// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use ascii; use borrow::{Cow, ToOwned, Borrow}; use boxed::Box; use convert::{Into, From}; use cmp::{PartialEq, Eq, PartialOrd, Ord, Ordering}; use error::Error; use fmt::{self, Write}; use io; use iter::Iterator; use libc; use mem; use memchr; use ops; use option::Option::{self, Some, None}; use os::raw::c_char; use result::Result::{self, Ok, Err}; use slice; use str::{self, Utf8Error}; use string::String; use vec::Vec; /// A type representing an owned C-compatible string /// /// This type serves the primary purpose of being able to safely generate a /// C-compatible string from a Rust byte slice or vector. An instance of this /// type is a static guarantee that the underlying bytes contain no interior 0 /// bytes and the final byte is 0. /// /// A `CString` is created from either a byte slice or a byte vector. After /// being created, a `CString` predominately inherits all of its methods from /// the `Deref` implementation to `[c_char]`. Note that the underlying array /// is represented as an array of `c_char` as opposed to `u8`. A `u8` slice /// can be obtained with the `as_bytes` method. Slices produced from a `CString` /// do *not* contain the trailing nul terminator unless otherwise specified. /// /// # Examples /// /// ```no_run /// # fn main() { /// use std::ffi::CString; /// use std::os::raw::c_char; /// /// extern { /// fn my_printer(s: *const c_char); /// } /// /// let c_to_print = CString::new("Hello, world!").unwrap(); /// unsafe { /// my_printer(c_to_print.as_ptr()); /// } /// # } /// ``` /// /// # Safety /// /// `CString` is intended for working with traditional C-style strings /// (a sequence of non-null bytes terminated by a single null byte); the /// primary use case for these kinds of strings is interoperating with C-like /// code. Often you will need to transfer ownership to/from that external /// code. It is strongly recommended that you thoroughly read through the /// documentation of `CString` before use, as improper ownership management /// of `CString` instances can lead to invalid memory accesses, memory leaks, /// and other memory errors. #[derive(PartialEq, PartialOrd, Eq, Ord, Hash, Clone)] #[stable(feature = "rust1", since = "1.0.0")] pub struct CString { inner: Box<[u8]>, } /// Representation of a borrowed C string. /// /// This dynamically sized type is only safely constructed via a borrowed /// version of an instance of `CString`. This type can be constructed from a raw /// C string as well and represents a C string borrowed from another location. /// /// Note that this structure is **not** `repr(C)` and is not recommended to be /// placed in the signatures of FFI functions. Instead safe wrappers of FFI /// functions may leverage the unsafe `from_ptr` constructor to provide a safe /// interface to other consumers. /// /// # Examples /// /// Inspecting a foreign C string /// /// ```no_run /// use std::ffi::CStr; /// use std::os::raw::c_char; /// /// extern { fn my_string() -> *const c_char; } /// /// fn main() { /// unsafe { /// let slice = CStr::from_ptr(my_string()); /// println!("string length: {}", slice.to_bytes().len()); /// } /// } /// ``` /// /// Passing a Rust-originating C string /// /// ```no_run /// use std::ffi::{CString, CStr}; /// use std::os::raw::c_char; /// /// fn work(data: &CStr) { /// extern { fn work_with(data: *const c_char); } /// /// unsafe { work_with(data.as_ptr()) } /// } /// /// fn main() { /// let s = CString::new("data data data data").unwrap(); /// work(&s); /// } /// ``` /// /// Converting a foreign C string into a Rust `String` /// /// ```no_run /// use std::ffi::CStr; /// use std::os::raw::c_char; /// /// extern { fn my_string() -> *const c_char; } /// /// fn my_string_safe() -> String { /// unsafe { /// CStr::from_ptr(my_string()).to_string_lossy().into_owned() /// } /// } /// /// fn main() { /// println!