//! An algorithm to find a path to refer to a certain item. use std::iter; use hir_expand::name::{known, AsName, Name}; use rustc_hash::FxHashSet; use crate::nameres::DefMap; use crate::{ db::DefDatabase, item_scope::ItemInNs, path::{ModPath, PathKind}, visibility::Visibility, ModuleDefId, ModuleId, }; /// Find a path that can be used to refer to a certain item. This can depend on /// *from where* you're referring to the item, hence the `from` parameter. pub fn find_path(db: &dyn DefDatabase, item: ItemInNs, from: ModuleId) -> Option { let _p = profile::span("find_path"); let mut visited_modules = FxHashSet::default(); find_path_inner(db, item, from, MAX_PATH_LEN, None, &mut visited_modules) } pub fn find_path_prefixed( db: &dyn DefDatabase, item: ItemInNs, from: ModuleId, prefix_kind: PrefixKind, ) -> Option { let _p = profile::span("find_path_prefixed"); let mut visited_modules = FxHashSet::default(); find_path_inner(db, item, from, MAX_PATH_LEN, Some(prefix_kind), &mut visited_modules) } const MAX_PATH_LEN: usize = 15; impl ModPath { fn starts_with_std(&self) -> bool { self.segments().first() == Some(&known::std) } // When std library is present, paths starting with `std::` // should be preferred over paths starting with `core::` and `alloc::` fn can_start_with_std(&self) -> bool { let first_segment = self.segments().first(); first_segment == Some(&known::alloc) || first_segment == Some(&known::core) } } fn check_self_super(def_map: &DefMap, item: ItemInNs, from: ModuleId) -> Option { if item == ItemInNs::Types(from.into()) { // - if the item is the module we're in, use `self` Some(ModPath::from_segments(PathKind::Super(0), Vec::new())) } else if let Some(parent_id) = def_map[from.local_id].parent { // - if the item is the parent module, use `super` (this is not used recursively, since `super::super` is ugly) let parent_id = def_map.module_id(parent_id); if item == ItemInNs::Types(ModuleDefId::ModuleId(parent_id)) { Some(ModPath::from_segments(PathKind::Super(1), Vec::new())) } else { None } } else { None } } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum PrefixKind { /// Causes paths to always start with either `self`, `super`, `crate` or a crate-name. /// This is the same as plain, just that paths will start with `self` iprepended f the path /// starts with an identifier that is not a crate. BySelf, /// Causes paths to ignore imports in the local module. Plain, /// Causes paths to start with `crate` where applicable, effectively forcing paths to be absolute. ByCrate, } impl PrefixKind { #[inline] fn prefix(self) -> PathKind { match self { PrefixKind::BySelf => PathKind::Super(0), PrefixKind::Plain => PathKind::Plain, PrefixKind::ByCrate => PathKind::Crate, } } #[inline] fn is_absolute(&self) -> bool { self == &PrefixKind::ByCrate } } fn find_path_inner( db: &dyn DefDatabase, item: ItemInNs, from: ModuleId, max_len: usize, mut prefixed: Option, visited_modules: &mut FxHashSet, ) -> Option { if max_len == 0 { return None; } // Base cases: // - if the item is already in scope, return the name under which it is let def_map = from.def_map(db); let scope_name = def_map.with_ancestor_maps(db, from.local_id, &mut |def_map, local_id| { def_map[local_id].scope.name_of(item).map(|(name, _)| name.clone()) }); if prefixed.is_none() && scope_name.is_some() { return scope_name .map(|scope_name| ModPath::from_segments(PathKind::Plain, vec![scope_name])); } // - if the item is the crate root, return `crate` let root = def_map.crate_root(db); if item == ItemInNs::Types(ModuleDefId::ModuleId(root)) && def_map.block_id().is_none() { // FIXME: the `block_id()` check should be unnecessary, but affects the result return Some(ModPath::from_segments(PathKind::Crate, Vec::new())); } if prefixed.filter(PrefixKind::is_absolute).is_none() { if let modpath @ Some(_) = check_self_super(&def_map, item, from) { return modpath; } } // - if the item is the crate root of