//! For each definition, we track the following data. A definition //! here is defined somewhat circularly as "something with a `DefId`", //! but it generally corresponds to things like structs, enums, etc. //! There are also some rather random cases (like const initializer //! expressions) that are mostly just leftovers. use crate::hir; use crate::hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX, LOCAL_CRATE}; use crate::ich::Fingerprint; use crate::session::CrateDisambiguator; use crate::util::nodemap::NodeMap; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::stable_hasher::StableHasher; use rustc_index::vec::IndexVec; use std::borrow::Borrow; use std::fmt::Write; use std::hash::Hash; use syntax::ast; use syntax_pos::hygiene::ExpnId; use syntax_pos::symbol::{sym, Symbol}; use syntax_pos::Span; /// The `DefPathTable` maps `DefIndex`es to `DefKey`s and vice versa. /// Internally the `DefPathTable` holds a tree of `DefKey`s, where each `DefKey` /// stores the `DefIndex` of its parent. /// There is one `DefPathTable` for each crate. #[derive(Clone, Default, RustcDecodable, RustcEncodable)] pub struct DefPathTable { index_to_key: IndexVec, def_path_hashes: IndexVec, } impl DefPathTable { fn allocate(&mut self, key: DefKey, def_path_hash: DefPathHash) -> DefIndex { let index = { let index = DefIndex::from(self.index_to_key.len()); debug!("DefPathTable::insert() - {:?} <-> {:?}", key, index); self.index_to_key.push(key); index }; self.def_path_hashes.push(def_path_hash); debug_assert!(self.def_path_hashes.len() == self.index_to_key.len()); index } pub fn next_id(&self) -> DefIndex { DefIndex::from(self.index_to_key.len()) } #[inline(always)] pub fn def_key(&self, index: DefIndex) -> DefKey { self.index_to_key[index] } #[inline(always)] pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash { let hash = self.def_path_hashes[index]; debug!("def_path_hash({:?}) = {:?}", index, hash); hash } pub fn add_def_path_hashes_to(&self, cnum: CrateNum, out: &mut FxHashMap) { out.extend(self.def_path_hashes.iter().enumerate().map(|(index, &hash)| { let def_id = DefId { krate: cnum, index: DefIndex::from(index) }; (hash, def_id) })); } pub fn size(&self) -> usize { self.index_to_key.len() } } /// The definition table containing node definitions. /// It holds the `DefPathTable` for local `DefId`s/`DefPath`s and it also stores a /// mapping from `NodeId`s to local `DefId`s. #[derive(Clone, Default)] pub struct Definitions { table: DefPathTable, node_to_def_index: NodeMap, def_index_to_node: IndexVec, pub(super) node_to_hir_id: IndexVec, /// If `ExpnId` is an ID of some macro expansion, /// then `DefId` is the normal module (`mod`) in which the expanded macro was defined. parent_modules_of_macro_defs: FxHashMap, /// Item with a given `DefIndex` was defined during macro expansion with ID `ExpnId`. expansions_that_defined: FxHashMap, next_disambiguator: FxHashMap<(DefIndex, DefPathData), u32>, def_index_to_span: FxHashMap, /// When collecting definitions from an AST fragment produced by a macro invocation `ExpnId` /// we know what parent node that fragment should be attached to thanks to this table. invocation_parents: FxHashMap, /// Indices of unnamed struct or variant fields with unresolved attributes. placeholder_field_indices: NodeMap, } /// A unique identifier that we can use to lookup a definition /// precisely. It combines the index of the definition's parent (if /// any) with a `DisambiguatedDefPathData`. #[derive(Copy, Clone, PartialEq, Debug, RustcEncodable, RustcDecodable)] pub struct DefKey { /// The parent path. pub parent: Option, /// The identifier of this node. pub disambiguated_data: DisambiguatedDefPathData, } impl DefKey { fn compute_stable_hash(&self, parent_hash: DefPathHash) -> DefPathHash { let mut hasher = StableHasher::new(); // We hash a `0u8` here to disambiguate between regular `DefPath` hashes, // and the special "root_parent" below. 