("string: {}", my_string_safe()); /// } /// ``` #[derive(Hash)] #[stable(feature = "rust1", since = "1.0.0")] pub struct CStr { // FIXME: this should not be represented with a DST slice but rather with // just a raw `c_char` along with some form of marker to make // this an unsized type. Essentially `sizeof(&CStr)` should be the // same as `sizeof(&c_char)` but `CStr` should be an unsized type. inner: [c_char] } /// An error returned from `CString::new` to indicate that a nul byte was found /// in the vector provided. #[derive(Clone, PartialEq, Debug)] #[stable(feature = "rust1", since = "1.0.0")] pub struct NulError(usize, Vec); /// An error returned from `CString::into_string` to indicate that a UTF-8 error /// was encountered during the conversion. #[derive(Clone, PartialEq, Debug)] #[stable(feature = "cstring_into", since = "1.7.0")] pub struct IntoStringError { inner: CString, error: Utf8Error, } impl CString { /// Creates a new C-compatible string from a container of bytes. /// /// This method will consume the provided data and use the underlying bytes /// to construct a new string, ensuring that there is a trailing 0 byte. /// /// # Examples /// /// ```no_run /// use std::ffi::CString; /// use std::os::raw::c_char; /// /// extern { fn puts(s: *const c_char); } /// /// fn main() { /// let to_print = CString::new("Hello!").unwrap(); /// unsafe { /// puts(to_print.as_ptr()); /// } /// } /// ``` /// /// # Errors /// /// This function will return an error if the bytes yielded contain an /// internal 0 byte. The error returned will contain the bytes as well as /// the position of the nul byte. #[stable(feature = "rust1", since = "1.0.0")] pub fn new>>(t: T) -> Result { Self::_new(t.into()) } fn _new(bytes: Vec) -> Result { match memchr::memchr(0, &bytes) { Some(i) => Err(NulError(i, bytes)), None => Ok(unsafe { CString::from_vec_unchecked(bytes) }), } } /// Creates a C-compatible string from a byte vector without checking for /// interior 0 bytes. /// /// This method is equivalent to `new` except that no runtime assertion /// is made that `v` contains no 0 bytes, and it requires an actual /// byte vector, not anything that can be converted to one with Into. #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn from_vec_unchecked(mut v: Vec) -> CString { v.push(0); CString { inner: v.into_boxed_slice() } } /// Retakes ownership of a `CString` that was transferred to C. /// /// This should only ever be called with a pointer that was earlier /// obtained by calling `into_raw` on a `CString`. Additionally, the length /// of the string will be recalculated from the pointer. #[stable(feature = "cstr_memory", since = "1.4.0")] pub unsafe fn from_raw(ptr: *mut c_char) -> CString { let len = libc::strlen(ptr) + 1; // Including the NUL byte let slice = slice::from_raw_parts(ptr, len as usize); CString { inner: mem::transmute(slice) } } /// Transfers ownership of the string to a C caller. /// /// The pointer must be returned to Rust and reconstituted using /// `from_raw` to be properly deallocated. Specifically, one /// should *not* use the standard C `free` function to deallocate /// this string. /// /// Failure to call `from_raw` will lead to a memory leak. #[stable(feature = "cstr_memory", since = "1.4.0")] pub fn into_raw(self) -> *mut c_char { Box::into_raw(self.inner) as *mut c_char } /// Converts the `CString` into a `String` if it contains valid Unicode data. /// /// On failure, ownership of the original `CString` is returned. #[stable(feature = "cstring_into", since = "1.7.0")] pub fn into_string(self) -> Result { String::from_utf8(self.into_bytes()) .map_err(|e| IntoStringError { error: e.utf8_error(), inner: unsafe { CString::from_vec_unchecked(e.into_bytes()) }, }) } /// Returns the underlying byte buffer. /// /// The returned buffer does **not** contain the trailing nul separator and /// it is guaranteed to not have any interior nul bytes. #[stable(feature = "cstring_into", since = "1.7.0")] pub fn into_bytes(self) -> Vec { let mut vec = self.inner.into_vec(); let _nul = vec.pop(); debug_assert_eq!