// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A growable list type with heap-allocated contents, written `Vec` but //! pronounced 'vector.' //! //! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and //! `O(1)` pop (from the end). //! //! # Examples //! //! You can explicitly create a `Vec` with `new()`: //! //! ``` //! let v: Vec = Vec::new(); //! ``` //! //! ...or by using the `vec!` macro: //! //! ``` //! let v: Vec = vec![]; //! //! let v = vec![1, 2, 3, 4, 5]; //! //! let v = vec![0; 10]; // ten zeroes //! ``` //! //! You can `push` values onto the end of a vector (which will grow the vector as needed): //! //! ``` //! let mut v = vec![1, 2]; //! //! v.push(3); //! ``` //! //! Popping values works in much the same way: //! //! ``` //! let mut v = vec![1, 2]; //! //! let two = v.pop(); //! ``` //! //! Vectors also support indexing (through the `Index` and `IndexMut` traits): //! //! ``` //! let mut v = vec![1, 2, 3]; //! let three = v[2]; //! v[1] = v[1] + 5; //! ``` #![stable(feature = "rust1", since = "1.0.0")] use core::prelude::*; use alloc::boxed::Box; use alloc::heap::{EMPTY, allocate, reallocate, deallocate}; use core::cmp::max; use core::cmp::Ordering; use core::fmt; use core::hash::{self, Hash}; use core::intrinsics::{arith_offset, assume}; use core::iter::{repeat, FromIterator}; use core::marker::PhantomData; use core::mem; use core::ops::{Index, IndexMut, Deref}; use core::ops; use core::ptr; use core::ptr::Unique; use core::slice; use core::isize; use core::usize; use borrow::{Cow, IntoCow}; use super::range::RangeArgument; // FIXME- fix places which assume the max vector allowed has memory usize::MAX. const MAX_MEMORY_SIZE: usize = isize::MAX as usize; /// A growable list type, written `Vec` but pronounced 'vector.' /// /// # Examples /// /// ``` /// let mut vec = Vec::new(); /// vec.push(1); /// vec.push(2); /// /// assert_eq!(vec.len(), 2); /// assert_eq!(vec[0], 1); /// /// assert_eq!(vec.pop(), Some(2)); /// assert_eq!(vec.len(), 1); /// /// vec[0] = 7; /// assert_eq!(vec[0], 7); /// /// vec.extend([1, 2, 3].iter().cloned()); /// /// for x in &vec { /// println!("{}", x); /// } /// assert_eq!(vec, [7, 1, 2, 3]); /// ``` /// /// The `vec!` macro is provided to make initialization more convenient: /// /// ``` /// let mut vec = vec![1, 2, 3]; /// vec.push(4); /// assert_eq!(vec, [1, 2, 3, 4]); /// ``` /// /// Use a `Vec` as an efficient stack: /// /// ``` /// let mut stack = Vec::new(); /// /// stack.push(1); /// stack.push(2); /// stack.push(3); /// /// while let Some(top) = stack.pop() { /// // Prints 3, 2, 1 /// println!("{}", top); /// } /// ``` /// /// # Capacity and reallocation /// /// The capacity of a vector is the amount of space allocated for any future /// elements that will be added onto the vector. This is not to be confused with /// the *length* of a vector, which specifies the number of actual elements /// within the vector. If a vector's length exceeds its capacity, its capacity /// will automatically be increased, but its elements will have to be /// reallocated. /// /// For example, a vector with capacity 10 and length 0 would be an empty vector /// with space for 10 more elements. Pushing 10 or fewer elements onto the /// vector will not change its capacity or cause reallocation to occur. However, /// if the vector's length is increased to 11, it will have to reallocate, which /// can be slow. For this reason, it is recommended to use `Vec::with_capacity` /// whenever possible to specify how big the vector is expected to get. #[unsafe_no_drop_flag] #[stable(feature = "rust1", since = "1.0.0")] pub struct Vec { ptr: Unique, len: usize, cap: usize, } unsafe impl Send for Vec { } unsafe impl Sync for Vec { } //////////////////////////////////////////////////////////////////////////////// // Inherent methods //////////////////////////////////////////////////////////////////////////////// impl Vec { /// Constructs a new, empty `Vec`. /// /// The vector will not allocate until elements are pushed onto it. /// /// # Examples /// /// ``` /// let mut vec: Vec = Vec::new(); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn new() -> Vec { // We want ptr to never be NULL so instead we set it to some arbitrary // non-null value which is fine since we never call deallocate on the ptr // if cap is 0. The reason for this is because the pointer of a slice // being NULL would break the null pointer optimization for enums. unsafe { Vec::from_raw_parts(EMPTY as *mut T, 0, 0) } } /// Constructs a new, empty `Vec` with the specified capacity. /// /// The vector will be able to hold exactly `capacity` elements without reallocating. If /// `capacity` is 0, the vector will not allocate. /// /// It is important to note that this function does not specify the *length* of the returned /// vector, but only the *capacity*. (For an explanation of the difference between length and /// capacity, see the main `Vec` docs above, 'Capacity and reallocation'.) /// /// # Examples /// /// ``` /// let mut vec = Vec::with_capacity(10); /// /// // The vector contains no items, even though it has capacity for more /// assert_eq!(vec.len(), 0); /// /// // These are all done without reallocating... /// for i in 0..10 { /// vec.push(i); /// } /// /// // ...but this may make the vector reallocate /// vec.push(11); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn with_capacity(capacity: usize) -> Vec { if mem::size_of::() == 0 { unsafe { Vec::from_raw_parts(EMPTY as *mut T, 0, usize::MAX) } } else if capacity == 0 { Vec::new() } else { let size = capacity.checked_mul(mem::size_of::()) .expect("capacity overflow"); let ptr = unsafe { allocate(size, mem::min_align_of::()) }; if ptr.is_null() { ::alloc::oom() } unsafe { Vec::from_raw_parts(ptr as *mut T, 0, capacity) } } } /// Creates a `Vec` directly from the raw components of another vector. /// /// This is highly unsafe, due to the number of invariants that aren't checked. /// /// # Examples /// /// ``` /// use std::ptr; /// use std::mem; /// /// fn main() { /// let mut v = vec![1, 2, 3]; /// /// // Pull out the various important pieces of information about `v` /// let p = v.as_mut_ptr(); /// let len = v.len(); /// let cap = v.capacity(); /// /// unsafe { /// // Cast `v` into the void: no destructor run, so we are in /// // complete control of the allocation to which `p` points. /// mem::forget(v); /// /// // Overwrite memory with 4, 5, 6 /// for i in 0..len as isize { /// ptr::write(p.offset(i), 4 + i); /// } /// /// // Put everything back together into a Vec /// let rebuilt = Vec::from_raw_parts(p, len, cap); /// assert_eq!