// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Trait Resolution. See doc.rs. pub use self::SelectionError::*; pub use self::FulfillmentErrorCode::*; pub use self::Vtable::*; pub use self::ObligationCauseCode::*; use middle::mem_categorization::Typer; use middle::subst; use middle::ty::{self, Ty}; use middle::infer::{self, InferCtxt}; use std::slice::Iter; use std::rc::Rc; use syntax::ast; use syntax::codemap::{Span, DUMMY_SP}; use util::ppaux::{Repr, UserString}; pub use self::error_reporting::report_fulfillment_errors; pub use self::error_reporting::suggest_new_overflow_limit; pub use self::coherence::orphan_check; pub use self::coherence::OrphanCheckErr; pub use self::fulfill::{FulfillmentContext, RegionObligation}; pub use self::project::MismatchedProjectionTypes; pub use self::project::normalize; pub use self::project::Normalized; pub use self::object_safety::is_object_safe; pub use self::object_safety::object_safety_violations; pub use self::object_safety::ObjectSafetyViolation; pub use self::object_safety::MethodViolationCode; pub use self::select::SelectionContext; pub use self::select::SelectionCache; pub use self::select::{MethodMatchResult, MethodMatched, MethodAmbiguous, MethodDidNotMatch}; pub use self::select::{MethodMatchedData}; // intentionally don't export variants pub use self::util::elaborate_predicates; pub use self::util::get_vtable_index_of_object_method; pub use self::util::trait_ref_for_builtin_bound; pub use self::util::supertraits; pub use self::util::Supertraits; pub use self::util::transitive_bounds; pub use self::util::upcast; mod coherence; mod error_reporting; mod fulfill; mod project; mod object_safety; mod select; mod util; /// An `Obligation` represents some trait reference (e.g. `int:Eq`) for /// which the vtable must be found. The process of finding a vtable is /// called "resolving" the `Obligation`. This process consists of /// either identifying an `impl` (e.g., `impl Eq for int`) that /// provides the required vtable, or else finding a bound that is in /// scope. The eventual result is usually a `Selection` (defined below). #[derive(Clone, PartialEq, Eq)] pub struct Obligation<'tcx, T> { pub cause: ObligationCause<'tcx>, pub recursion_depth: uint, pub predicate: T, } pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>; pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>; /// Why did we incur this obligation? Used for error reporting. #[derive(Clone, PartialEq, Eq)] pub struct ObligationCause<'tcx> { pub span: Span, // The id of the fn body that triggered this obligation. This is // used for region obligations to determine the precise // environment in which the region obligation should be evaluated // (in particular, closures can add new assumptions). See the // field `region_obligations` of the `FulfillmentContext` for more // information. pub body_id: ast::NodeId, pub code: ObligationCauseCode<'tcx> } #[derive(Clone, PartialEq, Eq)] pub enum ObligationCauseCode<'tcx> { /// Not well classified or should be obvious from span. MiscObligation, /// In an impl of trait X for type Y, type Y must /// also implement all supertraits of X. ItemObligation(ast::DefId), /// Obligation incurred due to an object cast. ObjectCastObligation(/* Object type */ Ty<'tcx>), /// Various cases where expressions must be sized/copy/etc: AssignmentLhsSized, // L = X implies that L is Sized StructInitializerSized, // S { ... } must be Sized VariableType(ast::NodeId), // Type of each variable must be Sized ReturnType, // Return type must be Sized RepeatVec, // [T,..n] --> T must be Copy // Captures of variable the given id by a closure (span is the // span of the closure) ClosureCapture(ast::NodeId, Span, ty::BuiltinBound), // Types of fields (other than the last) in a struct must be sized. FieldSized, // Only Sized types can be made into objects ObjectSized, // static items must have `Sync` type SharedStatic, BuiltinDerivedObligation(DerivedObligationCause<'tcx>), ImplDerivedObligation(DerivedObligationCause<'tcx>), CompareImplMethodObligation, } #[derive(Clone, PartialEq, Eq)] pub struct DerivedObligationCause<'tcx> { /// The trait reference of the parent obligation that led to the /// current obligation. Note that only trait obligations lead to /// derived obligations, so we just store the trait reference here /// directly. parent_trait_ref: ty::PolyTraitRef<'tcx>, /// The parent trait had this cause parent_code: Rc> } pub type