(_nul, Some(0u8)); vec } /// Equivalent to the `into_bytes` function except that the returned vector /// includes the trailing nul byte. #[stable(feature = "cstring_into", since = "1.7.0")] pub fn into_bytes_with_nul(self) -> Vec { self.inner.into_vec() } /// Returns the contents of this `CString` as a slice of bytes. /// /// The returned slice does **not** contain the trailing nul separator and /// it is guaranteed to not have any interior nul bytes. #[stable(feature = "rust1", since = "1.0.0")] pub fn as_bytes(&self) -> &[u8] { &self.inner[..self.inner.len() - 1] } /// Equivalent to the `as_bytes` function except that the returned slice /// includes the trailing nul byte. #[stable(feature = "rust1", since = "1.0.0")] pub fn as_bytes_with_nul(&self) -> &[u8] { &self.inner } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Deref for CString { type Target = CStr; fn deref(&self) -> &CStr { unsafe { mem::transmute(self.as_bytes_with_nul()) } } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for CString { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } #[stable(feature = "cstring_into", since = "1.7.0")] impl From for Vec { fn from(s: CString) -> Vec { s.into_bytes() } } #[stable(feature = "cstr_debug", since = "1.3.0")] impl fmt::Debug for CStr { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "\"")); for byte in self.to_bytes().iter().flat_map(|&b| ascii::escape_default(b)) { try!(f.write_char(byte as char)); } write!(f, "\"") } } #[stable(feature = "cstr_borrow", since = "1.3.0")] impl Borrow for CString { fn borrow(&self) -> &CStr { self } } impl NulError { /// Returns the position of the nul byte in the slice that was provided to /// `CString::new`. #[stable(feature = "rust1", since = "1.0.0")] pub fn nul_position(&self) -> usize { self.0 } /// Consumes this error, returning the underlying vector of bytes which /// generated the error in the first place. #[stable(feature = "rust1", since = "1.0.0")] pub fn into_vec(self) -> Vec { self.1 } } #[stable(feature = "rust1", since = "1.0.0")] impl Error for NulError { fn description(&self) -> &str { "nul byte found in data" } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for NulError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "nul byte found in provided data at position: {}", self.0) } } #[stable(feature = "rust1", since = "1.0.0")] impl From for io::Error { fn from(_: NulError) -> io::Error { io::Error::new(io::ErrorKind::InvalidInput, "data provided contains a nul byte") } } impl IntoStringError { /// Consumes this error, returning original `CString` which generated the /// error. #[stable(feature = "cstring_into", since = "1.7.0")] pub fn into_cstring(self) -> CString { self.inner } /// Access the underlying UTF-8 error that was the cause of this error. #[stable(feature = "cstring_into", since = "1.7.0")] pub fn utf8_error(&self) -> Utf8Error { self.error } } #[stable(feature = "cstring_into", since = "1.7.0")] impl Error for IntoStringError { fn description(&self) -> &str { "C string contained non-utf8 bytes" } fn cause(&self) -> Option<&Error> { Some(&self.error) } } #[stable(feature = "cstring_into", since = "1.7.0")] impl fmt::Display for IntoStringError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.description().fmt(f) } } impl CStr { /// Casts a raw C string to a safe C string wrapper. /// /// This function will cast the provided `ptr` to the `CStr` wrapper which /// allows inspection