use rustc::middle::const_eval; use rustc::middle::ty::{self, TyCtxt}; use rustc::mir::mir_map::MirMap; use rustc::mir::repr as mir; use std::error::Error; use std::fmt; use memory::{FieldRepr, IntRepr, Memory, Pointer, Repr}; const TRACE_EXECUTION: bool = true; #[derive(Clone, Debug)] pub enum EvalError { DanglingPointerDeref, InvalidBool, PointerOutOfBounds, } pub type EvalResult = Result; impl Error for EvalError { fn description(&self) -> &str { match *self { EvalError::DanglingPointerDeref => "dangling pointer was dereferenced", EvalError::InvalidBool => "invalid boolean value read", EvalError::PointerOutOfBounds => "pointer offset outside bounds of allocation", } } fn cause(&self) -> Option<&Error> { None } } impl fmt::Display for EvalError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } // #[derive(Clone, Debug, PartialEq)] // enum Value { // Uninit, // Bool(bool), // Int(i64), // FIXME(tsion): Should be bit-width aware. // Pointer(Pointer), // Adt { variant: usize, data_ptr: Pointer }, // Func(def_id::DefId), // } /// A stack frame. struct Frame<'a, 'tcx: 'a> { /// The MIR for the fucntion called on this frame. mir: &'a mir::Mir<'tcx>, /// A pointer for writing the return value of the current call, if it's not a diverging call. return_ptr: Option, /// The list of locals for the current function, stored in order as /// `[arguments..., variables..., temporaries...]`. The variables begin at `self.var_offset` /// and the temporaries at `self.temp_offset`. locals: Vec, /// The offset of the first variable in `self.locals`. var_offset: usize, /// The offset of the first temporary in `self.locals`. temp_offset: usize, } impl<'a, 'tcx: 'a> Frame<'a, 'tcx> { fn arg_ptr(&self, i: u32) -> Pointer { self.locals[i as usize] } fn var_ptr(&self, i: u32) -> Pointer { self.locals[self.var_offset + i as usize] } fn temp_ptr(&self, i: u32) -> Pointer { self.locals[self.temp_offset + i as usize] } } struct Interpreter<'a, 'tcx: 'a> { tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>, memory: Memory, stack: Vec>, } impl<'a, 'tcx: 'a> Interpreter<'a, 'tcx> { fn new(tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>) -> Self { Interpreter { tcx: tcx, mir_map: mir_map, memory: Memory::new(), stack: Vec::new(), } } fn push_stack_frame(&mut self, mir: &'a mir::Mir<'tcx>, args: &[&mir::Operand<'tcx>], return_ptr: Option) -> EvalResult<()> { let num_args = mir.arg_decls.len(); let num_vars = mir.var_decls.len(); let num_temps = mir.temp_decls.len(); assert_eq!(args.len(), num_args); let mut locals = Vec::with_capacity(num_args + num_vars + num_temps); for (arg_decl, arg_operand) in mir.arg_decls.iter().zip(args) { let repr = self.ty_to_repr(arg_decl.ty); let dest = self.memory.allocate(repr.size()); let src = try!(self.operand_to_ptr(arg_operand)); try!(self.memory.copy(src, dest, repr.size())); locals.push(dest); } let var_tys = mir.var_decls.iter().map(|v| v.ty); let temp_tys = mir.temp_decls.iter().map(|t| t.ty); locals.extend(var_tys.chain(temp_tys).map(|ty| { let repr = self.ty_to_repr(ty).size(); self.memory.allocate(repr) })); self.stack.push(Frame { mir: mir, return_ptr: return_ptr, locals: locals, var_offset: num_args, temp_offset: num_args + num_vars, }); Ok(()) } fn pop_stack_frame(&mut self) { let _frame = self.stack.pop().expect("tried to pop a stack frame, but there were none"); // TODO(tsion): Deallocate local variables. } fn call(&mut self, mir: &'a mir::Mir<'tcx>, args: &[&mir::Operand<'tcx>], return_ptr: Option) -> EvalResult<()> { try!