a dependency crate, return the name from the extern prelude for (name, def_id) in def_map.extern_prelude() { if item == ItemInNs::Types(*def_id) { let name = scope_name.unwrap_or_else(|| name.clone()); return Some(ModPath::from_segments(PathKind::Plain, vec![name])); } } // - if the item is in the prelude, return the name from there if let Some(prelude_module) = def_map.prelude() { let prelude_def_map = prelude_module.def_map(db); let prelude_scope: &crate::item_scope::ItemScope = &prelude_def_map[prelude_module.local_id].scope; if let Some((name, vis)) = prelude_scope.name_of(item) { if vis.is_visible_from(db, from) { return Some(ModPath::from_segments(PathKind::Plain, vec![name.clone()])); } } } // - if the item is a builtin, it's in scope if let ItemInNs::Types(ModuleDefId::BuiltinType(builtin)) = item { return Some(ModPath::from_segments(PathKind::Plain, vec![builtin.as_name()])); } // Recursive case: // - if the item is an enum variant, refer to it via the enum if let Some(ModuleDefId::EnumVariantId(variant)) = item.as_module_def_id() { if let Some(mut path) = find_path(db, ItemInNs::Types(variant.parent.into()), from) { let data = db.enum_data(variant.parent); path.push_segment(data.variants[variant.local_id].name.clone()); return Some(path); } // If this doesn't work, it seems we have no way of referring to the // enum; that's very weird, but there might still be a reexport of the // variant somewhere } // - otherwise, look for modules containing (reexporting) it and import it from one of those let crate_root = def_map.crate_root(db); let crate_attrs = db.attrs(crate_root.into()); let prefer_no_std = crate_attrs.by_key("no_std").exists(); let mut best_path = None; let mut best_path_len = max_len; if item.krate(db) == Some(from.krate) { // Item was defined in the same crate that wants to import it. It cannot be found in any // dependency in this case. for (module_id, name) in find_local_import_locations(db, item, from) { if !visited_modules.insert(module_id) { continue; } if let Some(mut path) = find_path_inner( db, ItemInNs::Types(ModuleDefId::ModuleId(module_id)), from, best_path_len - 1, prefixed, visited_modules, ) { path.push_segment(name); let new_path = if let Some(best_path) = best_path { select_best_path(best_path, path, prefer_no_std) } else { path }; best_path_len = new_path.len(); best_path = Some(new_path); } } } else { // Item was defined in some upstream crate. This means that it must be exported from one, // too (unless we can't name it at all). It could *also* be (re)exported by the same crate // that wants to import it here, but we always prefer to use the external path here. let crate_graph = db.crate_graph(); let extern_paths = crate_graph[from.krate].dependencies.iter().filter_map(|dep| { let import_map = db.import_map(dep.crate_id); import_map.import_info_for(item).and_then(|info| { // Determine best path for containing module and append last segment from `info`. let mut path = find_path_inner( db, ItemInNs::Types(ModuleDefId::ModuleId(info.container)), from, best_path_len - 1, prefixed, visited_modules, )?; cov_mark::hit!(partially_imported); path.push_segment(info.path.segments.last().unwrap().clone()); Some(path) }) }); for path in extern_paths { let new_path = if let Some(best_path) = best_path { select_best_path(best_path, path, prefer_no_std) } else { path }; best_path = Some(new_path); } } // If the item is declared inside a block expression, don't use a prefix, as we don't handle // that correctly (FIXME). if let Some(item_module) = item.as_module_def_id().and_then(|did| did.module(db)) { if item_module.def_map(db).block_id().is_some() && prefixed.is_some() { cov_mark::hit!(prefixed_in_block_expression); prefixed = Some(PrefixKind::Plain); } } if let Some(prefix) = prefixed.map(PrefixKind::prefix) { best_path.or_else(|| { scope_name.map(|scope_name| ModPath::from_segments(prefix, vec![scope_name])) }) } else { best_path } } fn select_best_path(old_path: ModPath, new_path: ModPath, prefer_no_std: bool) -> ModPath { if old_path.starts_with_std() && new_path.can_start_with_std() { if prefer_no_std { cov_mark::hit!