(rebuilt, [4, 5, 6]); /// } /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec { Vec { ptr: Unique::new(ptr), len: length, cap: capacity, } } /// Creates a vector by copying the elements from a raw pointer. /// /// This function will copy `elts` contiguous elements starting at `ptr` /// into a new allocation owned by the returned `Vec`. The elements of /// the buffer are copied into the vector without cloning, as if /// `ptr::read()` were called on them. #[inline] #[unstable(feature = "collections", reason = "may be better expressed via composition")] pub unsafe fn from_raw_buf(ptr: *const T, elts: usize) -> Vec { let mut dst = Vec::with_capacity(elts); dst.set_len(elts); ptr::copy_nonoverlapping(ptr, dst.as_mut_ptr(), elts); dst } /// Returns the number of elements the vector can hold without /// reallocating. /// /// # Examples /// /// ``` /// let vec: Vec = Vec::with_capacity(10); /// assert_eq!(vec.capacity(), 10); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn capacity(&self) -> usize { self.cap } /// Reserves capacity for at least `additional` more elements to be inserted /// in the given `Vec`. The collection may reserve more space to avoid /// frequent reallocations. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// ``` /// let mut vec = vec![1]; /// vec.reserve(10); /// assert!(vec.capacity() >= 11); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve(&mut self, additional: usize) { if self.cap - self.len < additional { const ERR_MSG: &'static str = "Vec::reserve: `isize` overflow"; let new_min_cap = self.len.checked_add(additional).expect(ERR_MSG); if new_min_cap > MAX_MEMORY_SIZE { panic!(ERR_MSG) } self.grow_capacity(match new_min_cap.checked_next_power_of_two() { Some(x) if x > MAX_MEMORY_SIZE => MAX_MEMORY_SIZE, None => MAX_MEMORY_SIZE, Some(x) => x, }); } } /// Reserves the minimum capacity for exactly `additional` more elements to /// be inserted in the given `Vec`. Does nothing if the capacity is already /// sufficient. /// /// Note that the allocator may give the collection more space than it /// requests. Therefore capacity can not be relied upon to be precisely /// minimal. Prefer `reserve` if future insertions are expected. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// ``` /// let mut vec = vec![1]; /// vec.reserve_exact(10); /// assert!(vec.capacity() >= 11); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve_exact(&mut self, additional: usize) { if self.cap - self.len < additional { match self.len.checked_add(additional) { None => panic!("Vec::reserve: `usize` overflow"), Some(new_cap) => self.grow_capacity(new_cap) } } } /// Shrinks the capacity of the vector as much as possible. /// /// It will drop down as close as possible to the length but the allocator /// may still inform the vector that there is space for a few more elements. /// /// # Examples /// /// ``` /// let mut vec = Vec::with_capacity(10); /// vec.extend([1, 2, 3].iter().cloned()); /// assert_eq!(vec.capacity(), 10); /// vec.shrink_to_fit(); /// assert!(vec.capacity() >= 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn shrink_to_fit(&mut self) { if mem::size_of::() == 0 { return } if self.len == 0 { if self.cap != 0 { unsafe { dealloc(*self.ptr, self.cap) } self.cap = 0; } } else if self.cap != self.len { unsafe { // Overflow check is unnecessary as the vector is already at // least this large. let ptr = reallocate(*self.ptr as *mut u8, self.cap * mem::size_of::(), self.len * mem::size_of::(), mem::min_align_of::()) as *mut T; if ptr.is_null() { ::alloc::oom() } self.ptr = Unique::new(ptr); } self.cap = self.len; } } /// Converts the vector into Box<[T]>. /// /// Note that this will drop any excess capacity. Calling this and /// converting back to a vector with `into_vec()` is equivalent to calling /// `shrink_to_fit()`. #[stable(feature = "rust1", since = "1.0.0")] pub fn into_boxed_slice(mut self) -> Box<[T]> { self.shrink_to_fit(); unsafe { let xs: Box<[T]> = Box::from_raw(&mut *self); mem::forget(self); xs } } /// Shorten a vector, dropping excess elements. /// /// If `len` is greater than the vector's current length, this has no /// effect. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2, 3, 4]; /// vec.truncate(2); /// assert_eq!(vec, [1, 2]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn truncate(&mut self, len: usize) { unsafe { // drop any extra elements while len < self.len { // decrement len before the read(), so a panic on Drop doesn't // re-drop the just-failed value. self.len -= 1; ptr::read(self.get_unchecked(self.len)); } } } /// Extracts a slice containing the entire vector. /// /// Equivalent to `&s[..]`. #[inline] #[unstable(feature = "convert", reason = "waiting on RFC revision")] pub fn as_slice(&self) -> &[T] { self } /// Extracts a mutable slice of the entire vector. /// /// Equivalent to `&mut s[..]`. #[inline] #[unstable(feature = "convert", reason = "waiting on RFC revision")] pub fn as_mut_slice(&mut self) -> &mut [T] { &mut self[..] } /// Sets the length of a vector. /// /// This will explicitly set the size of the vector, without actually /// modifying its buffers, so it is up to the caller to ensure that the /// vector is actually the specified size. /// /// # Examples /// /// ``` /// let mut v = vec![1, 2, 3, 4]; /// unsafe { /// v.set_len(1); /// } /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn set_len(&mut self, len: usize) { self.len = len; } /// Removes an element from anywhere in the vector and return it, replacing /// it with the last element. /// /// This does not preserve ordering, but is O(1). /// /// # Panics /// /// Panics if `index` is out of bounds. /// /// # Examples /// /// ``` /// let mut v = vec!["foo", "bar", "baz", "qux"]; /// /// assert_eq!(v.swap_remove(1), "bar"); /// assert_eq!(v, ["foo", "qux", "baz"]); /// /// assert_eq!(v.swap_remove(0), "foo"); /// assert_eq!(v, ["baz", "qux"]); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn swap_remove(&mut self, index: usize) -> T { let length = self.len(); self.swap(index, length - 1); self.pop().unwrap() } /// Inserts an element at position `index` within the vector, shifting all /// elements after position `i` one position to the right. /// /// # Panics /// /// Panics if `index` is greater than the vector's length. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2, 3]; /// vec.insert(1, 4); /// assert_eq!(vec, [1, 4, 2, 3]); /// vec.insert(4, 5); /// assert_eq!(vec, [1, 4, 2, 3, 5]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(&mut self, index: usize, element: T) { let len = self.len(); assert!(index <= len); // space for the new element self.reserve(1); unsafe { // infallible // The spot to put the new value { let p = self.as_mut_ptr().offset(index as isize); // Shift everything over to make space. (Duplicating the // `index`th element into two consecutive places.) ptr::copy(&*p, p.offset(1), len - index); // Write it in, overwriting the first copy of the `index`th // element. ptr::write(&mut *p, element); } self.set_len(len + 1); } } /// Removes and returns the element at position `index` within the vector, /// shifting all elements after position `index` one position to the left. /// /// # Panics /// /// Panics if `index` is out of bounds. /// /// # Examples /// /// ``` /// let mut v = vec![1, 2, 3]; /// assert_eq!(v.remove(1), 2); /// assert_eq!(v, [1, 3]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn remove(&mut self, index: usize) -> T { let len = self.len(); assert!(index < len); unsafe { // infallible let ret; { // the place we are taking from. let ptr = self.as_mut_ptr().offset(index as isize); // copy it out, unsafely having a copy of the value on // the stack and in the vector at the same time. ret = ptr::read(ptr); // Shift everything down to fill in that spot. ptr::copy(&*ptr.offset(1), ptr, len - index - 1); } self.set_len(len - 1); ret } } /// Retains only the elements specified by the predicate. /// /// In other words, remove all elements `e` such that `f(&e)` returns false. /// This method operates in place and preserves the order of the retained /// elements. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2, 3, 4]; /// vec.retain(|&x| x%2 == 0); /// assert_eq!(vec, [2, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn retain(&mut self, mut f: F) where F: FnMut(&T) -> bool { let len = self.len(); let mut del = 0; { let v = &mut **self; for i in 0..len { if !f(&v[i]) { del += 1; } else if del > 0 { v.swap(i-del, i); } } } if del > 0 { self.truncate(len - del); } } /// Appends an element to the back of a collection. /// /// # Panics /// /// Panics if the number of elements in the vector overflows a `usize`. /// /// # Examples /// /// ``` /// let mut vec = vec!(1, 2); /// vec.push(3); /// assert_eq!(vec, [1, 2, 3]); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn push(&mut self, value: T) { #[cold] #[inline(never)] fn resize(vec: &mut Vec) { let old_size = vec.cap * mem::size_of::(); if old_size >= MAX_MEMORY_SIZE { panic!("capacity overflow") } let mut size = max(old_size, 2 * mem::size_of::()) * 2; if old_size > size || size > MAX_MEMORY_SIZE { size = MAX_MEMORY_SIZE; } unsafe { let ptr = alloc_or_realloc(*vec.ptr, old_size, size); if ptr.is_null() { ::alloc::oom() } vec.ptr = Unique::new(ptr); } vec.cap = max(vec.cap, 2) * 2; } if mem::size_of::() == 0 { // zero-size types consume no memory, so we can't rely on the // address space running out self.len = self.len.checked_add(1).expect("length overflow"); mem::forget(value); return } if self.len == self.cap { resize(self); } unsafe { let end = (*self.ptr).offset(self.len as isize); ptr::write(&mut *end, value); self.len += 1; } } /// Removes the last element from a vector and returns it, or `None` if it is empty. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2, 3]; /// assert_eq!(vec.pop(), Some(3)); /// assert_eq!(vec, [1, 2]); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn pop(&mut self) -> Option { if self.len == 0 { None } else { unsafe { self.len -= 1; Some(ptr::read(self.get_unchecked(self.len()))) } } } /// Moves all the elements of `other` into `Self`, leaving `other` empty. /// /// # Panics /// /// Panics if the number of elements in the vector overflows a `usize`. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// let mut vec = vec![1, 2, 3]; /// let mut vec2 = vec![4, 5, 6]; /// vec.append(&mut vec2); /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]); /// assert_eq!(vec2, []); /// ``` #[inline] #[unstable(feature = "collections", reason = "new API, waiting for dust to settle")] pub fn append(&mut self, other: &mut Self) { if mem::size_of::() == 0 { // zero-size types consume no memory, so we can't rely on the // address space running out self.len = self.len.checked_add(other.len()).expect("length overflow"); unsafe { other.set_len(0) } return; } self.reserve(other.len()); let len = self.len(); unsafe { ptr::copy_nonoverlapping( other.as_ptr(), self.get_unchecked_mut(len), other.len()); } self.len += other.len(); unsafe { other.set_len(0); } } /// Create a draining iterator that removes the specified range in the vector /// and yields the removed items from start to end. The element range is /// removed even if the iterator is not consumed until the end. /// /// Note: It is unspecified how many elements are removed from the vector, /// if the `Drain` value is leaked. /// /// # Panics /// /// Panics if the starting point is greater than the end point or if /// the end point is greater than the length of the vector. /// /// # Examples /// /// ``` /// # #![feature(collections_drain)] /// /// // Draining using `..` clears the whole vector. /// let mut v = vec![1, 2, 3]; /// let u: Vec<_> = v.drain(..).collect(); /// assert_eq!(v, &[]); /// assert_eq!(u, &[1, 2, 3]); /// ``` #[unstable(feature = "collections_drain", reason = "recently added, matches RFC")] pub fn drain(&mut self, range: R) -> Drain where R: RangeArgument { // Memory safety // // When the Drain is first created, it shortens the length of // the source vector to make sure no uninitalized or moved-from elements // are accessible at all if the Drain's destructor never gets to run. // // Drain will ptr::read out the values to remove. // When finished, remaining tail of the vec is copied back to cover // the hole, and the vector length is restored to the new length. // let len = self.len(); let start = *range.start().unwrap_or(&0); let end = *range.end().unwrap_or(&len); assert!(start <= end); assert!(end <= len); unsafe { // set self.vec length's to start, to be safe in case Drain is leaked self.set_len(start); // Use the borrow in the IterMut to indicate borrowing behavior of the // whole Drain iterator (like &mut T). let range_slice = slice::from_raw_parts_mut( self.as_mut_ptr().offset(start as isize), end - start); Drain { tail_start: end, tail_len: len - end, iter: range_slice.iter_mut(), vec: self as *mut _, } } } /// Clears the vector, removing all values. /// /// # Examples /// /// ``` /// let mut v = vec![1, 2, 3]; /// /// v.clear(); /// /// assert!(v.is_empty()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn clear(&mut self) { self.truncate(0) } /// Returns the number of elements in the vector. /// /// # Examples /// /// ``` /// let a = vec![1, 2, 3]; /// assert_eq!(a.len(), 3); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn len(&self) -> usize { self.len } /// Returns `true` if the vector contains no elements. /// /// # Examples /// /// ``` /// let mut v = Vec::new(); /// assert!(v.is_empty()); /// /// v.push(1); /// assert!(!v.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Converts a `Vec` to a `Vec` where `T` and `U` have the same /// size and in case they are not zero-sized the same minimal alignment. /// /// # Panics /// /// Panics if `T` and `U` have differing sizes or are not zero-sized and /// have differing minimal alignments. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// let v = vec![0, 1, 2]; /// let w = v.map_in_place(|i| i + 3); /// assert_eq!(&w[..], &[3, 4, 5]); /// /// #[derive(PartialEq, Debug)] /// struct Newtype(u8); /// let bytes = vec![0x11, 0x22]; /// let newtyped_bytes = bytes.map_in_place(|x| Newtype(x)); /// assert_eq!(&newtyped_bytes[..], &[Newtype(0x11), Newtype(0x22)]); /// ``` #[unstable(feature = "collections", reason = "API may change to provide stronger guarantees")] pub fn map_in_place(self, mut f: F) -> Vec where F: FnMut(T) -> U { // FIXME: Assert statically that the types `T` and `U` have the same // size. assert!(mem::size_of::() == mem::size_of::()); let mut vec = self; if mem::size_of::() != 0 { // FIXME: Assert statically that the types `T` and `U` have the // same minimal alignment in case they are not zero-sized. // These asserts are necessary because the `min_align_of` of the // types are passed to the allocator by `Vec`. assert!(mem::min_align_of::() == mem::min_align_of::()); // This `as isize` cast is safe, because the size of the elements of the // vector is not 0, and: // // 1) If the size of the elements in the vector is 1, the `isize` may // overflow, but it has the correct bit pattern so that the // `.offset()` function will work. // // Example: // Address space 0x0-0xF. // `u8` array at: 0x1. // Size of `u8` array: 0x8. // Calculated `offset`: -0x8. // After `array.offset(offset)`: 0x9. // (0x1 + 0x8 = 0x1 - 0x8) // // 2) If the size of the elements in the vector is >1, the `usize` -> // `isize` conversion can't overflow. let offset = vec.len() as isize; let start = vec.as_mut_ptr(); let mut pv = PartialVecNonZeroSized { vec: vec, start_t: start, // This points inside the vector, as the vector has length // `offset`. end_t: unsafe { start.offset(offset) }, start_u: start as *mut U, end_u: start as *mut U, _marker: PhantomData, }; // start_t // start_u // | // +-+-+-+-+-+-+ // |T|T|T|...|T| // +-+-+-+-+-+-+ // | | // end_u end_t while pv.end_u as *mut T != pv.end_t { unsafe { // start_u start_t // | | // +-+-+-+-+-+-+-+-+-+ // |U|...|U|T|T|...|T| // +-+-+-+-+-+-+-+-+-+ // | | // end_u end_t let t = ptr::read(pv.start_t); // start_u start_t // | | // +-+-+-+-+-+-+-+-+-+ // |U|...|U|X|T|...|T| // +-+-+-+-+-+-+-+-+-+ // | | // end_u end_t // We must not panic here, one cell is marked as `T` // although it is not `T`. pv.start_t = pv.start_t.offset(1); // start_u start_t // | | // +-+-+-+-+-+-+-+-+-+ // |U|...|U|X|T|...|T| // +-+-+-+-+-+-+-+-+-+ // | | // end_u end_t // We may panic again. // The function given by the user might panic. let u = f(t); ptr::write(pv.end_u, u); // start_u start_t // | | // +-+-+-+-+-+-+-+-+-+ // |U|...|U|U|T|...|T| // +-+-+-+-+-+-+-+-+-+ // | | // end_u end_t // We should not panic here, because that would leak the `U` // pointed to by `end_u`. pv.end_u = pv.end_u.offset(1); // start_u start_t // | | // +-+-+-+-+-+-+-+-+-+ // |U|...|U|U|T|...|T| // +-+-+-+-+-+-+-+-+-+ // | | // end_u end_t // We may panic again. } } // start_u start_t // | | // +-+-+-+-+-+-+ // |U|...