(self.push_stack_frame(mir, args, return_ptr)); let mut current_block = mir::START_BLOCK; loop { if TRACE_EXECUTION { println!("Entering block: {:?}", current_block); } let block_data = mir.basic_block_data(current_block); for stmt in &block_data.statements { if TRACE_EXECUTION { println!("{:?}", stmt); } let mir::StatementKind::Assign(ref lvalue, ref rvalue) = stmt.kind; try!(self.eval_assignment(lvalue, rvalue)); } if TRACE_EXECUTION { println!("{:?}", block_data.terminator()); } use rustc::mir::repr::Terminator::*; match *block_data.terminator() { Return => break, Goto { target } => current_block = target, If { ref cond, targets: (then_target, else_target) } => { let cond_ptr = try!(self.operand_to_ptr(cond)); let cond_val = try!(self.memory.read_bool(cond_ptr)); current_block = if cond_val { then_target } else { else_target }; } SwitchInt { ref discr, ref values, ref targets, .. } => { // FIXME(tsion): Handle non-integer switch types. let discr_ptr = try!(self.lvalue_to_ptr(discr)); let discr_val = try!(self.memory.read_int(discr_ptr)); // Branch to the `otherwise` case by default, if no match is found. current_block = targets[targets.len() - 1]; for (index, val_const) in values.iter().enumerate() { let ptr = try!(self.const_to_ptr(val_const)); let val = try!(self.memory.read_int(ptr)); if discr_val == val { current_block = targets[index]; break; } } } // Call { ref func, ref args, ref destination, .. } => { // use rustc::middle::cstore::CrateStore; // let ptr = destination.as_ref().map(|&(ref lv, _)| self.lvalue_to_ptr(lv)); // let func_val = self.operand_to_ptr(func); // if let Value::Func(def_id) = func_val { // let mir_data; // let mir = match self.tcx.map.as_local_node_id(def_id) { // Some(node_id) => self.mir_map.map.get(&node_id).unwrap(), // None => { // let cstore = &self.tcx.sess.cstore; // mir_data = cstore.maybe_get_item_mir(self.tcx, def_id).unwrap(); // &mir_data // } // }; // let arg_vals: Vec = // args.iter().map(|arg| self.operand_to_ptr(arg)).collect(); // self.call(mir, &arg_vals, ptr); // if let Some((_, target)) = *destination { // current_block = target; // } // } else { // panic!("tried to call a non-function value: {:?}", func_val); // } // } // Switch { ref discr, ref targets, .. } => { // let discr_val = self.read_lvalue(discr); // if let Value::Adt { variant, .. } = discr_val { // current_block = targets[variant]; // } else { // panic!("Switch on non-Adt value: {:?}", discr_val); // } // } Drop { target, .. } => { // TODO: Handle destructors and dynamic drop. current_block = target; } Resume => unimplemented!(), _ => unimplemented!(), } } self.pop_stack_frame(); Ok(()) } fn eval_binary_op(&mut self, bin_op: mir::BinOp, left_operand: &mir::Operand<'tcx>, right_operand: &mir::Operand<'tcx>, dest: Pointer) -> EvalResult<()> { // FIXME(tsion): Check for non-integer binary operations. let left = try!(self.operand_to_ptr(left_operand)); let right = try!(self.operand_to_ptr(right_operand)); let l = try!(self.memory.read_int(left)); let r = try!(self.memory.read_int(right)); use rustc::mir::repr::BinOp::*; let n = match bin_op { Add => l + r, Sub => l - r, Mul => l * r, Div => l / r, Rem => l % r, BitXor => l ^ r, BitAnd => l & r, BitOr => l | r, Shl => l << r, Shr => l >> r, _ => unimplemented!