and interoperation of non-owned C strings. This method /// is unsafe for a number of reasons: /// /// * There is no guarantee to the validity of `ptr` /// * The returned lifetime is not guaranteed to be the actual lifetime of /// `ptr` /// * There is no guarantee that the memory pointed to by `ptr` contains a /// valid nul terminator byte at the end of the string. /// /// > **Note**: This operation is intended to be a 0-cost cast but it is /// > currently implemented with an up-front calculation of the length of /// > the string. This is not guaranteed to always be the case. /// /// # Examples /// /// ```no_run /// # fn main() { /// use std::ffi::CStr; /// use std::os::raw::c_char; /// /// extern { /// fn my_string() -> *const c_char; /// } /// /// unsafe { /// let slice = CStr::from_ptr(my_string()); /// println!("string returned: {}", slice.to_str().unwrap()); /// } /// # } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr { let len = libc::strlen(ptr); mem::transmute(slice::from_raw_parts(ptr, len as usize + 1)) } /// Returns the inner pointer to this C string. /// /// The returned pointer will be valid for as long as `self` is and points /// to a contiguous region of memory terminated with a 0 byte to represent /// the end of the string. #[stable(feature = "rust1", since = "1.0.0")] pub fn as_ptr(&self) -> *const c_char { self.inner.as_ptr() } /// Converts this C string to a byte slice. /// /// This function will calculate the length of this string (which normally /// requires a linear amount of work to be done) and then return the /// resulting slice of `u8` elements. /// /// The returned slice will **not** contain the trailing nul that this C /// string has. /// /// > **Note**: This method is currently implemented as a 0-cost cast, but /// > it is planned to alter its definition in the future to perform the /// > length calculation whenever this method is called. #[stable(feature = "rust1", since = "1.0.0")] pub fn to_bytes(&self) -> &[u8] { let bytes = self.to_bytes_with_nul(); &bytes[..bytes.len() - 1] } /// Converts this C string to a byte slice containing the trailing 0 byte. /// /// This function is the equivalent of `to_bytes` except that it will retain /// the trailing nul instead of chopping it off. /// /// > **Note**: This method is currently implemented as a 0-cost cast, but /// > it is planned to alter its definition in the future to perform the /// > length calculation whenever this method is called. #[stable(feature = "rust1", since = "1.0.0")] pub fn to_bytes_with_nul(&self) -> &[u8] { unsafe { mem::transmute(&self.inner) } } /// Yields a `&str` slice if the `CStr` contains valid UTF-8. /// /// This function will calculate the length of this string and check for /// UTF-8 validity, and then return the `&str` if it's valid. /// /// > **Note**: This method is currently implemented to check for validity /// > after a 0-cost cast, but it is planned to alter its definition in the /// > future to perform the length calculation in addition to the UTF-8 /// > check whenever this method is called. #[stable(feature = "cstr_to_str", since = "1.4.0")] pub fn to_str(&self) -> Result<&str, str::Utf8Error> { // NB: When CStr is changed to perform the length check in .to_bytes() // instead of in from_ptr(), it may be worth considering if this should // be rewritten to do the UTF-8 check inline with the length calculation // instead of doing it afterwards. str::from_utf8(self.to_bytes()) } /// Converts a `CStr` into a `Cow`. /// /// This function will calculate the length of this string (which normally /// requires a linear amount of work to be done) and then return the /// resulting slice as a `Cow`, replacing any invalid UTF-8 sequences /// with `U+FFFD REPLACEMENT CHARACTER`. /// /// > **Note**: This method is currently