//! An analysis to determine which locals require allocas and //! which do not. use super::FunctionCx; use crate::traits::*; use rustc::mir::traversal; use rustc::mir::visit::{ MutatingUseContext, NonMutatingUseContext, NonUseContext, PlaceContext, Visitor, }; use rustc::mir::{self, Location, TerminatorKind}; use rustc::session::config::DebugInfo; use rustc::ty; use rustc::ty::layout::{HasTyCtxt, LayoutOf}; use rustc_data_structures::graph::dominators::Dominators; use rustc_index::bit_set::BitSet; use rustc_index::vec::{Idx, IndexVec}; pub fn non_ssa_locals<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( fx: &FunctionCx<'a, 'tcx, Bx>, ) -> BitSet { let mir = fx.mir; let mut analyzer = LocalAnalyzer::new(fx); analyzer.visit_body(mir); for (local, decl) in mir.local_decls.iter_enumerated() { // FIXME(eddyb): We should figure out how to use llvm.dbg.value instead // of putting everything in allocas just so we can use llvm.dbg.declare. if fx.cx.sess().opts.debuginfo == DebugInfo::Full { if fx.mir.local_kind(local) == mir::LocalKind::Arg { analyzer.not_ssa(local); continue; } } let ty = fx.monomorphize(&decl.ty); debug!("local {:?} has type `{}`", local, ty); let layout = fx.cx.spanned_layout_of(ty, decl.source_info.span); if fx.cx.is_backend_immediate(layout) { // These sorts of types are immediates that we can store // in an Value without an alloca. } else if fx.cx.is_backend_scalar_pair(layout) { // We allow pairs and uses of any of their 2 fields. } else { // These sorts of types require an alloca. Note that // is_llvm_immediate() may *still* be true, particularly // for newtypes, but we currently force some types // (e.g., structs) into an alloca unconditionally, just so // that we don't have to deal with having two pathways // (gep vs extractvalue etc). analyzer.not_ssa(local); } } analyzer.non_ssa_locals } struct LocalAnalyzer<'mir, 'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> { fx: &'mir FunctionCx<'a, 'tcx, Bx>, dominators: Dominators, non_ssa_locals: BitSet, // The location of the first visited direct assignment to each // local, or an invalid location (out of bounds `block` index). first_assignment: IndexVec, } impl> LocalAnalyzer<'mir, 'a, 'tcx, Bx> { fn new(fx: &'mir FunctionCx<'a, 'tcx, Bx>) -> Self { let invalid_location = mir::BasicBlock::new(fx.mir.basic_blocks().len()).start_location(); let dominators = fx.mir.dominators(); let mut analyzer = LocalAnalyzer { fx, dominators, non_ssa_locals: BitSet::new_empty(fx.mir.local_decls.len()), first_assignment: IndexVec::from_elem(invalid_location, &fx.mir.local_decls), }; // Arguments get assigned to by means of the function being called for arg in fx.mir.args_iter() { analyzer.first_assignment[arg] = mir::START_BLOCK.start_location(); } analyzer } fn first_assignment(&self, local: mir::Local) -> Option { let location = self.first_assignment[local]; if location.block.index() < self.fx.mir.basic_blocks().len() { Some(location) } else { None } } fn not_ssa(&mut self, local: mir::Local) { debug!("marking {:?} as non-SSA", local); self.non_ssa_locals.insert(local); } fn assign(&mut self, local: mir::Local, location: Location) { if self.first_assignment(local).is_some() { self.not_ssa(local); } else { self.first_assignment[local] = location; } } fn process_place( &mut self, place_ref: &mir::PlaceRef<'_, 'tcx>, context: PlaceContext, location: Location, ) { let cx = self.fx.cx; if let [proj_base @ .., elem] = place_ref.projection { let mut base_context = if context.is_mutating_use() { PlaceContext::MutatingUse(MutatingUseContext::Projection) } else { PlaceContext::NonMutatingUse(NonMutatingUseContext::Projection) }; // Allow uses of projections that are ZSTs or from scalar fields. let is_consume = match context { PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy) | PlaceContext::NonMutatingUse(NonMutatingUseContext::Move) => true, _ => false, }; if is_consume { let base_ty = mir::Place::ty_from(place_ref.local, proj_base, *self.fx.mir, cx.tcx()); let base_ty = self.fx.monomorphize(&base_ty); // ZSTs don't require any actual memory access. let elem_ty = base_ty.projection_ty(cx.tcx(), elem).ty; let elem_ty = self.fx.monomorphize(&elem_ty); let span = self.fx.mir.local_decls[*place_ref.local].source_info.span; if cx.spanned_layout_of(elem_ty, span).is_zst() { return; } if let mir::ProjectionElem::Field(..) = elem { let layout = cx.spanned_layout_of(base_ty.ty, span); if cx.is_backend_immediate(layout) || cx.is_backend_scalar_pair(layout) { // Recurse with the same context, instead of `Projection`, // potentially stopping at non-operand projections, // which