(prefer_no_std_paths); new_path } else { cov_mark::hit!(prefer_std_paths); old_path } } else if new_path.starts_with_std() && old_path.can_start_with_std() { if prefer_no_std { cov_mark::hit!(prefer_no_std_paths); old_path } else { cov_mark::hit!(prefer_std_paths); new_path } } else if new_path.len() < old_path.len() { new_path } else { old_path } } /// Finds locations in `from.krate` from which `item` can be imported by `from`. fn find_local_import_locations( db: &dyn DefDatabase, item: ItemInNs, from: ModuleId, ) -> Vec<(ModuleId, Name)> { let _p = profile::span("find_local_import_locations"); // `from` can import anything below `from` with visibility of at least `from`, and anything // above `from` with any visibility. That means we do not need to descend into private siblings // of `from` (and similar). let def_map = from.def_map(db); // Compute the initial worklist. We start with all direct child modules of `from` as well as all // of its (recursive) parent modules. let data = &def_map[from.local_id]; let mut worklist = data.children.values().map(|child| def_map.module_id(*child)).collect::>(); for ancestor in iter::successors(from.containing_module(db), |m| m.containing_module(db)) { worklist.push(ancestor); } let def_map = def_map.crate_root(db).def_map(db); let mut seen: FxHashSet<_> = FxHashSet::default(); let mut locations = Vec::new(); while let Some(module) = worklist.pop() { if !seen.insert(module) { continue; // already processed this module } let ext_def_map; let data = if module.krate == from.krate { if module.block.is_some() { // Re-query the block's DefMap ext_def_map = module.def_map(db); &ext_def_map[module.local_id] } else { // Reuse the root DefMap &def_map[module.local_id] } } else { // The crate might reexport a module defined in another crate. ext_def_map = module.def_map(db); &ext_def_map[module.local_id] }; if let Some((name, vis)) = data.scope.name_of(item) { if vis.is_visible_from(db, from) { let is_private = if let Visibility::Module(private_to) = vis { private_to.local_id == module.local_id } else { false }; let is_original_def = if let Some(module_def_id) = item.as_module_def_id() { data.scope.declarations().any(|it| it == module_def_id) } else { false }; // Ignore private imports. these could be used if we are // in a submodule of this module, but that's usually not // what the user wants; and if this module can import // the item and we're a submodule of it, so can we. // Also this keeps the cached data smaller. if !is_private || is_original_def { locations.push((module, name.clone())); } } } // Descend into all modules visible from `from`. for (_, per_ns) in data.scope.entries() { if let Some((ModuleDefId::ModuleId(module), vis)) = per_ns.take_types_vis() { if vis.is_visible_from(db, from) { worklist.push(module); } } } } locations } #[cfg(test)] mod tests { use base_db::fixture::WithFixture; use hir_expand::hygiene::Hygiene; use syntax::ast::AstNode; use crate::test_db::TestDB; use super::*; /// `code` needs to contain a cursor marker; checks that `find_path` for the /// item the `path` refers to returns that same path when called from the /// module the cursor is in. fn check_found_path_(ra_fixture: &str, path: &str, prefix_kind: Option) { let (db, pos) = TestDB::with_position(ra_fixture); let module = db.module_at_position(pos); let parsed_path_file = syntax::SourceFile::parse(&format!("use {};", path)); let ast_path = parsed_path_file.syntax_node().descendants().find_map(syntax::ast::Path::cast).unwrap(); let mod_path = ModPath::from_src(ast_path, &Hygiene::new_unhygienic()).unwrap(); let def_map = module.def_map(&db); let resolved = def_map .resolve_path( &db, module.local_id, &mod_path, crate::item_scope::BuiltinShadowMode::Module, ) .0 .take_types() .unwrap(); let mut visited_modules = FxHashSet::default(); let found_path = find_path_inner( &db, ItemInNs::Types(resolved), module, MAX_PATH_LEN, prefix_kind, &mut visited_modules, ); assert_eq!