(), // Eq => Value::Bool(l == r), // Lt => Value::Bool(l < r), // Le => Value::Bool(l <= r), // Ne => Value::Bool(l != r), // Ge => Value::Bool(l >= r), // Gt => Value::Bool(l > r), }; self.memory.write_int(dest, n) } fn assign_to_product(&mut self, dest: Pointer, dest_repr: &Repr, operands: &[mir::Operand<'tcx>]) -> EvalResult<()> { match *dest_repr { Repr::Product { ref fields, .. } => { for (field, operand) in fields.iter().zip(operands) { let src = try!(self.operand_to_ptr(operand)); try!(self.memory.copy(src, dest.offset(field.offset), field.repr.size())); } } _ => panic!("expected Repr::Product target"), } Ok(()) } fn eval_assignment(&mut self, lvalue: &mir::Lvalue<'tcx>, rvalue: &mir::Rvalue<'tcx>) -> EvalResult<()> { let dest = try!(self.lvalue_to_ptr(lvalue)); let dest_ty = self.current_frame().mir.lvalue_ty(self.tcx, lvalue).to_ty(self.tcx); let dest_repr = self.ty_to_repr(dest_ty); use rustc::mir::repr::Rvalue::*; match *rvalue { Use(ref operand) => { let src = try!(self.operand_to_ptr(operand)); self.memory.copy(src, dest, dest_repr.size()) } BinaryOp(bin_op, ref left, ref right) => self.eval_binary_op(bin_op, left, right, dest), UnaryOp(un_op, ref operand) => { // FIXME(tsion): Check for non-integer operations. let ptr = try!(self.operand_to_ptr(operand)); let m = try!(self.memory.read_int(ptr)); use rustc::mir::repr::UnOp::*; let n = match un_op { Not => !m, Neg => -m, }; self.memory.write_int(dest, n) } Aggregate(ref kind, ref operands) => { use rustc::mir::repr::AggregateKind::*; match *kind { Tuple => self.assign_to_product(dest, &dest_repr, operands), Adt(ref adt_def, variant_idx, _) => match adt_def.adt_kind() { ty::AdtKind::Struct => self.assign_to_product(dest, &dest_repr, operands), ty::AdtKind::Enum => match dest_repr { Repr::Sum { discr_size, ref variants, .. } => { // TODO(tsion): Write the discriminant value. self.assign_to_product( dest.offset(discr_size), &variants[variant_idx], operands ) } _ => panic!("expected Repr::Sum target"), } }, Vec => unimplemented!(), Closure(..) => unimplemented!(), } } // Ref(_region, _kind, ref lvalue) => { // Value::Pointer(self.lvalue_to_ptr(lvalue)) // } ref r => panic!("can't handle rvalue: {:?}", r), } } fn operand_to_ptr(&mut self, op: &mir::Operand<'tcx>) -> EvalResult { use rustc::mir::repr::Operand::*; match *op { Consume(ref lvalue) => self.lvalue_to_ptr(lvalue), Constant(ref constant) => { use rustc::mir::repr::Literal::*; match constant.literal { Value { ref value } => self.const_to_ptr(value), ref l => panic!("can't handle item literal: {:?}", l), } } } } fn lvalue_to_ptr(&self, lvalue: &mir::Lvalue<'tcx>) -> EvalResult { let frame = self.current_frame(); use rustc::mir::repr::Lvalue::*; let ptr = match *lvalue { ReturnPointer => frame.return_ptr.expect("ReturnPointer used in a function with no return value"), Arg(i) => frame.arg_ptr(i), Var(i) => frame.var_ptr(i), Temp(i) => frame.temp_ptr(i), ref l => panic!("can't handle lvalue: {:?}", l), }; Ok(ptr) // mir::Lvalue::Projection(ref proj) => { // let base_ptr = self.lvalue_to_ptr(&proj.base); // match proj.elem { // mir::ProjectionElem::Field(field, _) => { // base_ptr.offset(field.index()) // } // mir::ProjectionElem::Downcast(_, variant) => { // let adt_val = self.read_pointer(base_ptr); // if let Value::Adt { variant: actual_variant, data_ptr } = adt_val { // debug_assert_eq!(variant, actual_variant); // data_ptr // } else { // panic!("Downcast attempted on non-ADT: {:?