would trigger `not_ssa` on locals. base_context = context; } } } if let mir::ProjectionElem::Deref = elem { // Deref projections typically only read the pointer. // (the exception being `VarDebugInfo` contexts, handled below) base_context = PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy); // Indirect debuginfo requires going through memory, that only // the debugger accesses, following our emitted DWARF pointer ops. // // FIXME(eddyb) Investigate the possibility of relaxing this, but // note that `llvm.dbg.declare` *must* be used for indirect places, // even if we start using `llvm.dbg.value` for all other cases, // as we don't necessarily know when the value changes, but only // where it lives in memory. // // It's possible `llvm.dbg.declare` could support starting from // a pointer that doesn't point to an `alloca`, but this would // only be useful if we know the pointer being `Deref`'d comes // from an immutable place, and if `llvm.dbg.declare` calls // must be at the very start of the function, then only function // arguments could contain such pointers. if context == PlaceContext::NonUse(NonUseContext::VarDebugInfo) { // We use `NonUseContext::VarDebugInfo` for the base, // which might not force the base local to memory, // so we have to do it manually. self.visit_local(place_ref.local, context, location); } } // `NonUseContext::VarDebugInfo` needs to flow all the // way down to the base local (see `visit_local`). if context == PlaceContext::NonUse(NonUseContext::VarDebugInfo) { base_context = context; } self.process_place( &mir::PlaceRef { local: place_ref.local, projection: proj_base }, base_context, location, ); // HACK(eddyb) this emulates the old `visit_projection_elem`, this // entire `visit_place`-like `process_place` method should be rewritten, // now that we have moved to the "slice of projections" representation. if let mir::ProjectionElem::Index(local) = elem { self.visit_local( local, PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy), location, ); } } else { // FIXME this is super_place code, is repeated here to avoid cloning place or changing // visit_place API let mut context = context; if !place_ref.projection.is_empty() { context = if context.is_mutating_use() { PlaceContext::MutatingUse(MutatingUseContext::Projection) } else { PlaceContext::NonMutatingUse(NonMutatingUseContext::Projection) }; } self.visit_place_base(place_ref.local, context, location); self.visit_projection(place_ref.local, place_ref.projection, context, location); } } } impl<'mir, 'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> Visitor<'tcx> for LocalAnalyzer<'mir, 'a, 'tcx, Bx> { fn visit_assign( &mut self, place: &mir::Place<'tcx>, rvalue: &mir::Rvalue<'tcx>, location: Location, ) { debug!("visit_assign(place={:?}, rvalue={:?})", place, rvalue); if let Some(index) = place.as_local() { self.assign(index, location); let decl_span = self.fx.mir.local_decls[index].source_info.span; if !self.fx.rvalue_creates_operand(rvalue, decl_span) { self.not_ssa(index); } } else { self.visit_place(place, PlaceContext::MutatingUse(MutatingUseContext::Store), location); } self.visit_rvalue(rvalue, location); } fn visit_terminator_kind(&mut self, kind: &mir::TerminatorKind<'tcx>, location: Location) { let check = match *kind { mir::TerminatorKind::Call { func: mir::Operand::Constant(ref c), ref args, .. } => { match c.literal.ty.kind { ty::FnDef(did, _) => Some((did, args)), _ => None, } } _ => None, }; if let Some((def_id, args)) = check { if Some(def_id) == self.fx.cx.tcx().lang_items().box_free_fn() { // box_free(x) shares with `drop x` the property that it // is not guaranteed to be statically dominated by the // definition of x, so x must always be in an alloca. if let mir::Operand::Move(ref place) = args[0] { self.visit_place( place, PlaceContext::MutatingUse(MutatingUseContext::Drop), location, ); } } } self.super_terminator_kind(kind, location); } fn visit_place(&mut self, place: &mir::Place<'tcx>, context: PlaceContext, location: Location) { debug!("visit_place(place={:?}, context={:?