import syntax::{visit, ast_util}; import syntax::ast::*; import syntax::codemap::span; import ty::{kind, kind_copyable, kind_noncopyable, kind_const}; import driver::session::session; import std::map::hashmap; import util::ppaux::{ty_to_str, tys_to_str}; import syntax::print::pprust::expr_to_str; import freevars::freevar_entry; import lint::{non_implicitly_copyable_typarams,implicit_copies}; // Kind analysis pass. // // There are several kinds defined by various operations. The most restrictive // kind is noncopyable. The noncopyable kind can be extended with any number // of the following attributes. // // send: Things that can be sent on channels or included in spawned closures. // copy: Things that can be copied. // const: Things thare are deeply immutable. They are guaranteed never to // change, and can be safely shared without copying between tasks. // owned: Things that do not contain borrowed pointers. // // Send includes scalar types as well as classes and unique types containing // only sendable types. // // Copy includes boxes, closure and unique types containing copyable types. // // Const include scalar types, things without non-const fields, and pointers // to const things. // // This pass ensures that type parameters are only instantiated with types // whose kinds are equal or less general than the way the type parameter was // annotated (with the `send`, `copy` or `const` keyword). // // It also verifies that noncopyable kinds are not copied. Sendability is not // applied, since none of our language primitives send. Instead, the sending // primitives in the stdlib are explicitly annotated to only take sendable // types. fn kind_to_str(k: kind) -> ~str { let mut kinds = ~[]; if ty::kind_lteq(kind_const(), k) { vec::push(kinds, ~"const"); } if ty::kind_can_be_copied(k) { vec::push(kinds, ~"copy"); } if ty::kind_can_be_sent(k) { vec::push(kinds, ~"send"); } else if ty::kind_is_owned(k) { vec::push(kinds, ~"owned"); } str::connect(kinds, ~" ") } type rval_map = std::map::hashmap; type ctx = {tcx: ty::ctxt, method_map: typeck::method_map, last_use_map: liveness::last_use_map, current_item: node_id}; fn check_crate(tcx: ty::ctxt, method_map: typeck::method_map, last_use_map: liveness::last_use_map, crate: @crate) { let ctx = {tcx: tcx, method_map: method_map, last_use_map: last_use_map, current_item: -1}; let visit = visit::mk_vt(@{ visit_expr: check_expr, visit_stmt: check_stmt, visit_block: check_block, visit_fn: check_fn, visit_ty: check_ty, visit_item: fn@(i: @item, cx: ctx, v: visit::vt) { visit::visit_item(i, {current_item: i.id with cx}, v); } with *visit::default_visitor() }); visit::visit_crate(*crate, ctx, visit); tcx.sess.abort_if_errors(); } type check_fn = fn@(ctx, node_id, option<@freevar_entry>, bool, ty::t, sp: span); // Yields the appropriate function to check the kind of closed over // variables. `id` is the node_id for some expression that creates the // closure. fn with_appropriate_checker(cx: ctx, id: node_id, b: fn(check_fn)) { fn check_for_uniq(cx: ctx, id: node_id, fv: option<@freevar_entry>, is_move: bool, var_t: ty::t, sp: span) { // all captured data must be sendable, regardless of whether it is // moved in or copied in. Note that send implies owned. if !check_send(cx, var_t, sp) { return; } // copied in data must be copyable, but moved in data can be anything let is_implicit = fv.is_some(); if !is_move { check_copy(cx, id, var_t, sp, is_implicit); } // check that only immutable variables are implicitly copied in for fv.each |fv| { check_imm_free_var(cx, fv.def, fv.span); } } fn check_for_box(cx: ctx, id: node_id, fv: option<@freevar_entry>, is_move: bool, var_t: ty::t, sp: span) { // all captured data must be owned if !check_owned(cx.tcx, var_t, sp) { return; } // copied in data must be copyable, but moved in data can be anything let is_implicit = fv.is_some(); if !is_move { check_copy(cx, id, var_t, sp, is_implicit); } // check