0u8.hash(&mut hasher); parent_hash.hash(&mut hasher); let DisambiguatedDefPathData { ref data, disambiguator } = self.disambiguated_data; ::std::mem::discriminant(data).hash(&mut hasher); if let Some(name) = data.get_opt_name() { // Get a stable hash by considering the symbol chars rather than // the symbol index. name.as_str().hash(&mut hasher); } disambiguator.hash(&mut hasher); DefPathHash(hasher.finish()) } fn root_parent_stable_hash( crate_name: &str, crate_disambiguator: CrateDisambiguator, ) -> DefPathHash { let mut hasher = StableHasher::new(); // Disambiguate this from a regular `DefPath` hash; see `compute_stable_hash()` above. 1u8.hash(&mut hasher); crate_name.hash(&mut hasher); crate_disambiguator.hash(&mut hasher); DefPathHash(hasher.finish()) } } /// A pair of `DefPathData` and an integer disambiguator. The integer is /// normally `0`, but in the event that there are multiple defs with the /// same `parent` and `data`, we use this field to disambiguate /// between them. This introduces some artificial ordering dependency /// but means that if you have, e.g., two impls for the same type in /// the same module, they do get distinct `DefId`s. #[derive(Copy, Clone, PartialEq, Debug, RustcEncodable, RustcDecodable)] pub struct DisambiguatedDefPathData { pub data: DefPathData, pub disambiguator: u32, } #[derive(Clone, Debug, RustcEncodable, RustcDecodable)] pub struct DefPath { /// The path leading from the crate root to the item. pub data: Vec, /// The crate root this path is relative to. pub krate: CrateNum, } impl DefPath { pub fn is_local(&self) -> bool { self.krate == LOCAL_CRATE } pub fn make(krate: CrateNum, start_index: DefIndex, mut get_key: FN) -> DefPath where FN: FnMut(DefIndex) -> DefKey, { let mut data = vec![]; let mut index = Some(start_index); loop { debug!("DefPath::make: krate={:?} index={:?}", krate, index); let p = index.unwrap(); let key = get_key(p); debug!("DefPath::make: key={:?}", key); match key.disambiguated_data.data { DefPathData::CrateRoot => { assert!(key.parent.is_none()); break; } _ => { data.push(key.disambiguated_data); index = key.parent; } } } data.reverse(); DefPath { data: data, krate: krate } } /// Returns a string representation of the `DefPath` without /// the crate-prefix. This method is useful if you don't have /// a `TyCtxt` available. pub fn to_string_no_crate(&self) -> String { let mut s = String::with_capacity(self.data.len() * 16); for component in &self.data { write!(s, "::{}[{}]", component.data.as_symbol(), component.disambiguator).unwrap(); } s } /// Returns a filename-friendly string for the `DefPath`, with the /// crate-prefix. pub fn to_string_friendly(&self, crate_imported_name: F) -> String where F: FnOnce(CrateNum) -> Symbol, { let crate_name_str = crate_imported_name(self.krate).as_str(); let mut s = String::with_capacity(crate_name_str.len() + self.data.len() * 16); write!(s, "::{}", crate_name_str).unwrap(); for component in &self.data { if component.disambiguator == 0 { write!(s, "::{}", component.data.as_symbol()).unwrap(); } else { write!(s, "{}[{}]", component.data.as_symbol(), component.disambiguator).unwrap(); } } s } /// Returns a filename-friendly string of the `DefPath`, without /// the crate-prefix. This method is useful if you don't have /// a `TyCtxt` available. pub fn to_filename_friendly_no_crate(&self) -> String { let mut s = String::with_capacity(self.data.len() * 16); let mut opt_delimiter = None; for component in &self.data { opt_delimiter.map(|d| s.push(d)); opt_delimiter = Some('-'); if component.disambiguator == 0 { write!(s, "{}", component.data.as_symbol()).unwrap(); } else { write!