// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! An iterator over the type substructure. //! WARNING: this does not keep track of the region depth. use middle::ty::{self, Ty}; use std::iter::Iterator; use std::vec::IntoIter; pub struct TypeWalker<'tcx> { stack: Vec>, last_subtree: usize, } impl<'tcx> TypeWalker<'tcx> { pub fn new(ty: Ty<'tcx>) -> TypeWalker<'tcx> { TypeWalker { stack: vec!(ty), last_subtree: 1, } } /// Skips the subtree of types corresponding to the last type /// returned by `next()`. /// /// Example: Imagine you are walking `Foo, usize>`. /// /// ``` /// let mut iter: TypeWalker = ...; /// iter.next(); // yields Foo /// iter.next(); // yields Bar /// iter.skip_current_subtree(); // skips int /// iter.next(); // yields usize /// ``` pub fn skip_current_subtree(&mut self) { self.stack.truncate(self.last_subtree); } } impl<'tcx> Iterator for TypeWalker<'tcx> { type Item = Ty<'tcx>; fn next(&mut self) -> Option> { debug!("next(): stack={:?}", self.stack); match self.stack.pop() { None => { return None; } Some(ty) => { self.last_subtree = self.stack.len(); push_subtypes(&mut self.stack, ty); debug!("next: stack={:?}", self.stack); Some(ty) } } } } pub fn walk_shallow<'tcx>(ty: Ty<'tcx>) -> IntoIter> { let mut stack = vec![]; push_subtypes(&mut stack, ty); stack.into_iter() } fn push_subtypes<'tcx>(stack: &mut Vec>, parent_ty: Ty<'tcx>) { match parent_ty.sty { ty::TyBool | ty::TyChar | ty::TyInt(_) | ty::TyUint(_) | ty::TyFloat(_) | ty::TyStr | ty::TyInfer(_) | ty::TyParam(_) | ty::TyError => { } ty::TyBox(ty) | ty::TyArray(ty, _) | ty::TySlice(ty) => { stack.push(ty); } ty::TyRawPtr(ref mt) | ty::TyRef(_, ref mt) => { stack.push(mt.ty); } ty::TyProjection(ref data) => { push_reversed(stack, data.trait_ref.substs.types.as_slice()); } ty::TyTrait(box ty::TraitTy { ref principal, ref bounds }) => { push_reversed(stack, principal.substs().types.as_slice()); push_reversed(stack, &bounds.projection_bounds.iter().map(|pred| { pred.0.ty }).collect::>()); } ty::TyEnum(_, ref substs) | ty::TyStruct(_, ref substs) | ty::TyClosure(_, ref substs) => { push_reversed(stack, substs.types.as_slice()); } ty::TyTuple(ref ts) => { push_reversed(stack, ts); } ty::TyBareFn(_, ref ft) => { push_sig_subtypes(stack, &ft.sig); } } } fn push_sig_subtypes<'tcx>(stack: &mut Vec>, sig: &ty::PolyFnSig<'tcx>) { match sig.0.output { ty::FnConverging(output) => { stack.push(output); } ty::FnDiverging => { } } push_reversed(stack, &sig.0.inputs); } fn push_reversed<'tcx>(stack: &mut Vec>, tys: &[Ty<'tcx>]) { // We push slices on the stack in reverse order so as to // maintain a pre-order traversal. As of the time of this // writing, the fact that the traversal is pre-order is not // known to be significant to any code, but it seems like the // natural order one would expect (basically, the order of the // types as they are written). for &ty in tys.iter().rev() { stack.push(ty); } }