use hir::Semantics; use ide_db::{ base_db::{FileId, FileRange}, defs::Definition, search::{SearchScope, UsageSearchResult}, RootDatabase, }; use syntax::{ ast::{ self, make::impl_trait_type, HasGenericParams, HasName, HasTypeBounds, Name, NameLike, PathType, }, match_ast, ted, AstNode, }; use text_edit::TextRange; use crate::{AssistContext, AssistId, AssistKind, Assists}; // Assist: replace_named_generic_with_impl // // Replaces named generic with an `impl Trait` in function argument. // // ``` // fn new>(location: P) -> Self {} // ``` // -> // ``` // fn new(location: impl AsRef) -> Self {} // ``` pub(crate) fn replace_named_generic_with_impl( acc: &mut Assists, ctx: &AssistContext<'_>, ) -> Option<()> { // finds `>` let type_param = ctx.find_node_at_offset::()?; // returns `P` let type_param_name = type_param.name()?; // The list of type bounds / traits: `AsRef` let type_bound_list = type_param.type_bound_list()?; let fn_ = type_param.syntax().ancestors().find_map(ast::Fn::cast)?; let param_list_text_range = fn_.param_list()?.syntax().text_range(); let type_param_hir_def = ctx.sema.to_def(&type_param)?; let type_param_def = Definition::GenericParam(hir::GenericParam::TypeParam(type_param_hir_def)); // get all usage references for the type param let usage_refs = find_usages(&ctx.sema, &fn_, type_param_def, ctx.file_id()); if usage_refs.is_empty() { return None; } // All usage references need to be valid (inside the function param list) if !check_valid_usages(&usage_refs, param_list_text_range) { return None; } let mut path_types_to_replace = Vec::new(); for (_a, refs) in usage_refs.iter() { for usage_ref in refs { let param_node = find_path_type(&ctx.sema, &type_param_name, &usage_ref.name)?; path_types_to_replace.push(param_node); } } let target = type_param.syntax().text_range(); acc.add( AssistId("replace_named_generic_with_impl", AssistKind::RefactorRewrite), "Replace named generic with impl trait", target, |edit| { let type_param = edit.make_mut(type_param); let fn_ = edit.make_mut(fn_); let path_types_to_replace = path_types_to_replace .into_iter() .map(|param| edit.make_mut(param)) .collect::>(); // remove trait from generic param list if let Some(generic_params) = fn_.generic_param_list() { generic_params.remove_generic_param(ast::GenericParam::TypeParam(type_param)); if generic_params.generic_params().count() == 0 { ted::remove(generic_params.syntax()); } } let new_bounds = impl_trait_type(type_bound_list); for path_type in path_types_to_replace.iter().rev() { ted::replace(path_type.syntax(), new_bounds.clone_for_update().syntax()); } }, ) } fn find_path_type( sema: &Semantics<'_, RootDatabase>, type_param_name: &Name, param: &NameLike, ) -> Option { let path_type = sema.ancestors_with_macros(param.syntax().clone()).find_map(ast::PathType::cast)?; // Ignore any path types that look like `P::Assoc` if path_type.path()?.as_single_name_ref()?.text() != type_param_name.text() { return None; } let ancestors = sema.ancestors_with_macros(path_type.syntax().clone()); let mut in_generic_arg_list = false; let mut is_associated_type = false; // walking the ancestors checks them in a heuristic way until the `Fn` node is reached. for ancestor in ancestors { match_ast! { match ancestor { ast::PathSegment(ps) => { match ps.kind()? { ast::PathSegmentKind::Name(_name_ref) => (), ast::PathSegmentKind::Type { .. } => return None, _ => return None, } }, ast::GenericArgList(_) => { in_generic_arg_list = true; }, ast::AssocTypeArg(_) => { is_associated_type = true; }, ast::ImplTraitType(_) => { if in_generic_arg_list && !is_associated_type { return None; } }, ast::DynTraitType(_) => { if !is_associated_type { return None; } }, ast::Fn(_) => return Some(path_type), _ => (), } } } None } /// Returns all usage references for the given type parameter definition. fn find_usages( sema: &Semantics<'_, RootDatabase>, fn_: &ast::Fn, type_param_def: Definition, file_id: FileId, ) -> UsageSearchResult { let file_range = FileRange { file_id, range: fn_.syntax().text_range() }; type_param_def.usages(sema).in_scope(&SearchScope::file_range(file_range)).all() } fn check_valid_usages(usages: &UsageSearchResult, param_list_range: TextRange) -> bool { usages .iter() .flat_map(|(_, usage_refs)| usage_refs) .all(|usage_ref| param_list_range.contains_range(usage_ref.range)) } #[cfg(test)] mod tests { use super::*; use crate::tests::{check_assist, check_assist_not_applicable}; #[test] fn replace_generic_moves_into_function() { check_assist( replace_named_generic_with_impl, r#"fn new(input: T) -> Self {}"#, r#"fn new(input: impl ToString) -> Self {}"#, ); } #[test] fn replace_generic_with_inner_associated_type() { check_assist( replace_named_generic_with_impl, r#"fn new>(input: P) -> Self {}"#, r#"fn new(input: impl AsRef) -> Self {}"#, ); } #[test] fn replace_generic_trait_applies_to_all_matching_params() { check_assist( replace_named_generic_with_impl, r#"fn new(a: T, b: T) -> Self {}"#, r#"fn new(a: impl ToString, b: impl ToString) -> Self {}"#, ); } #[test] fn replace_generic_trait_applies_to_generic_arguments_in_params() { check_assist( replace_named_generic_with_impl, r#" fn foo( _: P, _: Option