implemented to check for validity /// > after a 0-cost cast, but it is planned to alter its definition in the /// > future to perform the length calculation in addition to the UTF-8 /// > check whenever this method is called. #[stable(feature = "cstr_to_str", since = "1.4.0")] pub fn to_string_lossy(&self) -> Cow { String::from_utf8_lossy(self.to_bytes()) } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for CStr { fn eq(&self, other: &CStr) -> bool { self.to_bytes().eq(other.to_bytes()) } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for CStr {} #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for CStr { fn partial_cmp(&self, other: &CStr) -> Option { self.to_bytes().partial_cmp(&other.to_bytes()) } } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for CStr { fn cmp(&self, other: &CStr) -> Ordering { self.to_bytes().cmp(&other.to_bytes()) } } #[stable(feature = "cstr_borrow", since = "1.3.0")] impl ToOwned for CStr { type Owned = CString; fn to_owned(&self) -> CString { unsafe { CString::from_vec_unchecked(self.to_bytes().to_vec()) } } } #[stable(feature = "cstring_asref", since = "1.7.0")] impl<'a> From<&'a CStr> for CString { fn from(s: &'a CStr) -> CString { s.to_owned() } } #[stable(feature = "cstring_asref", since = "1.7.0")] impl ops::Index for CString { type Output = CStr; #[inline] fn index(&self, _index: ops::RangeFull) -> &CStr { self } } #[stable(feature = "cstring_asref", since = "1.7.0")] impl AsRef for CStr { fn as_ref(&self) -> &CStr { self } } #[stable(feature = "cstring_asref", since = "1.7.0")] impl AsRef for CString { fn as_ref(&self) -> &CStr { self } } #[cfg(test)] mod tests { use prelude::v1::*; use super::*; use os::raw::c_char; use borrow::Cow::{Borrowed, Owned}; use hash::{SipHasher, Hash, Hasher}; #[test] fn c_to_rust() { let data = b"123\0"; let ptr = data.as_ptr() as *const c_char; unsafe { assert_eq!(CStr::from_ptr(ptr).to_bytes(), b"123"); assert_eq!(CStr::from_ptr(ptr).to_bytes_with_nul(), b"123\0"); } } #[test] fn simple() { let s = CString::new("1234").unwrap(); assert_eq!(s.as_bytes(), b"1234"); assert_eq!(s.as_bytes_with_nul(), b"1234\0"); } #[test] fn build_with_zero1() { assert!(CString::new(&b"\0"[..]).is_err()); } #[test] fn build_with_zero2() { assert!(CString::new(vec![0]).is_err()); } #[test] fn build_with_zero3() { unsafe { let s = CString::from_vec_unchecked(vec![0]); assert_eq!(s.as_bytes(), b"\0"); } } #[test] fn formatted() { let s = CString::new(&b"abc\x01\x02\n\xE2\x80\xA6\xFF"[..]).unwrap(); assert_eq!(format!("{:?}", s), r#""abc\x01\x02\n\xe2\x80\xa6\xff""#); } #[test] fn borrowed() { unsafe { let s = CStr::from_ptr(b"12\0".as_ptr() as *const _); assert_eq!(s.to_bytes(), b"12"); assert_eq!(s.to_bytes_with_nul(), b"12\0"); } } #[test] fn to_str() { let data = b"123\xE2\x80\xA6\0"; let ptr = data.as_ptr() as *const c_char; unsafe { assert_eq!(CStr::from_ptr(ptr).to_str(), Ok("123…")); assert_eq!(CStr::from_ptr(ptr).to_string_lossy(), Borrowed("123…")); } let data = b"123\xE2\0"; let ptr = data.as_ptr() as *const c_char; unsafe { assert!(CStr::from_ptr(ptr).to_str().is_err()); assert_eq!(CStr::from_ptr(ptr).to_string_lossy(), Owned::(format!("123\u{FFFD}"))); } } #[test] fn to_owned() { let data = b"123\0"; let ptr = data.as_ptr() as *const c_char; let owned = unsafe { CStr::from_ptr(ptr).to_owned() }; assert_eq!(owned.as_bytes_with_nul(), data); } #[test] fn equal_hash() { let data = b"123\xE2\xFA\xA6\0"; let ptr = data.as_ptr() as *const c_char; let cstr: &'static CStr = unsafe { CStr::from_ptr(ptr) }; let mut s = SipHasher::new_with_keys(0, 0); cstr.hash(&mut s); let cstr_hash = s.finish(); let mut s = SipHasher::new_with_keys(0, 0); CString::new(&data[..data.len() - 1]).unwrap().hash(&mut s); let cstring_hash = s.finish(); assert_eq!(cstr_hash, cstring_hash); } }