(found_path, Some(mod_path), "{:?}", prefix_kind); } fn check_found_path( ra_fixture: &str, unprefixed: &str, prefixed: &str, absolute: &str, self_prefixed: &str, ) { check_found_path_(ra_fixture, unprefixed, None); check_found_path_(ra_fixture, prefixed, Some(PrefixKind::Plain)); check_found_path_(ra_fixture, absolute, Some(PrefixKind::ByCrate)); check_found_path_(ra_fixture, self_prefixed, Some(PrefixKind::BySelf)); } #[test] fn same_module() { let code = r#" //- /main.rs struct S; $0 "#; check_found_path(code, "S", "S", "crate::S", "self::S"); } #[test] fn enum_variant() { let code = r#" //- /main.rs enum E { A } $0 "#; check_found_path(code, "E::A", "E::A", "E::A", "E::A"); } #[test] fn sub_module() { let code = r#" //- /main.rs mod foo { pub struct S; } $0 "#; check_found_path(code, "foo::S", "foo::S", "crate::foo::S", "self::foo::S"); } #[test] fn super_module() { let code = r#" //- /main.rs mod foo; //- /foo.rs mod bar; struct S; //- /foo/bar.rs $0 "#; check_found_path(code, "super::S", "super::S", "crate::foo::S", "super::S"); } #[test] fn self_module() { let code = r#" //- /main.rs mod foo; //- /foo.rs $0 "#; check_found_path(code, "self", "self", "crate::foo", "self"); } #[test] fn crate_root() { let code = r#" //- /main.rs mod foo; //- /foo.rs $0 "#; check_found_path(code, "crate", "crate", "crate", "crate"); } #[test] fn same_crate() { let code = r#" //- /main.rs mod foo; struct S; //- /foo.rs $0 "#; check_found_path(code, "crate::S", "crate::S", "crate::S", "crate::S"); } #[test] fn different_crate() { let code = r#" //- /main.rs crate:main deps:std $0 //- /std.rs crate:std pub struct S; "#; check_found_path(code, "std::S", "std::S", "std::S", "std::S"); } #[test] fn different_crate_renamed() { let code = r#" //- /main.rs crate:main deps:std extern crate std as std_renamed; $0 //- /std.rs crate:std pub struct S; "#; check_found_path( code, "std_renamed::S", "std_renamed::S", "std_renamed::S", "std_renamed::S", ); } #[test] fn partially_imported() { cov_mark::check!(partially_imported); // Tests that short paths are used even for external items, when parts of the path are // already in scope. let code = r#" //- /main.rs crate:main deps:syntax use syntax::ast; $0 //- /lib.rs crate:syntax pub mod ast { pub enum ModuleItem { A, B, C, } } "#; check_found_path( code, "ast::ModuleItem", "syntax::ast::ModuleItem", "syntax::ast::ModuleItem", "syntax::ast::ModuleItem", ); let code = r#" //- /main.rs crate:main deps:syntax $0 //- /lib.rs crate:syntax pub mod ast { pub enum ModuleItem { A, B, C, } } "#; check_found_path( code, "syntax::ast::ModuleItem", "syntax::ast::ModuleItem", "syntax::ast::ModuleItem", "syntax::ast::ModuleItem", ); } #[test] fn same_crate_reexport() { let code = r#" //- /main.rs mod bar { mod foo { pub(super) struct S; } pub(crate) use foo::*; } $0 "#; check_found_path(code, "bar::S", "bar::S", "crate::bar::S", "self::bar::S"); } #[test] fn same_crate_reexport_rename() { let code = r#" //- /main.rs mod bar { mod foo { pub(super) struct S; } pub(crate) use foo::S as U; } $0 "#; check_found_path(code, "bar::U", "bar::U", "crate::bar::U", "self::bar::U"); } #[test] fn different_crate_reexport() { let code = r#" //- /main.rs crate:main deps:std $0 //- /std.rs crate:std deps:core pub use core::S; //- /core.rs crate:core pub struct S; "#; check_found_path(code, "std::S", "std::S", "std::S", "std::S"); } #[test] fn prelude() { let code = r#" //- /main.rs crate:main deps:std $0 //- /std.rs crate:std pub mod prelude { pub struct S; } #[prelude_import] pub use prelude::*; "#; check_found_path(code, "S", "S", "S", "S"); } #[test] fn enum_variant_from_prelude() { let code = r#" //- /main.rs crate:main deps:std $0 //- /std.rs crate:std pub mod prelude { pub enum Option { Some(T), None } pub use Option::*; } #[prelude_import] pub use prelude::*; "#; check_found_path(code, "None", "None", "None", "None"); check_found_path(code, "Some", "Some", "Some", "Some"); } #[test] fn shortest_path() { let code = r#" //- /main.rs pub mod foo; pub mod baz; struct S; $0 //- /foo.rs pub mod bar { pub struct S; } //- /baz.rs pub use crate::foo::bar::S; "#; check_found_path(code, "baz::S", "baz::S", "crate::baz::S", "self::baz::S"); } #[test] fn discount_private_imports() { let code = r#" //- /main.rs mod foo; pub mod bar { pub struct S; } use bar::S; //- /foo.rs $0 "#; // crate::S would be shorter, but using private imports seems wrong check_found_path(code, "crate::bar::S", "crate::bar::S", "crate::bar::S", "crate::bar::S"); } #[test] fn import_cycle() { let code = r#" //- /main.rs pub mod foo; pub mod bar; pub mod baz; //- /bar.rs $0 //- /foo.rs pub use super::baz; pub struct S; //- /baz.rs pub use super::foo; "#; check_found_path(code, "crate::foo::S", "crate::foo::S", "crate::foo::S", "crate::foo::S"); } #[test] fn prefer_std_paths_over_alloc() { cov_mark::check!(prefer_std_paths); let code = r#" //- /main.rs crate:main deps:alloc,std $0 //- /std.rs crate:std deps:alloc pub mod sync { pub use alloc::sync::Arc; } //- /zzz.rs crate:alloc pub mod sync { pub struct Arc; } "#; check_found_path( code, "std::sync::Arc", "std::sync::Arc", "std::sync::Arc", "std::sync::Arc", ); } #[test] fn prefer_core_paths_over_std() { cov_mark::check!(prefer_no_std_paths); let code = r#" //- /main.rs crate:main deps:core,std #![no_std] $0 //- /std.rs crate:std deps:core pub mod fmt { pub use core::fmt::Error; } //- /zzz.rs crate:core pub mod fmt { pub struct Error; } "#; check_found_path( code, "core::fmt::Error", "core::fmt::Error", "core::fmt::Error", "core::fmt::Error", ); } #[test] fn prefer_alloc_paths_over_std() { let code = r#" //- /main.rs crate:main deps:alloc,std #![no_std] $0 //- /std.rs crate:std deps:alloc pub mod sync { pub use alloc::sync::Arc; } //- /zzz.rs crate:alloc pub mod sync { pub struct Arc; } "#; check_found_path( code, "alloc::sync::Arc", "alloc::sync::Arc", "alloc::sync::Arc", "alloc::sync::Arc", ); } #[test] fn prefer_shorter_paths_if_not_alloc() { let code = r#" //- /main.rs crate:main deps:megaalloc,std $0 //- /std.rs crate:std deps:megaalloc pub mod sync { pub use megaalloc::sync::Arc; } //- /zzz.rs crate:megaalloc pub struct Arc; "#; check_found_path( code, "megaalloc::Arc", "megaalloc::Arc", "megaalloc::Arc", "megaalloc::Arc", ); } #[test] fn builtins_are_in_scope() { let code = r#" //- /main.rs $0 pub mod primitive { pub use u8; } "#; check_found_path(code, "u8", "u8", "u8", "u8"); check_found_path(code, "u16", "u16", "u16", "u16"); } #[test] fn inner_items() { check_found_path( r#" fn main() { struct Inner {} $0 } "#, "Inner", "Inner", "Inner", "Inner", ); } #[test] fn inner_items_from_outer_scope() { check_found_path( r#" fn main() { struct Struct {} { $0 } } "#, "Struct", "Struct", "Struct", "Struct", ); } #[test] fn inner_items_from_inner_module() { cov_mark::check!(prefixed_in_block_expression); check_found_path( r#" fn main() { mod module { struct Struct {} } { $0 } } "#, "module::Struct", "module::Struct", "module::Struct", "module::Struct", ); } #[test] fn outer_items_with_inner_items_present() { check_found_path( r#" mod module { pub struct CompleteMe; } fn main() { fn inner() {} $0 } "#, "module::CompleteMe", "module::CompleteMe", "crate::module::CompleteMe", "self::module::CompleteMe", ) } #[test] fn recursive_pub_mod_reexport() { check_found_path( r#" fn main() { let _ = 22_i32.as_name$0(); } pub mod name { pub trait AsName { fn as_name(&self) -> String; } impl AsName for i32 { fn as_name(&self) -> String { format!("Name: {}", self) } } pub use crate::name; } "#, "name::AsName", "name::AsName", "crate::name::AsName", "self::name::AsName", ); } }