, _: Option>, _: impl Iterator, _: &dyn Iterator, ) {} "#, r#" fn foo( _: impl Trait, _: Option, _: Option>, _: impl Iterator, _: &dyn Iterator, ) {} "#, ); } #[test] fn replace_generic_not_applicable_when_one_param_type_is_invalid() { check_assist_not_applicable( replace_named_generic_with_impl, r#" fn foo( _: i32, _: Option

, _: Option>, _: impl Iterator, _: &dyn Iterator, _:

::Assoc, ) {} "#, ); } #[test] fn replace_generic_not_applicable_when_referenced_in_where_clause() { check_assist_not_applicable( replace_named_generic_with_impl, r#"fn foo() where I: FromRef

{}"#, ); } #[test] fn replace_generic_not_applicable_when_used_with_type_alias() { check_assist_not_applicable( replace_named_generic_with_impl, r#"fn foo(p:

::Assoc) {}"#, ); } #[test] fn replace_generic_not_applicable_when_used_as_argument_in_outer_trait_alias() { check_assist_not_applicable( replace_named_generic_with_impl, r#"fn foo(_: <() as OtherTrait

>::Assoc) {}"#, ); } #[test] fn replace_generic_not_applicable_with_inner_associated_type() { check_assist_not_applicable( replace_named_generic_with_impl, r#"fn foo(_: P::Assoc) {}"#, ); } #[test] fn replace_generic_not_applicable_when_passed_into_outer_impl_trait() { check_assist_not_applicable( replace_named_generic_with_impl, r#"fn foo(_: impl OtherTrait

) {}"#, ); } #[test] fn replace_generic_not_applicable_when_used_in_passed_function_parameter() { check_assist_not_applicable( replace_named_generic_with_impl, r#"fn foo(_: &dyn Fn(P)) {}"#, ); } #[test] fn replace_generic_with_multiple_generic_params() { check_assist( replace_named_generic_with_impl, r#"fn new, T$0: ToString>(t: T, p: P) -> Self {}"#, r#"fn new>(t: impl ToString, p: P) -> Self {}"#, ); check_assist( replace_named_generic_with_impl, r#"fn new>(t: T, p: P) -> Self {}"#, r#"fn new>(t: impl ToString, p: P) -> Self {}"#, ); check_assist( replace_named_generic_with_impl, r#"fn new(a: A, b: B, c: C) -> Self {}"#, r#"fn new(a: A, b: impl ToString, c: C) -> Self {}"#, ); } #[test] fn replace_generic_with_multiple_trait_bounds() { check_assist( replace_named_generic_with_impl, r#"fn new(p: P) -> Self {}"#, r#"fn new(p: impl Send + Sync) -> Self {}"#, ); } #[test] fn replace_generic_not_applicable_if_param_used_as_return_type() { check_assist_not_applicable( replace_named_generic_with_impl, r#"fn new(p: P) -> P {}"#, ); } #[test] fn replace_generic_not_applicable_if_param_used_in_fn_body() { check_assist_not_applicable( replace_named_generic_with_impl, r#"fn new(p: P) { let x: &dyn P = &O; }"#, ); } #[test] fn replace_generic_ignores_another_function_with_same_param_type() { check_assist( replace_named_generic_with_impl, r#" fn new(p: P) {} fn hello(p: P) { println!("{:?}", p); } "#, r#" fn new(p: impl Send + Sync) {} fn hello(p: P) { println!("{:?}", p); } "#, ); } }