(e) => fail!("other error: {}", e), } } }) }