})", place, context); self.process_place(&place.as_ref(), context, location); } fn visit_local(&mut self, &local: &mir::Local, context: PlaceContext, location: Location) { match context { PlaceContext::MutatingUse(MutatingUseContext::Call) => { self.assign(local, location); } PlaceContext::NonUse(NonUseContext::VarDebugInfo) => { // We need to keep locals in `alloca`s for debuginfo. // FIXME(eddyb): We should figure out how to use `llvm.dbg.value` instead // of putting everything in allocas just so we can use `llvm.dbg.declare`. if self.fx.cx.sess().opts.debuginfo == DebugInfo::Full { self.not_ssa(local); } } PlaceContext::NonUse(_) | PlaceContext::MutatingUse(MutatingUseContext::Retag) => {} PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy) | PlaceContext::NonMutatingUse(NonMutatingUseContext::Move) => { // Reads from uninitialized variables (e.g., in dead code, after // optimizations) require locals to be in (uninitialized) memory. // N.B., there can be uninitialized reads of a local visited after // an assignment to that local, if they happen on disjoint paths. let ssa_read = match self.first_assignment(local) { Some(assignment_location) => { assignment_location.dominates(location, &self.dominators) } None => false, }; if !ssa_read { self.not_ssa(local); } } PlaceContext::NonMutatingUse(NonMutatingUseContext::Inspect) | PlaceContext::MutatingUse(MutatingUseContext::Store) | PlaceContext::MutatingUse(MutatingUseContext::AsmOutput) | PlaceContext::MutatingUse(MutatingUseContext::Borrow) | PlaceContext::MutatingUse(MutatingUseContext::AddressOf) | PlaceContext::MutatingUse(MutatingUseContext::Projection) | PlaceContext::NonMutatingUse(NonMutatingUseContext::SharedBorrow) | PlaceContext::NonMutatingUse(NonMutatingUseContext::UniqueBorrow) | PlaceContext::NonMutatingUse(NonMutatingUseContext::ShallowBorrow) | PlaceContext::NonMutatingUse(NonMutatingUseContext::AddressOf) | PlaceContext::NonMutatingUse(NonMutatingUseContext::Projection) => { self.not_ssa(local); } PlaceContext::MutatingUse(MutatingUseContext::Drop) => { let ty = self.fx.mir.local_decls[local].ty; let ty = self.fx.monomorphize(&ty); // Only need the place if we're actually dropping it. if self.fx.cx.type_needs_drop(ty) { self.not_ssa(local); } } } } } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum CleanupKind { NotCleanup, Funclet, Internal { funclet: mir::BasicBlock }, } impl CleanupKind { pub fn funclet_bb(self, for_bb: mir::BasicBlock) -> Option { match self { CleanupKind::NotCleanup => None, CleanupKind::Funclet => Some(for_bb), CleanupKind::Internal { funclet } => Some(funclet), } } } pub fn cleanup_kinds(mir: &mir::Body<'_>) -> IndexVec { fn discover_masters<'tcx>( result: &mut IndexVec, mir: &mir::Body<'tcx>, ) { for (bb, data) in mir.basic_blocks().iter_enumerated() { match data.terminator().kind { TerminatorKind::Goto { .. } | TerminatorKind::Resume | TerminatorKind::Abort | TerminatorKind::Return | TerminatorKind::GeneratorDrop | TerminatorKind::Unreachable | TerminatorKind::SwitchInt { .. } | TerminatorKind::Yield { .. } | TerminatorKind::FalseEdges { .. } | TerminatorKind::FalseUnwind { .. } => { /* nothing to do */ } TerminatorKind::Call { cleanup: unwind, .. } | TerminatorKind::Assert { cleanup: unwind, .. } | TerminatorKind::DropAndReplace { unwind, .. } | TerminatorKind::Drop { unwind, .. } => { if let Some(unwind) = unwind { debug!( "cleanup_kinds: {:?}/{:?} registering {:?} as funclet", bb, data, unwind ); result[unwind] = CleanupKind::Funclet; } } } } } fn propagate<'tcx>(result: &mut IndexVec, mir: &mir::Body<'tcx>) { let mut funclet_succs = IndexVec::from_elem(None, mir.basic_blocks()); let mut set_successor = |funclet: mir::BasicBlock, succ| match funclet_succs[funclet] { ref mut s @ None => { debug!("set_successor: updating successor of {:?} to {:?}", funclet, succ); *s = Some(succ); } Some(s) => { if s != succ { span_bug!( mir.span, "funclet {:?} has 2 parents - {:?} and {:?}", funclet, s, succ ); } } }; for (bb, data) in traversal::reverse_postorder(mir) { let funclet = match result[bb] { CleanupKind::NotCleanup => continue, CleanupKind::Funclet => bb, CleanupKind::Internal { funclet } => funclet, }; debug!( "cleanup_kinds: {:?}/{:?}/{:?} propagating funclet {:?}", bb, data, result[bb], funclet ); for &succ in data.terminator().successors() { let kind = result[succ]; debug!("cleanup_kinds: propagating {:?} to {:?}/{:?}", funclet, succ, kind); match kind { CleanupKind::NotCleanup => { result[succ] = CleanupKind::Internal { funclet }; } CleanupKind::Funclet => { if funclet != succ { set_successor(funclet, succ); } } CleanupKind::Internal { funclet: succ_funclet } => { if funclet != succ_funclet { // `succ` has 2 different funclet going into it, so it must // be a funclet by itself. debug!( "promoting {:?} to a funclet and updating {:?}", succ, succ_funclet ); result[succ] = CleanupKind::Funclet; set_successor(succ_funclet, succ); set_successor(funclet, succ); } } } } } } let mut result = IndexVec::from_elem(CleanupKind::NotCleanup, mir.basic_blocks()); discover_masters(&mut result, mir); propagate(&mut result, mir); debug!("cleanup_kinds: result={:?}", result); result }