Obligations<'tcx, O> = subst::VecPerParamSpace>; pub type PredicateObligations<'tcx> = subst::VecPerParamSpace>; pub type TraitObligations<'tcx> = subst::VecPerParamSpace>; pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>; #[derive(Clone,Debug)] pub enum SelectionError<'tcx> { Unimplemented, Overflow, OutputTypeParameterMismatch(ty::PolyTraitRef<'tcx>, ty::PolyTraitRef<'tcx>, ty::type_err<'tcx>), } pub struct FulfillmentError<'tcx> { pub obligation: PredicateObligation<'tcx>, pub code: FulfillmentErrorCode<'tcx> } #[derive(Clone)] pub enum FulfillmentErrorCode<'tcx> { CodeSelectionError(SelectionError<'tcx>), CodeProjectionError(MismatchedProjectionTypes<'tcx>), CodeAmbiguity, } /// When performing resolution, it is typically the case that there /// can be one of three outcomes: /// /// - `Ok(Some(r))`: success occurred with result `r` /// - `Ok(None)`: could not definitely determine anything, usually due /// to inconclusive type inference. /// - `Err(e)`: error `e` occurred pub type SelectionResult<'tcx, T> = Result, SelectionError<'tcx>>; /// Given the successful resolution of an obligation, the `Vtable` /// indicates where the vtable comes from. Note that while we call this /// a "vtable", it does not necessarily indicate dynamic dispatch at /// runtime. `Vtable` instances just tell the compiler where to find /// methods, but in generic code those methods are typically statically /// dispatched -- only when an object is constructed is a `Vtable` /// instance reified into an actual vtable. /// /// For example, the vtable may be tied to a specific impl (case A), /// or it may be relative to some bound that is in scope (case B). /// /// /// ``` /// impl Clone for Option { ... } // Impl_1 /// impl Clone for Box { ... } // Impl_2 /// impl Clone for int { ... } // Impl_3 /// /// fn foo(concrete: Option>, /// param: T, /// mixed: Option) { /// /// // Case A: Vtable points at a specific impl. Only possible when /// // type is concretely known. If the impl itself has bounded /// // type parameters, Vtable will carry resolutions for those as well: /// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])]) /// /// // Case B: Vtable must be provided by caller. This applies when /// // type is a type parameter. /// param.clone(); // VtableParam /// /// // Case C: A mix of cases A and B. /// mixed.clone(); // Vtable(Impl_1, [VtableParam]) /// } /// ``` /// /// ### The type parameter `N` /// /// See explanation on `VtableImplData`. #[derive(Debug,Clone)] pub enum Vtable<'tcx, N> { /// Vtable identifying a particular impl. VtableImpl(VtableImplData<'tcx, N>), /// Successful resolution to an obligation provided by the caller /// for some type parameter. The `Vec` represents the /// obligations incurred from normalizing the where-clause (if /// any). VtableParam(Vec), /// Virtual calls through an object VtableObject(VtableObjectData<'tcx>), /// Successful resolution for a builtin trait. VtableBuiltin(VtableBuiltinData), /// Vtable automatically generated for a closure. The def ID is the ID /// of the closure expression. This is a `VtableImpl` in spirit, but the /// impl is generated by the compiler and does not appear in the source. VtableClosure(ast::DefId, subst::Substs<'tcx>), /// Same as above, but for a fn pointer type with the given signature. VtableFnPointer(ty::Ty<'tcx>), } /// Identifies a particular impl in the source, along with a set of /// substitutions from the impl's type/lifetime parameters. The /// `nested` vector corresponds to the nested obligations attached to /// the impl's type parameters. /// /// The type parameter `N` indicates the type used for "nested /// obligations" that are required by the impl. During type check, this /// is `Obligation`, as one might expect. During trans, however, this /// is `()`, because trans only requires a shallow resolution of an /// impl, and nested obligations are satisfied later. #[derive(Clone, PartialEq, Eq)] pub struct VtableImplData<'tcx, N> { pub impl_def_id: ast::DefId, pub substs: subst::Substs<'tcx>, pub nested: subst::VecPerParamSpace } #[derive(Debug,Clone)] pub struct VtableBuiltinData { pub nested: subst::VecPerParamSpace } /// A vtable for some object-safe trait `Foo` automatically derived /// for the object type `Foo`. #[derive(PartialEq,Eq,Clone)] pub struct VtableObjectData<'tcx> { pub object_ty: Ty<'tcx>, } /// True if there exist types that satisfy both of the two given impls. pub fn overlapping_impls(infcx: &InferCtxt, impl1_def_id: ast::DefId, impl2_def_id: ast::DefId) -> bool { coherence::impl_can_satisfy(infcx, impl1_def_id, impl2_def_id) && coherence::impl_can_satisfy(infcx, impl2_def_id, impl1_def_id) } /// Creates predicate obligations from the generic bounds. pub fn predicates_for_generics<'tcx>(tcx: &ty::ctxt<'tcx>, cause: ObligationCause<'tcx>, generic_bounds: &ty::GenericBounds<'tcx>) -> PredicateObligations<'tcx> { util::predicates_for_generics(tcx, cause, 0, generic_bounds) } /// Determines whether the type `ty` is known to meet `bound` and /// returns true if so. Returns false if `ty` either does not meet /// `bound` or is not known to meet bound (note that this is /// conservative towards *no impl*, which is the opposite of the /// `evaluate` methods). pub fn evaluate_builtin_bound<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>, typer: &ty::ClosureTyper<'tcx>, ty: Ty<'tcx>, bound: ty::BuiltinBound, span: Span) -> SelectionResult<'tcx, ()> { debug!("type_known_to_meet_builtin_bound(ty={}, bound={:?})", ty.repr(infcx.tcx), bound); let mut fulfill_cx = FulfillmentContext::new(); // We can use a dummy node-id here because we won't pay any mind // to region obligations that arise (there shouldn't really be any // anyhow). let cause = ObligationCause::misc(span, ast::DUMMY_NODE_ID); fulfill_cx.register_builtin_bound(infcx, ty, bound, cause); // Note: we only assume something is `Copy` if we can // *definitively* show that it implements `Copy`. Otherwise, // assume it is move; linear is always ok. let result = match fulfill_cx.select_all_or_error(infcx, typer) { Ok(()) => Ok(Some(())), // Success, we know it implements Copy. Err(errors) => { // Check if overflow occurred anywhere and propagate that. if errors.iter().any( |err| match err.code { CodeSelectionError(Overflow) => true, _ => false }) { return Err(Overflow); } // Otherwise, if there were any hard errors, propagate an // arbitrary one of those. If no hard errors at all, // report ambiguity. let sel_error = errors.iter() .filter_map(|err| { match err.code { CodeAmbiguity => None, CodeSelectionError(ref e) => Some(e.clone()), CodeProjectionError(_) => { infcx.tcx.sess.span_bug( span, "projection error while selecting?") } } }) .next(); match sel_error { None => { Ok(None) } Some(e) => { Err(e) } } } }; debug!("type_known_to_meet_builtin_bound: ty={} bound={:?} result={:?}", ty.repr(infcx.tcx), bound, result); result } pub fn type_known_to_meet_builtin_bound<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>, typer: &ty::ClosureTyper<'tcx>, ty: Ty<'tcx>, bound: ty::BuiltinBound, span: Span) -> bool { match evaluate_builtin_bound(infcx, typer, ty, bound, span) { Ok(Some(())) => { // definitely impl'd true } Ok(None) => { // ambiguous: if coherence check was successful, shouldn't // happen, but we might have reported an error and been // soldering on, so just treat this like not implemented false } Err(Overflow) => { span_err!(infcx.tcx.sess, span, E0285, "overflow evaluating whether `{}` is `{}`", ty.user_string(infcx.tcx), bound.user_string(infcx.tcx)); suggest_new_overflow_limit(infcx.tcx, span); false } Err(_) => { // other errors: not implemented. false } } } pub fn normalize_param_env_or_error<'a,'tcx>(unnormalized_env: ty::ParameterEnvironment<'a,'tcx>, cause: ObligationCause<'tcx>) -> ty::ParameterEnvironment<'a,'tcx> { match normalize_param_env(&unnormalized_env, cause) { Ok(p) => p, Err(errors) => { // I'm not wild about reporting errors here; I'd prefer to // have the errors get reported at a defined place (e.g., // during typeck). Instead I have all parameter // environments, in effect, going through this function // and hence potentially reporting errors. This ensurse of // course that we never forget to normalize (the // alternative seemed like it would involve a lot of // manual invocations of this fn -- and then we'd have to // deal with the errors at each of those sites). // // In any case, in practice, typeck constructs all the // parameter environments once for every fn as it goes, // and errors will get reported then; so after typeck we // can be sure that no errors should occur. let infcx = infer::new_infer_ctxt(unnormalized_env.tcx); report_fulfillment_errors(&infcx, &errors); // Normalized failed? use what they gave us, it's better than nothing. unnormalized_env } } } pub fn normalize_param_env<'a,'tcx>(param_env: &ty::ParameterEnvironment<'a,'tcx>, cause: ObligationCause<'tcx>) -> Result, Vec>> { let tcx = param_env.tcx; debug!