(s, "{}[{}]", component.data.as_symbol(), component.disambiguator).unwrap(); } } s } } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)] pub enum DefPathData { // Root: these should only be used for the root nodes, because // they are treated specially by the `def_path` function. /// The crate root (marker). CrateRoot, // Catch-all for random `DefId` things like `DUMMY_NODE_ID`. Misc, // Different kinds of items and item-like things: /// An impl. Impl, /// Something in the type namespace. TypeNs(Symbol), /// Something in the value namespace. ValueNs(Symbol), /// Something in the macro namespace. MacroNs(Symbol), /// Something in the lifetime namespace. LifetimeNs(Symbol), /// A closure expression. ClosureExpr, // Subportions of items: /// Implicit constructor for a unit or tuple-like struct or enum variant. Ctor, /// A constant expression (see `{ast,hir}::AnonConst`). AnonConst, /// An `impl Trait` type node. ImplTrait, } #[derive( Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug, RustcEncodable, RustcDecodable, HashStable )] pub struct DefPathHash(pub Fingerprint); impl Borrow for DefPathHash { #[inline] fn borrow(&self) -> &Fingerprint { &self.0 } } impl Definitions { pub fn def_path_table(&self) -> &DefPathTable { &self.table } /// Gets the number of definitions. pub fn def_index_count(&self) -> usize { self.table.index_to_key.len() } pub fn def_key(&self, index: DefIndex) -> DefKey { self.table.def_key(index) } #[inline(always)] pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash { self.table.def_path_hash(index) } /// Returns the path from the crate root to `index`. The root /// nodes are not included in the path (i.e., this will be an /// empty vector for the crate root). For an inlined item, this /// will be the path of the item in the external crate (but the /// path will begin with the path to the external crate). pub fn def_path(&self, index: DefIndex) -> DefPath { DefPath::make(LOCAL_CRATE, index, |p| self.def_key(p)) } #[inline] pub fn opt_def_index(&self, node: ast::NodeId) -> Option { self.node_to_def_index.get(&node).copied() } #[inline] pub fn opt_local_def_id(&self, node: ast::NodeId) -> Option { self.opt_def_index(node).map(DefId::local) } #[inline] pub fn local_def_id(&self, node: ast::NodeId) -> DefId { self.opt_local_def_id(node).unwrap() } #[inline] pub fn as_local_node_id(&self, def_id: DefId) -> Option { if def_id.krate == LOCAL_CRATE { let node_id = self.def_index_to_node[def_id.index]; if node_id != ast::DUMMY_NODE_ID { return Some(node_id); } } None } #[inline] pub fn as_local_hir_id(&self, def_id: DefId) -> Option { if def_id.krate == LOCAL_CRATE { let hir_id = self.def_index_to_hir_id(def_id.index); if hir_id != hir::DUMMY_HIR_ID { Some(hir_id) } else { None } } else { None } } #[inline] pub fn node_to_hir_id(&self, node_id: ast::NodeId) -> hir::HirId { self.node_to_hir_id[node_id] } #[inline] pub fn def_index_to_hir_id(&self, def_index: DefIndex) -> hir::HirId { let node_id = self.def_index_to_node[def_index]; self.node_to_hir_id[node_id] } /// Retrieves the span of the given `DefId` if `DefId` is in the local crate, the span exists /// and it's not `DUMMY_SP`. #[inline] pub fn opt_span(&self, def_id: DefId) -> Option { if def_id.krate == LOCAL_CRATE { self.def_index_to_span.get(&def_id.index).copied() } else { None } } /// Adds a root definition (no parent) and a few other reserved definitions. pub fn create_root_def( &mut self, crate_name: &str, crate_disambiguator: CrateDisambiguator, ) -> DefIndex { let key = DefKey { parent: None, disambiguated_data: DisambiguatedDefPathData { data: DefPathData::CrateRoot, disambiguator: 0, }, }; let parent_hash = DefKey::root_parent_stable_hash(crate_name, crate_disambiguator); let def_path_hash = key.compute_stable_hash(parent_hash); // Create the definition. let root_index = self.table.allocate(key, def_path_hash); assert_eq!(root_index, CRATE_DEF_INDEX); assert!(self.def_index_to_node.is_empty()); self.def_index_to_node.push(ast::CRATE_NODE_ID); self.node_to_def_index.insert(ast::CRATE_NODE_ID, root_index); self.set_invocation_parent(ExpnId::root(), root_index); root_index } /// Adds a definition with a parent definition. pub fn create_def_with_parent( &mut self, parent: DefIndex, node_id: ast::NodeId, data: DefPathData, expn_id: ExpnId, span: Span, ) -> DefIndex { debug!( "create_def_with_parent(parent={:?}, node_id={:?}, data={:?})", parent, node_id, data ); assert!( !self.node_to_def_index.contains_key(&node_id), "adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}", node_id, data, self.table.def_key(self.node_to_def_index[&node_id]) ); // The root node must be created with `create_root_def()`. assert!(data != DefPathData::CrateRoot); // Find the next free disambiguator for this key. let disambiguator = { let next_disamb = self.next_disambiguator.entry((parent, data)).or_insert(0); let disambiguator = *next_disamb; *next_disamb = next_disamb.checked_add(1).expect("disambiguator overflow"); disambiguator }; let key = DefKey { parent: Some(parent), disambiguated_data: DisambiguatedDefPathData { data, disambiguator }, }; let parent_hash = self.table.def_path_hash(parent); let def_path_hash = key.compute_stable_hash(parent_hash); debug!("create_def_with_parent: after disambiguation, key = {:?}", key); // Create the definition. let index = self.table.allocate(key, def_path_hash); assert_eq!(index.index(), self.def_index_to_node.len()); self.def_index_to_node.push(node_id); // Some things for which we allocate `DefIndex`es don't correspond to // anything in the AST, so they don't have a `NodeId`. For these cases // we don't need a mapping from `NodeId` to `DefIndex`. if node_id != ast::DUMMY_NODE_ID { debug!("create_def_with_parent: def_index_to_node[{:?} <-> {:?}", index, node_id); self.node_to_def_index.insert(node_id, index); } if expn_id != ExpnId::root() { self.expansions_that_defined.insert(index, expn_id); } // The span is added if it isn't dummy. if !span.is_dummy() { self.def_index_to_span.insert(index, span); } index } /// Initializes the `ast::NodeId` to `HirId` mapping once it has been generated during /// AST to HIR lowering. pub fn init_node_id_to_hir_id_mapping(&mut self, mapping: IndexVec) { assert!( self.node_to_hir_id.is_empty(), "trying to initialize `NodeId` -> `HirId` mapping twice" ); self.node_to_hir_id = mapping; } pub fn expansion_that_defined(&self, index: DefIndex) -> ExpnId { self.expansions_that_defined.get(&index).copied().unwrap_or(ExpnId::root()) } pub fn parent_module_of_macro_def(&self, expn_id: ExpnId) -> DefId { self.parent_modules_of_macro_defs[&expn_id] } pub fn add_parent_module_of_macro_def(&mut self, expn_id: ExpnId, module: DefId) { self.parent_modules_of_macro_defs.insert(expn_id, module); } pub fn invocation_parent(&self, invoc_id: ExpnId) -> DefIndex { self.invocation_parents[&invoc_id] } pub fn set_invocation_parent(&mut self, invoc_id: ExpnId, parent: DefIndex) { let old_parent = self.invocation_parents.insert(invoc_id, parent); assert!(old_parent.is_none(), "parent `DefIndex` is reset for an invocation"); } pub fn placeholder_field_index(&self, node_id: ast::NodeId) -> usize { self.placeholder_field_indices[&node_id] } pub fn set_placeholder_field_index(&mut self, node_id: ast::NodeId, index: usize) { let old_index = self.placeholder_field_indices.insert(node_id, index); assert!(old_index.is_none(), "placeholder field index is reset for a node ID"); } } impl DefPathData { pub fn get_opt_name(&self) -> Option { use self::DefPathData::*; match *self { TypeNs(name) | ValueNs(name) | MacroNs(name) | LifetimeNs(name) => Some(name), Impl | CrateRoot | Misc | ClosureExpr | Ctor | AnonConst | ImplTrait => None, } } pub fn as_symbol(&self) -> Symbol { use self::DefPathData::*; match *self { TypeNs(name) | ValueNs(name) | MacroNs(name) | LifetimeNs(name) => name, // Note that this does not show up in user print-outs. CrateRoot => sym::double_braced_crate, Impl => sym::double_braced_impl, Misc => sym::double_braced_misc, ClosureExpr => sym::double_braced_closure, Ctor => sym::double_braced_constructor, AnonConst => sym::double_braced_constant, ImplTrait => sym::double_braced_opaque, } } pub fn to_string(&self) -> String { self.as_symbol().to_string() } }