|U|U|U| // +-+-+-+-+-+-+ // | // end_t // end_u // Extract `vec` and prevent the destructor of // `PartialVecNonZeroSized` from running. Note that none of the // function calls can panic, thus no resources can be leaked (as the // `vec` member of `PartialVec` is the only one which holds // allocations -- and it is returned from this function. None of // this can panic. unsafe { let vec_len = pv.vec.len(); let vec_cap = pv.vec.capacity(); let vec_ptr = pv.vec.as_mut_ptr() as *mut U; mem::forget(pv); Vec::from_raw_parts(vec_ptr, vec_len, vec_cap) } } else { // Put the `Vec` into the `PartialVecZeroSized` structure and // prevent the destructor of the `Vec` from running. Since the // `Vec` contained zero-sized objects, it did not allocate, so we // are not leaking memory here. let mut pv = PartialVecZeroSized:: { num_t: vec.len(), num_u: 0, marker: PhantomData, }; mem::forget(vec); while pv.num_t != 0 { unsafe { // Create a `T` out of thin air and decrement `num_t`. This // must not panic between these steps, as otherwise a // destructor of `T` which doesn't exist runs. let t = mem::uninitialized(); pv.num_t -= 1; // The function given by the user might panic. let u = f(t); // Forget the `U` and increment `num_u`. This increment // cannot overflow the `usize` as we only do this for a // number of times that fits into a `usize` (and start with // `0`). Again, we should not panic between these steps. mem::forget(u); pv.num_u += 1; } } // Create a `Vec` from our `PartialVecZeroSized` and make sure the // destructor of the latter will not run. None of this can panic. let mut result = Vec::new(); unsafe { result.set_len(pv.num_u); mem::forget(pv); } result } } /// Splits the collection into two at the given index. /// /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`, /// and the returned `Self` contains elements `[at, len)`. /// /// Note that the capacity of `self` does not change. /// /// # Panics /// /// Panics if `at > len`. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// let mut vec = vec![1,2,3]; /// let vec2 = vec.split_off(1); /// assert_eq!(vec, [1]); /// assert_eq!(vec2, [2, 3]); /// ``` #[inline] #[unstable(feature = "collections", reason = "new API, waiting for dust to settle")] pub fn split_off(&mut self, at: usize) -> Self { assert!(at <= self.len(), "`at` out of bounds"); let other_len = self.len - at; let mut other = Vec::with_capacity(other_len); // Unsafely `set_len` and copy items to `other`. unsafe { self.set_len(at); other.set_len(other_len); ptr::copy_nonoverlapping( self.as_ptr().offset(at as isize), other.as_mut_ptr(), other.len()); } other } } impl Vec { /// Resizes the `Vec` in-place so that `len()` is equal to `new_len`. /// /// Calls either `extend()` or `truncate()` depending on whether `new_len` /// is larger than the current value of `len()` or not. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// let mut vec = vec!["hello"]; /// vec.resize(3, "world"); /// assert_eq!(vec, ["hello", "world", "world"]); /// /// let mut vec = vec![1, 2, 3, 4]; /// vec.resize(2, 0); /// assert_eq!(vec, [1, 2]); /// ``` #[unstable(feature = "collections", reason = "matches collection reform specification; waiting for dust to settle")] pub fn resize(&mut self, new_len: usize, value: T) { let len = self.len(); if new_len > len { self.extend(repeat(value).take(new_len - len)); } else { self.truncate(new_len); } } /// Appends all elements in a slice to the `Vec`. /// /// Iterates over the slice `other`, clones each element, and then appends /// it to this `Vec`. The `other` vector is traversed in-order. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// let mut vec = vec![1]; /// vec.push_all(&[2, 3, 4]); /// assert_eq!(vec, [1, 2, 3, 4]); /// ``` #[inline] #[unstable(feature = "collections", reason = "likely to be replaced by a more optimized extend")] pub fn push_all(&mut self, other: &[T]) { self.reserve(other.len()); for i in 0..other.len() { let len = self.len(); // Unsafe code so this can be optimised to a memcpy (or something similarly // fast) when T is Copy. LLVM is easily confused, so any extra operations // during the loop can prevent this optimisation. unsafe { ptr::write( self.get_unchecked_mut(len), other.get_unchecked(i).clone()); self.set_len(len + 1); } } } } impl Vec { /// Removes consecutive repeated elements in the vector. /// /// If the vector is sorted, this removes all duplicates. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2, 2, 3, 2]; /// /// vec.dedup(); /// /// assert_eq!(vec, [1, 2, 3, 2]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn dedup(&mut self) { unsafe { // Although we have a mutable reference to `self`, we cannot make // *arbitrary* changes. The `PartialEq` comparisons could panic, so we // must ensure that the vector is in a valid state at all time. // // The way that we handle this is by using swaps; we iterate // over all the elements, swapping as we go so that at the end // the elements we wish to keep are in the front, and those we // wish to reject are at the back. We can then truncate the // vector. This operation is still O(n). // // Example: We start in this state, where `r` represents "next // read" and `w` represents "next_write`. // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this is not a duplicate, so // we swap self[r] and self[w] (no effect as r==w) and then increment both // r and w, leaving us with: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this value is a duplicate, // so we increment `r` but leave everything else unchanged: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this is not a duplicate, // so swap self[r] and self[w] and advance r and w: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 1 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Not a duplicate, repeat: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 3 | 1 | 3 | // +---+---+---+---+---+---+ // w // // Duplicate, advance r. End of vec. Truncate to w. let ln = self.len(); if ln <= 1 { return; } // Avoid bounds checks by using raw pointers. let p = self.as_mut_ptr(); let mut r: usize = 1; let mut w: usize = 1; while r < ln { let p_r = p.offset(r as isize); let p_wm1 = p.offset((w - 1) as isize); if *p_r != *p_wm1 { if r != w { let p_w = p_wm1.offset(1); mem::swap(&mut *p_r, &mut *p_w); } w += 1; } r += 1; } self.truncate(w); } } } //////////////////////////////////////////////////////////////////////////////// // Internal methods and functions //////////////////////////////////////////////////////////////////////////////// impl Vec { /// Reserves capacity for exactly `capacity` elements in the given vector. /// /// If the capacity for `self` is already equal to or greater than the /// requested capacity, then no action is taken. fn grow_capacity(&mut self, capacity: usize) { if mem::size_of::() == 0 { return } if capacity > self.cap { let size = capacity.checked_mul(mem::size_of::()) .expect("capacity overflow"); unsafe { let ptr = alloc_or_realloc(*self.ptr, self.cap * mem::size_of::(), size); if ptr.is_null() { ::alloc::oom() } self.ptr = Unique::new(ptr); } self.cap = capacity; } } } // FIXME: #13996: need a way to mark the return value as `noalias` #[inline(never)] unsafe fn alloc_or_realloc(ptr: *mut T, old_size: usize, size: usize) -> *mut T { if old_size == 0 { allocate(size, mem::min_align_of::()) as *mut T } else { reallocate(ptr as *mut u8, old_size, size, mem::min_align_of::()) as *mut T } } #[inline] unsafe fn dealloc(ptr: *mut T, len: usize) { if mem::size_of::() != 0 { deallocate(ptr as *mut u8, len * mem::size_of::(), mem::min_align_of::()) } } #[doc(hidden)] #[stable(feature = "rust1", since = "1.0.0")] pub fn from_elem(elem: T, n: usize) -> Vec { unsafe { let mut v = Vec::with_capacity(n); let mut ptr = v.as_mut_ptr(); // Write all elements except the last one for i in 1..n { ptr::write(ptr, Clone::clone(&elem)); ptr = ptr.offset(1); v.set_len(i); // Increment the length in every step in case Clone::clone() panics } if n > 0 { // We can write the last element directly without cloning needlessly ptr::write(ptr, elem); v.set_len(n); } v } } //////////////////////////////////////////////////////////////////////////////// // Common trait implementations for Vec //////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Vec { #[cfg(not(test))] fn clone(&self) -> Vec { <[T]>::to_vec(&**self) } // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is // required for this method definition, is not available. Instead use the // `slice::to_vec` function which is only available with cfg(test) // NB see the slice::hack module in slice.rs for more information #[cfg(test)] fn clone(&self) -> Vec { ::slice::to_vec(&**self) } fn clone_from(&mut self, other: &Vec) { // drop anything in self that will not be overwritten if self.len() > other.len() { self.truncate(other.len()) } // reuse the contained values' allocations/resources. for (place, thing) in self.iter_mut().zip(other.iter()) { place.clone_from(thing) } // self.len <= other.len due to the truncate above, so the // slice here is always in-bounds. let slice = &other[self.len()..]; self.push_all(slice); } } #[stable(feature = "rust1", since = "1.0.0")] impl Hash for Vec { #[inline] fn hash(&self, state: &mut H) { Hash::hash(&**self, state) } } #[stable(feature = "rust1", since = "1.0.0")] impl Index for Vec { type Output = T; #[inline] fn index(&self, index: usize) -> &T { // NB built-in indexing via `&[T]` &(**self)[index] } } #[stable(feature = "rust1", since = "1.0.0")] impl IndexMut for Vec { #[inline] fn index_mut(&mut self, index: usize) -> &mut T { // NB built-in indexing via `&mut [T]` &mut (**self)[index] } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index> for Vec { type Output = [T]; #[inline] fn index(&self, index: ops::Range) -> &[T] { Index::index(&**self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index> for Vec { type Output = [T]; #[inline] fn index(&self, index: ops::RangeTo) -> &[T] { Index::index(&**self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index> for Vec { type Output = [T]; #[inline] fn index(&self, index: ops::RangeFrom) -> &[T] { Index::index(&**self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index for Vec { type Output = [T]; #[inline] fn index(&self, _index: ops::RangeFull) -> &[T] { self } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::IndexMut> for Vec { #[inline] fn index_mut(&mut self, index: ops::Range) -> &mut [T] { IndexMut::index_mut(&mut **self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::IndexMut> for Vec { #[inline] fn index_mut(&mut self, index: ops::RangeTo) -> &mut [T] { IndexMut::index_mut(&mut **self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::IndexMut> for Vec { #[inline] fn index_mut(&mut self, index: ops::RangeFrom) -> &mut [T] { IndexMut::index_mut(&mut **self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::IndexMut for Vec { #[inline] fn index_mut(&mut self, _index: ops::RangeFull) -> &mut [T] { self } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Deref for Vec { type Target = [T]; fn deref(&self) -> &[T] { unsafe { let p = *self.ptr; assume(p != 0 as *mut T); slice::from_raw_parts(p, self.len) } } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::DerefMut for Vec { fn deref_mut(&mut self) -> &mut [T] { unsafe { let ptr = *self.ptr; assume(!ptr.is_null()); slice::from_raw_parts_mut(ptr, self.len) } } } #[stable(feature = "rust1", since = "1.0.0")] impl FromIterator for Vec { #[inline] fn from_iter>(iterable: I) -> Vec { let mut iterator = iterable.into_iter(); let (lower, _) = iterator.size_hint(); let mut vector = Vec::with_capacity(lower); // This function should be the moral equivalent of: // // for item in iterator { // vector.push(item); // } // // This equivalent crucially runs the iterator precisely once. Below we // actually in theory run the iterator twice (one without bounds checks // and one with). To achieve the "moral equivalent", we use the `if` // statement below to break out early. // // If the first loop has terminated, then we have one of two conditions. // // 1. The underlying iterator returned `None`. In this case we are // guaranteed that less than `vector.capacity()` elements have been // returned, so we break out early. // 2. The underlying iterator yielded `vector.capacity()` elements and // has not yielded `None` yet. In this case we run the iterator to // its end below. for element in iterator.by_ref().take(vector.capacity()) { let len = vector.len(); unsafe { ptr::write(vector.get_unchecked_mut(len), element); vector.set_len(len + 1); } } if vector.len() == vector.capacity() { for element in iterator { vector.push(element); } } vector } } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for Vec { type Item = T; type IntoIter = IntoIter; /// Creates a consuming iterator, that is, one that moves each value out of /// the vector (from start to end). The vector cannot be used after calling /// this. /// /// # Examples /// /// ``` /// let v = vec!["a".to_string(), "b".to_string()]; /// for s in v.into_iter() { /// // s has type String, not &String /// println!("{}", s); /// } /// ``` #[inline] fn into_iter(self) -> IntoIter { unsafe { let ptr = *self.ptr; assume(!ptr.is_null()); let cap = self.cap; let begin = ptr as *const T; let end = if mem::size_of::() == 0 { arith_offset(ptr as *const i8, self.len() as isize) as *const T } else { ptr.offset(self.len() as isize) as *const T }; mem::forget(self); IntoIter { allocation: ptr, cap: cap, ptr: begin, end: end } } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> IntoIterator for &'a Vec { type Item = &'a T; type IntoIter = slice::Iter<'a, T>; fn into_iter(self) -> slice::Iter<'a, T> { self.iter() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> IntoIterator for &'a mut Vec { type Item = &'a mut T; type IntoIter = slice::IterMut<'a, T>; fn into_iter(mut self) -> slice::IterMut<'a, T> { self.iter_mut() } } #[stable(feature = "rust1", since = "1.0.0")] impl Extend for Vec { #[inline] fn extend>(&mut self, iterable: I) { let iterator = iterable.into_iter(); let (lower, _) = iterator.size_hint(); self.reserve(lower); for element in iterator { self.push(element) } } } #[stable(feature = "extend_ref", since = "1.2.0")] impl<'a, T: 'a + Copy> Extend<&'a T> for Vec { fn extend>(&mut self, iter: I) { self.extend(iter.into_iter().cloned()); } } __impl_slice_eq1! { Vec, Vec } __impl_slice_eq1! { Vec, &'b [B] } __impl_slice_eq1! { Vec, &'b mut [B] } __impl_slice_eq1! { Cow<'a, [A]>, &'b [B], Clone } __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B], Clone } __impl_slice_eq1! { Cow<'a, [A]>, Vec, Clone } macro_rules! array_impls { ($($N: expr)+) => { $( // NOTE: some less important impls are omitted to reduce code bloat __impl_slice_eq1! { Vec, [B; $N] } __impl_slice_eq1! { Vec, &'b [B; $N] } // __impl_slice_eq1! { Vec, &'b mut [B; $N] } // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone } // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone } // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone } )+ } } array_impls! { 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 } #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for Vec { #[inline] fn partial_cmp(&self, other: &Vec) -> Option { PartialOrd::partial_cmp(&**self, &**other) } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for Vec {} #[stable(feature = "rust1", since = "1.0.0")] impl Ord for Vec { #[inline] fn cmp(&self, other: &Vec) -> Ordering { Ord::cmp(&**self, &**other) } } #[stable(feature = "rust1", since = "1.0.0")] impl Drop for Vec { fn drop(&mut self) { // This is (and should always remain) a no-op if the fields are // zeroed (when moving out, because of #[unsafe_no_drop_flag]). if self.cap != 0 && self.cap != mem::POST_DROP_USIZE { unsafe { for x in &*self { ptr::read(x); } dealloc(*self.ptr, self.cap) } } } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for Vec { #[stable(feature = "rust1", since = "1.0.0")] fn default() -> Vec { Vec::new() } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for Vec { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } #[stable(feature = "rust1", since = "1.0.0")] impl AsRef> for Vec { fn as_ref(&self) -> &Vec { self } } #[stable(feature = "rust1", since = "1.0.0")] impl AsRef<[T]> for Vec { fn as_ref(&self) -> &[T] { self } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T: Clone> From<&'a [T]> for Vec { #[cfg(not(test))] fn from(s: &'a [T]) -> Vec { s.to_vec() } #[cfg(test)] fn from(s: &'a [T]) -> Vec { ::slice::to_vec(s) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> From<&'a str> for Vec { fn from(s: &'a str) -> Vec { From::from(s.as_bytes()) } } //////////////////////////////////////////////////////////////////////////////// // Clone-on-write //////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> FromIterator for Cow<'a, [T]> where T: Clone { fn from_iter>(it: I) -> Cow<'a, [T]> { Cow::Owned(FromIterator::from_iter(it)) } } impl<'a, T: 'a> IntoCow<'a, [T]> for Vec where T: Clone { fn into_cow(self) -> Cow<'a, [T]> { Cow::Owned(self) } } impl<'a, T> IntoCow<'a, [T]> for &'a [T] where T: Clone { fn into_cow(self) -> Cow<'a, [T]> { Cow::Borrowed(self) } } //////////////////////////////////////////////////////////////////////////////// // Iterators //////////////////////////////////////////////////////////////////////////////// /// An iterator that moves out of a vector. #[stable(feature = "rust1", since = "1.0.0")] pub struct IntoIter { allocation: *mut T, // the block of memory allocated for the vector cap: usize, // the capacity of the vector ptr: *const T, end: *const T } unsafe impl Send for IntoIter { } unsafe impl Sync for IntoIter { } impl IntoIter { #[inline] /// Drops all items that have not yet been moved and returns the empty vector. #[unstable(feature = "collections")] pub fn into_inner(mut self) -> Vec { unsafe { for _x in self.by_ref() { } let IntoIter { allocation, cap, ptr: _ptr, end: _end } = self; mem::forget(self); Vec::from_raw_parts(allocation, 0, cap) } } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for IntoIter { type Item = T; #[inline] fn next(&mut self) -> Option { unsafe { if self.ptr == self.end { None } else { if mem::size_of::() == 0 { // purposefully don't use 'ptr.offset' because for // vectors with 0-size elements this would return the // same pointer. self.ptr = arith_offset(self.ptr as *const i8, 1) as *const T; // Use a non-null pointer value Some(ptr::read(EMPTY as *mut T)) } else { let old = self.ptr; self.ptr = self.ptr.offset(1); Some(ptr::read(old)) } } } } #[inline] fn size_hint(&self) -> (usize, Option) { let diff = (self.end as usize) - (self.ptr as usize); let size = mem::size_of::(); let exact = diff / (if size == 0 {1} else {size}); (exact, Some(exact)) } #[inline] fn count(self) -> usize { self.size_hint().0 } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { unsafe { if self.end == self.ptr { None } else { if mem::size_of::() == 0 { // See above for why 'ptr.offset' isn't used self.end = arith_offset(self.end as *const i8, -1) as *const T; // Use a non-null pointer value Some(ptr::read(EMPTY as *mut T)) } else { self.end = self.end.offset(-1); Some(ptr::read(mem::transmute(self.end))) } } } } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IntoIter {} #[stable(feature = "rust1", since = "1.0.0")] impl Drop for IntoIter { fn drop(&mut self) { // destroy the remaining elements if self.cap != 0 { for _x in self.by_ref() {} unsafe { dealloc(self.allocation, self.cap); } } } } /// A draining iterator for `Vec`. #[unstable(feature = "collections_drain", reason = "recently added")] pub struct Drain<'a, T: 'a> { /// Index of tail to preserve tail_start: usize, /// Length of tail tail_len: usize, /// Current remaining range to remove iter: slice::IterMut<'a, T>, vec: *mut Vec, } unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {} unsafe impl<'a, T: Send> Send for Drain<'a, T> {} #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Iterator for Drain<'a, T> { type Item = T; #[inline] fn next(&mut self) -> Option { self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) } ) } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> DoubleEndedIterator for Drain<'a, T> { #[inline] fn next_back(&mut self) -> Option { self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) } ) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Drop for Drain<'a, T> { fn drop(&mut self) { // exhaust self first while let Some(_) = self.next() { } if self.tail_len > 0 { unsafe { let source_vec = &mut *self.vec; // memmove back untouched tail, update to new length let start = source_vec.len(); let tail = self.tail_start; let src = source_vec.as_ptr().offset(tail as isize); let dst = source_vec.as_mut_ptr().offset(start as isize); ptr::copy(src, dst, self.tail_len); source_vec.set_len(start + self.tail_len); } } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> ExactSizeIterator for Drain<'a, T> {} //////////////////////////////////////////////////////////////////////////////// // Conversion from &[T] to &Vec //////////////////////////////////////////////////////////////////////////////// /// Wrapper type providing a `&Vec` reference via `Deref`. #[unstable(feature = "collections")] pub struct DerefVec<'a, T:'a> { x: Vec, l: PhantomData<&'a T>, } #[unstable(feature = "collections")] impl<'a, T> Deref for DerefVec<'a, T> { type Target = Vec; fn deref<'b>(&'b self) -> &'b Vec { &self.x } } // Prevent the inner `Vec` from attempting to deallocate memory. #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Drop for DerefVec<'a, T> { fn drop(&mut self) { self.x.len = 0; self.x.cap = 0; } } /// Converts a slice to a wrapper type providing a `&Vec` reference. /// /// # Examples /// /// ``` /// # #![feature(collections)] /// use std::vec::as_vec; /// /// // Let's pretend we have a function that requires `&Vec` /// fn vec_consumer(s: &Vec) { /// assert_eq!(s, &[1, 2, 3]); /// } /// /// // Provide a `&Vec` from a `&[i32]` without allocating /// let values = [1, 2, 3]; /// vec_consumer(&as_vec(&values)); /// ``` #[unstable(feature = "collections")] pub fn as_vec<'a, T>(x: &'a [T]) -> DerefVec<'a, T> { unsafe { DerefVec { x: Vec::from_raw_parts(x.as_ptr() as *mut T, x.len(), x.len()), l: PhantomData, } } } //////////////////////////////////////////////////////////////////////////////// // Partial vec, used for map_in_place //////////////////////////////////////////////////////////////////////////////// /// An owned, partially type-converted vector of elements with non-zero size. /// /// `T` and `U` must have the same, non-zero size. They must also have the same /// alignment. /// /// When the destructor of this struct runs, all `U`s from `start_u` (incl.) to /// `end_u` (excl.) and all `T`s from `start_t` (incl.) to `end_t` (excl.) are /// destructed. Additionally the underlying storage of `vec` will be freed. struct PartialVecNonZeroSized { vec: Vec, start_u: *mut U, end_u: *mut U, start_t: *mut T, end_t: *mut T, _marker: PhantomData, } /// An owned, partially type-converted vector of zero-sized elements. /// /// When the destructor of this struct runs, all `num_t` `T`s and `num_u` `U`s /// are destructed. struct PartialVecZeroSized { num_t: usize, num_u: usize, marker: PhantomData<::core::cell::Cell<(T,U)>>, } impl Drop for PartialVecNonZeroSized { fn drop(&mut self) { unsafe { // `vec` hasn't been modified until now. As it has a length // currently, this would run destructors of `T`s which might not be // there. So at first, set `vec`s length to `0`. This must be done // at first to remain memory-safe as the destructors of `U` or `T` // might cause unwinding where `vec`s destructor would be executed. self.vec.set_len(0); // We have instances of `U`s and `T`s in `vec`. Destruct them. while self.start_u != self.end_u { let _ = ptr::read(self.start_u); // Run a `U` destructor. self.start_u = self.start_u.offset(1); } while self.start_t != self.end_t { let _ = ptr::read(self.start_t); // Run a `T` destructor. self.start_t = self.start_t.offset(1); } // After this destructor ran, the destructor of `vec` will run, // deallocating the underlying memory. } } } impl Drop for PartialVecZeroSized { fn drop(&mut self) { unsafe { // Destruct the instances of `T` and `U` this struct owns. while self.num_t != 0 { let _: T = mem::uninitialized(); // Run a `T` destructor. self.num_t -= 1; } while self.num_u != 0 { let _: U = mem::uninitialized(); // Run a `U` destructor. self.num_u -= 1; } } } }