that only immutable variables are implicitly copied in for fv.each |fv| { check_imm_free_var(cx, fv.def, fv.span); } } fn check_for_block(cx: ctx, _id: node_id, fv: option<@freevar_entry>, _is_move: bool, _var_t: ty::t, sp: span) { // only restriction: no capture clauses (we would have to take // ownership of the moved/copied in data). if fv.is_none() { cx.tcx.sess.span_err( sp, ~"cannot capture values explicitly with a block closure"); } } fn check_for_bare(cx: ctx, _id: node_id, _fv: option<@freevar_entry>, _is_move: bool,_var_t: ty::t, sp: span) { cx.tcx.sess.span_err(sp, ~"attempted dynamic environment capture"); } let fty = ty::node_id_to_type(cx.tcx, id); match ty::ty_fn_proto(fty) { proto_uniq => b(check_for_uniq), proto_box => b(check_for_box), proto_bare => b(check_for_bare), proto_block => b(check_for_block) } } // Check that the free variables used in a shared/sendable closure conform // to the copy/move kind bounds. Then recursively check the function body. fn check_fn(fk: visit::fn_kind, decl: fn_decl, body: blk, sp: span, fn_id: node_id, cx: ctx, v: visit::vt) { // Find the check function that enforces the appropriate bounds for this // kind of function: do with_appropriate_checker(cx, fn_id) |chk| { // Begin by checking the variables in the capture clause, if any. // Here we slightly abuse the map function to both check and report // errors and produce a list of the def id's for all capture // variables. This list is used below to avoid checking and reporting // on a given variable twice. let cap_clause = match fk { visit::fk_anon(_, cc) | visit::fk_fn_block(cc) => cc, visit::fk_item_fn(*) | visit::fk_method(*) | visit::fk_ctor(*) | visit::fk_dtor(*) => @~[] }; let captured_vars = do (*cap_clause).map |cap_item| { let cap_def = cx.tcx.def_map.get(cap_item.id); let cap_def_id = ast_util::def_id_of_def(cap_def).node; let ty = ty::node_id_to_type(cx.tcx, cap_def_id); chk(cx, fn_id, none, cap_item.is_move, ty, cap_item.span); cap_def_id }; // Iterate over any free variables that may not have appeared in the // capture list. Ensure that they too are of the appropriate kind. for vec::each(*freevars::get_freevars(cx.tcx, fn_id)) |fv| { let id = ast_util::def_id_of_def(fv.def).node; // skip over free variables that appear in the cap clause if captured_vars.contains(id) { again; } // if this is the last use of the variable, then it will be // a move and not a copy let is_move = { match check cx.last_use_map.find(fn_id) { some(vars) => (*vars).contains(id), none => false } }; let ty = ty::node_id_to_type(cx.tcx, id); chk(cx, fn_id, some(fv), is_move, ty, fv.span); } } visit::visit_fn(fk, decl, body, sp, fn_id, cx, v); } fn check_block(b: blk, cx: ctx, v: visit::vt) { match b.node.expr { some(ex) => maybe_copy(cx, ex), _ => () } visit::visit_block(b, cx, v); } fn check_expr(e: @expr, cx: ctx, v: visit::vt) { debug!{"kind::check_expr(%s)", expr_to_str(e)}; match e.node { expr_assign(_, ex) | expr_unary(box(_), ex) | expr_unary(uniq(_), ex) | expr_ret(some(ex)) => { maybe_copy(cx, ex); } expr_cast(source, _) => { maybe_copy(cx, source); check_cast_for_escaping_regions(cx, source, e); } expr_copy(expr) => check_copy_ex(cx, expr, false), // Vector add copies, but not "implicitly" expr_assign_op(_, _, ex) => check_copy_ex(cx, ex, false), expr_binary(add, ls, rs) => { check_copy_ex(cx, ls, false); check_copy_ex(cx, rs, false); } expr_rec(fields, def) => { for fields.each |field| { maybe_copy(cx, field.node.expr); } match def { some(ex) => { // All noncopyable fields must be overridden let t = ty::expr_ty(cx.tcx, ex); let ty_fields = match ty::get(t).struct { ty::ty_rec(f) => f, _ => cx.tcx.sess.span_bug(ex.span, ~"bad expr type in record") }; for ty_fields.each |tf| { if !vec::any(fields, |f| f.node.ident == tf.ident ) && !ty::kind_can_be_copied(ty::type_kind(cx.tcx, tf.mt.ty)) { cx.tcx.sess.span_err(ex.span, ~"copying a noncopyable value"); } } } _ => {} } } expr_tup(exprs) | expr_vec(exprs, _) => { for exprs.each |expr| { maybe_copy(cx, expr); } } expr_call(f, args, _) => { let mut i = 0u; for ty::ty_fn_args(ty::expr_ty(cx.tcx, f)).each |arg_t| { match ty::arg_mode(cx.tcx, arg_t) { by_copy => maybe_copy(cx, args[i]), by_ref | by_val | by_mutbl_ref | by_move => () } i += 1u; } } expr_path(_) | expr_field(_, _, _) => { do option::iter(cx.tcx.node_type_substs.find(e.id)) |ts| { let bounds = match check e.node { expr_path(_) => { let did = ast_util::def_id_of_def(cx.tcx.def_map.get(e.id)); ty::lookup_item_type(cx.tcx, did).bounds } expr_field(base, _, _) => { match cx.method_map.get(e.id).origin { typeck::method_static(did) => { // n.b.: When we encode class/impl methods, the bounds // that we encode include both the class/impl bounds // and then the method bounds themselves... ty::lookup_item_type(cx.tcx, did).bounds } typeck::method_param({trait_id:trt_id, method_num:n_mth, _}) | typeck::method_trait(trt_id, n_mth) => { // ...trait methods bounds, in contrast, include only the // method bounds, so we must preprend the tps from the // trait itself. This ought to be harmonized. let trt_bounds = ty::lookup_item_type(cx.tcx, trt_id).bounds; let mth = ty::trait_methods(cx.tcx, trt_id)[n_mth]; @(vec::append(*trt_bounds, *mth.tps)) } } } }; if vec::len(ts) != vec::len(*bounds) { // Fail earlier to make debugging easier fail fmt!{"Internal error: in kind::check_expr, length \ mismatch between actual and declared bounds: actual = \ %s (%u tys), declared = %? (%u tys)", tys_to_str(cx.tcx, ts), ts.len(), *bounds, (*bounds).len()}; } do vec::iter2(ts, *bounds) |ty, bound| { check_bounds(cx, e.id, e.span, ty, bound) } } } _ => { } } visit::visit_expr(e, cx, v); } fn check_stmt(stmt: @stmt, cx: ctx, v: visit::vt) { match stmt.node { stmt_decl(@{node: decl_local(locals), _}, _) => { for locals.each |local| { match local.node.init { some({op: init_assign, expr}) => maybe_copy(cx, expr), _ => {} } } } _ => {} } visit::visit_stmt(stmt, cx, v); } fn check_ty(aty: @ty, cx: ctx, v: visit::vt) { match aty.node { ty_path(_, id) => { do option::iter(cx.tcx.node_type_substs.find(id)) |ts| { let did = ast_util::def_id_of_def(cx.tcx.def_map.get(id)); let bounds = ty::lookup_item_type(cx.tcx, did).bounds; do vec::iter2(ts, *bounds) |ty, bound| { check_bounds(cx, aty.id, aty.span, ty, bound) } } } _ => {} } visit::visit_ty(aty, cx, v); } fn check_bounds(cx: ctx, id: node_id, sp: span, ty: ty::t, bounds: ty::param_bounds) { let kind = ty::type_kind(cx.tcx, ty); let p_kind = ty::param_bounds_to_kind(bounds); if !ty::kind_lteq(p_kind, kind) { // If the only reason the kind check fails is because the // argument type isn't implicitly copyable, consult the warning // settings to figure out what to do. let implicit = ty::kind_implicitly_copyable() - ty::kind_copyable(); if ty::kind_lteq(p_kind, kind | implicit) { cx.tcx.sess.span_lint( non_implicitly_copyable_typarams, id, cx.current_item, sp, ~"instantiating copy type parameter with a \ not implicitly copyable type"); } else { cx.tcx.sess.span_err( sp, ~"instantiating a type parameter with an incompatible type " + ~"(needs `" + kind_to_str(p_kind) + ~"`, got `" + kind_to_str(kind) + ~"`, missing `" + kind_to_str(p_kind - kind) + ~"`)"); } } } fn maybe_copy(cx: ctx, ex: @expr) { check_copy_ex(cx, ex, true); } fn is_nullary_variant(cx: ctx, ex: @expr) -> bool { match ex.node { expr_path(_) => { match cx.tcx.def_map.get(ex.id) { def_variant(edid, vdid) => { vec::len(ty::enum_variant_with_id(cx.tcx, edid, vdid).args) == 0u } _ => false } } _ => false } } fn check_copy_ex(cx: ctx, ex: @expr, implicit_copy: bool) { if ty::expr_is_lval(cx.method_map, ex) && !cx.last_use_map.contains_key(ex.id) && !is_nullary_variant(cx, ex) { let ty = ty::expr_ty(cx.tcx, ex); check_copy(cx, ex.id, ty, ex.span, implicit_copy); } } fn check_imm_free_var(cx: ctx, def: def, sp: span) { let msg = ~"mutable variables cannot be implicitly captured; \ use a capture clause"; match def { def_local(_, is_mutbl) => { if is_mutbl { cx.tcx.sess.span_err(sp, msg); } } def_arg(_, mode) => { match ty::resolved_mode(cx.tcx, mode) { by_ref | by_val | by_move | by_copy => { /* ok */ } by_mutbl_ref => { cx.tcx.sess.span_err(sp, msg); } } } def_upvar(_, def1, _) => { check_imm_free_var(cx, *def1, sp); } def_binding(*) | def_self(*) => { /*ok*/ } _ => { cx.tcx.sess.span_bug( sp, fmt!