("normalize_param_env(param_env={})", param_env.repr(tcx)); let predicates: Vec> = { let infcx = infer::new_infer_ctxt(tcx); let mut selcx = &mut SelectionContext::new(&infcx, param_env); let mut fulfill_cx = FulfillmentContext::new(); let Normalized { value: predicates, obligations } = project::normalize(selcx, cause, ¶m_env.caller_bounds); for obligation in obligations { fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation); } try!(fulfill_cx.select_all_or_error(selcx.infcx(), param_env)); predicates.iter().map(|p| infcx.resolve_type_vars_if_possible(p)).collect() }; debug!("normalize_param_env: predicates={}", predicates.repr(tcx)); Ok(param_env.with_caller_bounds(predicates)) } impl<'tcx,O> Obligation<'tcx,O> { pub fn new(cause: ObligationCause<'tcx>, trait_ref: O) -> Obligation<'tcx, O> { Obligation { cause: cause, recursion_depth: 0, predicate: trait_ref } } fn with_depth(cause: ObligationCause<'tcx>, recursion_depth: uint, trait_ref: O) -> Obligation<'tcx, O> { Obligation { cause: cause, recursion_depth: recursion_depth, predicate: trait_ref } } pub fn misc(span: Span, body_id: ast::NodeId, trait_ref: O) -> Obligation<'tcx, O> { Obligation::new(ObligationCause::misc(span, body_id), trait_ref) } pub fn with

(&self, value: P) -> Obligation<'tcx,P> { Obligation { cause: self.cause.clone(), recursion_depth: self.recursion_depth, predicate: value } } } impl<'tcx> ObligationCause<'tcx> { pub fn new(span: Span, body_id: ast::NodeId, code: ObligationCauseCode<'tcx>) -> ObligationCause<'tcx> { ObligationCause { span: span, body_id: body_id, code: code } } pub fn misc(span: Span, body_id: ast::NodeId) -> ObligationCause<'tcx> { ObligationCause { span: span, body_id: body_id, code: MiscObligation } } pub fn dummy() -> ObligationCause<'tcx> { ObligationCause { span: DUMMY_SP, body_id: 0, code: MiscObligation } } } impl<'tcx, N> Vtable<'tcx, N> { pub fn iter_nested(&self) -> Iter { match *self { VtableImpl(ref i) => i.iter_nested(), VtableFnPointer(..) => (&[]).iter(), VtableClosure(..) => (&[]).iter(), VtableParam(ref n) => n.iter(), VtableObject(_) => (&[]).iter(), VtableBuiltin(ref i) => i.iter_nested(), } } pub fn map_nested(&self, op: F) -> Vtable<'tcx, M> where F: FnMut(&N) -> M { match *self { VtableImpl(ref i) => VtableImpl(i.map_nested(op)), VtableFnPointer(ref sig) => VtableFnPointer((*sig).clone()), VtableClosure(d, ref s) => VtableClosure(d, s.clone()), VtableParam(ref n) => VtableParam(n.iter().map(op).collect()), VtableObject(ref p) => VtableObject(p.clone()), VtableBuiltin(ref b) => VtableBuiltin(b.map_nested(op)), } } pub fn map_move_nested(self, op: F) -> Vtable<'tcx, M> where F: FnMut(N) -> M, { match self { VtableImpl(i) => VtableImpl(i.map_move_nested(op)), VtableFnPointer(sig) => VtableFnPointer(sig), VtableClosure(d, s) => VtableClosure(d, s), VtableParam(n) => VtableParam(n.into_iter().map(op).collect()), VtableObject(p) => VtableObject(p), VtableBuiltin(no) => VtableBuiltin(no.map_move_nested(op)), } } } impl<'tcx, N> VtableImplData<'tcx, N> { pub fn iter_nested(&self) -> Iter { self.nested.iter() } pub fn map_nested(&self, op: F) -> VtableImplData<'tcx, M> where F: FnMut(&N) -> M, { VtableImplData { impl_def_id: self.impl_def_id, substs: self.substs.clone(), nested: self.nested.map(op) } } pub fn map_move_nested(self, op: F) -> VtableImplData<'tcx, M> where F: FnMut(N) -> M, { let VtableImplData { impl_def_id, substs, nested } = self; VtableImplData { impl_def_id: impl_def_id, substs: substs, nested: nested.map_move(op) } } } impl VtableBuiltinData { pub fn iter_nested(&self) -> Iter { self.nested.iter() } pub fn map_nested(&self, op: F) -> VtableBuiltinData where F: FnMut(&N) -> M { VtableBuiltinData { nested: self.nested.map(op) } } pub fn map_move_nested(self, op: F) -> VtableBuiltinData where F: FnMut(N) -> M, { VtableBuiltinData { nested: self.nested.map_move(op) } } } impl<'tcx> FulfillmentError<'tcx> { fn new(obligation: PredicateObligation<'tcx>, code: FulfillmentErrorCode<'tcx>) -> FulfillmentError<'tcx> { FulfillmentError { obligation: obligation, code: code } } pub fn is_overflow(&self) -> bool { match self.code { CodeAmbiguity => false, CodeSelectionError(Overflow) => true, CodeSelectionError(_) => false, CodeProjectionError(_) => false, } } } impl<'tcx> TraitObligation<'tcx> { fn self_ty(&self) -> Ty<'tcx> { self.predicate.0.self_ty() } }