}", adt_val) // } // } // mir::ProjectionElem::Deref => { // let ptr_val = self.read_pointer(base_ptr); // if let Value::Pointer(ptr) = ptr_val { // ptr // } else { // panic!("Deref attempted on non-pointer: {:?}", ptr_val) // } // } // mir::ProjectionElem::Index(ref _operand) => unimplemented!(), // mir::ProjectionElem::ConstantIndex { .. } => unimplemented!(), // } // } // _ => unimplemented!(), // } } fn const_to_ptr(&mut self, const_val: &const_eval::ConstVal) -> EvalResult { use rustc::middle::const_eval::ConstVal::*; match *const_val { Float(_f) => unimplemented!(), Int(n) => { // TODO(tsion): Check int constant type. let ptr = self.memory.allocate(8); try!(self.memory.write_int(ptr, n)); Ok(ptr) } Uint(_u) => unimplemented!(), Str(ref _s) => unimplemented!(), ByteStr(ref _bs) => unimplemented!(), Bool(b) => { let ptr = self.memory.allocate(Repr::Bool.size()); try!(self.memory.write_bool(ptr, b)); Ok(ptr) }, Struct(_node_id) => unimplemented!(), Tuple(_node_id) => unimplemented!(), Function(_def_id) => unimplemented!(), Array(_, _) => unimplemented!(), Repeat(_, _) => unimplemented!(), } } fn make_product_repr(&self, iter: I) -> Repr where I: IntoIterator> { let mut size = 0; let fields = iter.into_iter().map(|ty| { let repr = self.ty_to_repr(ty); let old_size = size; size += repr.size(); FieldRepr { offset: old_size, repr: repr } }).collect(); Repr::Product { size: size, fields: fields } } // TODO(tsion): Cache these outputs. fn ty_to_repr(&self, ty: ty::Ty<'tcx>) -> Repr { use syntax::ast::IntTy; match ty.sty { ty::TyBool => Repr::Bool, ty::TyInt(IntTy::Is) => unimplemented!(), ty::TyInt(IntTy::I8) => Repr::Int(IntRepr::I8), ty::TyInt(IntTy::I16) => Repr::Int(IntRepr::I16), ty::TyInt(IntTy::I32) => Repr::Int(IntRepr::I32), ty::TyInt(IntTy::I64) => Repr::Int(IntRepr::I64), ty::TyTuple(ref fields) => self.make_product_repr(fields.iter().cloned()), ty::TyEnum(adt_def, ref subst) => { let num_variants = adt_def.variants.len(); let discr_size = if num_variants <= 1 { 0 } else if num_variants <= 1 << 8 { 1 } else if num_variants <= 1 << 16 { 2 } else if num_variants <= 1 << 32 { 4 } else { 8 }; let variants: Vec = adt_def.variants.iter().map(|v| { let field_tys = v.fields.iter().map(|f| f.ty(self.tcx, subst)); self.make_product_repr(field_tys) }).collect(); Repr::Sum { discr_size: discr_size, max_variant_size: variants.iter().map(Repr::size).max().unwrap_or(0), variants: variants, } } ty::TyStruct(adt_def, ref subst) => { assert_eq!(adt_def.variants.len(), 1); let field_tys = adt_def.variants[0].fields.iter().map(|f| f.ty(self.tcx, subst)); self.make_product_repr(field_tys) } ref t => panic!("can't convert type to repr: {:?}", t), } } fn current_frame(&self) -> &Frame<'a, 'tcx> { self.stack.last().expect("no call frames exist") } } pub fn interpret_start_points<'tcx>(tcx: &TyCtxt<'tcx>, mir_map: &MirMap<'tcx>) { for (&id, mir) in &mir_map.map { for attr in tcx.map.attrs(id) { use syntax::attr::AttrMetaMethods; if attr.check_name("miri_run") { let item = tcx.map.expect_item(id); println!("Interpreting: {}", item.name); let mut miri = Interpreter::new(tcx, mir_map); let return_ptr = match mir.return_ty { ty::FnConverging(ty) => { let repr = miri.ty_to_repr(ty).size(); Some(miri.memory.allocate(repr)) } ty::FnDiverging => None, }; miri.call(mir, &[], return_ptr).unwrap(); if let Some(ret) = return_ptr { println!("Returned: {:?}\n", miri.memory.get(ret.alloc_id).unwrap()); } } } } }