{"unknown def for free variable: %?", def}); } } } fn check_copy(cx: ctx, id: node_id, ty: ty::t, sp: span, implicit_copy: bool) { let k = ty::type_kind(cx.tcx, ty); if !ty::kind_can_be_copied(k) { cx.tcx.sess.span_err(sp, ~"copying a noncopyable value"); } else if implicit_copy && !ty::kind_can_be_implicitly_copied(k) { cx.tcx.sess.span_lint( implicit_copies, id, cx.current_item, sp, ~"implicitly copying a non-implicitly-copyable value"); } } fn check_send(cx: ctx, ty: ty::t, sp: span) -> bool { if !ty::kind_can_be_sent(ty::type_kind(cx.tcx, ty)) { cx.tcx.sess.span_err(sp, ~"not a sendable value"); false } else { true } } // note: also used from middle::typeck::regionck! fn check_owned(tcx: ty::ctxt, ty: ty::t, sp: span) -> bool { if !ty::kind_is_owned(ty::type_kind(tcx, ty)) { match ty::get(ty).struct { ty::ty_param(*) => { tcx.sess.span_err(sp, ~"value may contain borrowed \ pointers; use `owned` bound"); } _ => { tcx.sess.span_err(sp, ~"value may contain borrowed \ pointers"); } } false } else { true } } /// This is rather subtle. When we are casting a value to a /// instantiated trait like `a as trait/&r`, regionck already ensures /// that any borrowed pointers that appear in the type of `a` are /// bounded by `&r`. However, it is possible that there are *type /// parameters* in the type of `a`, and those *type parameters* may /// have borrowed pointers within them. We have to guarantee that the /// regions which appear in those type parameters are not obscured. /// /// Therefore, we ensure that one of three conditions holds: /// /// (1) The trait instance cannot escape the current fn. This is /// guaranteed if the region bound `&r` is some scope within the fn /// itself. This case is safe because whatever borrowed pointers are /// found within the type parameter, they must enclose the fn body /// itself. /// /// (2) The type parameter appears in the type of the trait. For /// example, if the type parameter is `T` and the trait type is /// `deque`, then whatever borrowed ptrs may appear in `T` also /// appear in `deque`. /// /// (3) The type parameter is owned (and therefore does not contain /// borrowed ptrs). fn check_cast_for_escaping_regions( cx: ctx, source: @expr, target: @expr) { // Determine what type we are casting to; if it is not an trait, then no // worries. let target_ty = ty::expr_ty(cx.tcx, target); let target_substs = match ty::get(target_ty).struct { ty::ty_trait(_, substs) => {substs} _ => { return; /* not a cast to a trait */ } }; // Check, based on the region associated with the trait, whether it can // possibly escape the enclosing fn item (note that all type parameters // must have been declared on the enclosing fn item): match target_substs.self_r { some(ty::re_scope(*)) => { return; /* case (1) */ } none | some(ty::re_static) | some(ty::re_free(*)) => {} some(ty::re_bound(*)) | some(ty::re_var(*)) => { cx.tcx.sess.span_bug( source.span, fmt!{"bad region found in kind: %?", target_substs.self_r}); } } // Assuming the trait instance can escape, then ensure that each parameter // either appears in the trait type or is owned: let target_params = ty::param_tys_in_type(target_ty); let source_ty = ty::expr_ty(cx.tcx, source); do ty::walk_ty(source_ty) |ty| { match ty::get(ty).struct { ty::ty_param(source_param) => { if target_params.contains(source_param) { /* case (2) */ } else { check_owned(cx.tcx, ty, source.span); /* case (3) */ } } _ => {} } } } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //