// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // trans.rs: Translate the completed AST to the LLVM IR. // // Some functions here, such as trans_block and trans_expr, return a value -- // the result of the translation to LLVM -- while others, such as trans_fn, // trans_impl, and trans_item, are called only for the side effect of adding a // particular definition to the LLVM IR output we're producing. // // Hopefully useful general knowledge about trans: // // * There's no way to find out the ty::t type of a ValueRef. Doing so // would be "trying to get the eggs out of an omelette" (credit: // pcwalton). You can, instead, find out its TypeRef by calling val_ty, // but many TypeRefs correspond to one ty::t; for instance, tup(int, int, // int) and rec(x=int, y=int, z=int) will have the same TypeRef. use back::link::{mangle_exported_name}; use back::{link, abi, upcall}; use driver::session; use driver::session::Session; use lib::llvm::{ModuleRef, ValueRef, TypeRef, BasicBlockRef}; use lib::llvm::{True, False}; use lib::llvm::{llvm, mk_target_data, mk_type_names}; use lib; use metadata::common::LinkMeta; use metadata::{csearch, cstore, encoder}; use middle::astencode; use middle::borrowck::RootInfo; use middle::resolve; use middle::trans::_match; use middle::trans::adt; use middle::trans::base; use middle::trans::build::*; use middle::trans::callee; use middle::trans::common::*; use middle::trans::consts; use middle::trans::controlflow; use middle::trans::datum; use middle::trans::debuginfo; use middle::trans::expr; use middle::trans::foreign; use middle::trans::glue; use middle::trans::inline; use middle::trans::machine; use middle::trans::machine::llsize_of; use middle::trans::meth; use middle::trans::monomorphize; use middle::trans::reachable; use middle::trans::shape::*; use middle::trans::tvec; use middle::trans::type_of; use middle::trans::type_of::*; use middle::ty; use util::common::indenter; use util::ppaux::{Repr, ty_to_str}; use util::ppaux; use core::hash; use core::hashmap::{HashMap, HashSet}; use core::libc::c_uint; use std::time; use syntax::ast::ident; use syntax::ast_map::{path, path_elt_to_str, path_name}; use syntax::ast_util::{local_def, path_to_ident}; use syntax::attr; use syntax::codemap::span; use syntax::parse::token::special_idents; use syntax::print::pprust::stmt_to_str; use syntax::visit; use syntax::{ast, ast_util, codemap, ast_map}; use syntax::abi::{X86, X86_64, Arm, Mips}; pub struct icx_popper { ccx: @CrateContext, } #[unsafe_destructor] impl Drop for icx_popper { fn finalize(&self) { if self.ccx.sess.count_llvm_insns() { self.ccx.stats.llvm_insn_ctxt.pop(); } } } pub fn icx_popper(ccx: @CrateContext) -> icx_popper { icx_popper { ccx: ccx } } pub trait get_insn_ctxt { fn insn_ctxt(&self, s: &str) -> icx_popper; } impl get_insn_ctxt for @CrateContext { fn insn_ctxt(&self, s: &str) -> icx_popper { debug!("new insn_ctxt: %s", s); if self.sess.count_llvm_insns() { self.stats.llvm_insn_ctxt.push(str::from_slice(s)); } icx_popper(*self) } } impl get_insn_ctxt for block { fn insn_ctxt(&self, s: &str) -> icx_popper { self.ccx().insn_ctxt(s) } } impl get_insn_ctxt for fn_ctxt { fn insn_ctxt(&self, s: &str) -> icx_popper { self.ccx.insn_ctxt(s) } } fn fcx_has_nonzero_span(fcx: fn_ctxt) -> bool { match fcx.span { None => true, Some(span) => *span.lo != 0 || *span.hi != 0 } } pub fn log_fn_time(ccx: @CrateContext, name: ~str, start: time::Timespec, end: time::Timespec) { let elapsed = 1000 * ((end.sec - start.sec) as int) + ((end.nsec as int) - (start.nsec as int)) / 1000000; ccx.stats.fn_times.push((name, elapsed)); } pub fn decl_fn(llmod: ModuleRef, name: &str, cc: lib::llvm::CallConv, llty: TypeRef) -> ValueRef { let llfn: ValueRef = str::as_c_str(name, |buf| { unsafe { llvm::LLVMGetOrInsertFunction(llmod, buf, llty) } }); lib::llvm::SetFunctionCallConv(llfn, cc); return llfn; } pub fn decl_cdecl_fn(llmod: ModuleRef, name: &str, llty: TypeRef) -> ValueRef { return decl_fn(llmod, name, lib::llvm::CCallConv, llty); } // Only use this if you are going to actually define the function. It's // not valid to simply declare a function as internal. pub fn decl_internal_cdecl_fn(llmod: ModuleRef, name: ~str, llty: TypeRef) -> ValueRef { let llfn = decl_cdecl_fn(llmod, name, llty); lib::llvm::SetLinkage(llfn, lib::llvm::InternalLinkage); return llfn; } pub fn get_extern_fn(externs: ExternMap, llmod: ModuleRef, name: @str, cc: lib::llvm::CallConv, ty: TypeRef) -> ValueRef { match externs.find(&name) { Some(n) => return copy *n, None => () } let f = decl_fn(llmod, name, cc, ty); externs.insert(name, f); return f; } pub fn get_extern_const(externs: ExternMap, llmod: ModuleRef, name: @str, ty: TypeRef) -> ValueRef { match externs.find(&name) { Some(n) => return copy *n, None => () } unsafe { let c = str::as_c_str(name, |buf| { llvm::LLVMAddGlobal(llmod, ty, buf) }); externs.insert(name, c); return c; } } fn get_simple_extern_fn(cx: block, externs: ExternMap, llmod: ModuleRef, name: @str, n_args: int) -> ValueRef { let _icx = cx.insn_ctxt("get_simple_extern_fn"); let ccx = cx.fcx.ccx; let inputs = vec::from_elem(n_args as uint, ccx.int_type); let output = ccx.int_type; let t = T_fn(inputs, output); return get_extern_fn(externs, llmod, name, lib::llvm::CCallConv, t); } pub fn trans_foreign_call(cx: block, externs: ExternMap, llmod: ModuleRef, name: @str, args: &[ValueRef]) -> ValueRef { let _icx = cx.insn_ctxt("trans_foreign_call"); let n = args.len() as int; let llforeign: ValueRef = get_simple_extern_fn(cx, externs, llmod, name, n); return Call(cx, llforeign, args); } pub fn umax(cx: block, a: ValueRef, b: ValueRef) -> ValueRef { let _icx = cx.insn_ctxt("umax"); let cond = ICmp(cx, lib::llvm::IntULT, a, b); return Select(cx, cond, b, a); } pub fn umin(cx: block, a: ValueRef, b: ValueRef) -> ValueRef { let _icx = cx.insn_ctxt("umin"); let cond = ICmp(cx, lib::llvm::IntULT, a, b); return Select(cx, cond, a, b); } // Given a pointer p, returns a pointer sz(p) (i.e., inc'd by sz bytes). // The type of the returned pointer is always i8*. If you care about the // return type, use bump_ptr(). pub fn ptr_offs(bcx: block, base: ValueRef, sz: ValueRef) -> ValueRef { let _icx = bcx.insn_ctxt("ptr_offs"); let raw = PointerCast(bcx, base, T_ptr(T_i8())); InBoundsGEP(bcx, raw, ~[sz]) } // Increment a pointer by a given amount and then cast it to be a pointer // to a given type. pub fn bump_ptr(bcx: block, t: ty::t, base: ValueRef, sz: ValueRef) -> ValueRef { let _icx = bcx.insn_ctxt("bump_ptr"); let ccx = bcx.ccx(); let bumped = ptr_offs(bcx, base, sz); let typ = T_ptr(type_of(ccx, t)); PointerCast(bcx, bumped, typ) } // Returns a pointer to the body for the box. The box may be an opaque // box. The result will be casted to the type of body_t, if it is statically // known. // // The runtime equivalent is box_body() in "rust_internal.h". pub fn opaque_box_body(bcx: block, body_t: ty::t, boxptr: ValueRef) -> ValueRef { let _icx = bcx.insn_ctxt("opaque_box_body"); let ccx = bcx.ccx(); let boxptr = PointerCast(bcx, boxptr, T_ptr(T_box_header(ccx))); let bodyptr = GEPi(bcx, boxptr, [1u]); PointerCast(bcx, bodyptr, T_ptr(type_of(ccx, body_t))) } // malloc_raw_dyn: allocates a box to contain a given type, but with a // potentially dynamic size. pub fn malloc_raw_dyn(bcx: block, t: ty::t, heap: heap, size: ValueRef) -> Result { let _icx = bcx.insn_ctxt("malloc_raw"); let ccx = bcx.ccx(); let (mk_fn, langcall) = match heap { heap_managed | heap_managed_unique => { (ty::mk_imm_box, bcx.tcx().lang_items.malloc_fn()) } heap_exchange => { (ty::mk_imm_uniq, bcx.tcx().lang_items.exchange_malloc_fn()) } }; // Grab the TypeRef type of box_ptr_ty. let box_ptr_ty = mk_fn(bcx.tcx(), t); let llty = type_of(ccx, box_ptr_ty); // Get the tydesc for the body: let static_ti = get_tydesc(ccx, t); glue::lazily_emit_all_tydesc_glue(ccx, static_ti); // Allocate space: let tydesc = PointerCast(bcx, static_ti.tydesc, T_ptr(T_i8())); let rval = alloca(bcx, T_ptr(T_i8())); let bcx = callee::trans_lang_call( bcx, langcall, ~[tydesc, size], expr::SaveIn(rval)); let r = rslt(bcx, PointerCast(bcx, Load(bcx, rval), llty)); maybe_set_managed_unique_rc(r.bcx, r.val, heap); r } /** * Get the type of a box in the default address space. * * Shared box pointers live in address space 1 so the GC strategy can find * them. Before taking a pointer to the inside of a box it should be cast into * address space 0. Otherwise the resulting (non-box) pointer will be in the * wrong address space and thus be the wrong type. */ pub fn non_gc_box_cast(bcx: block, val: ValueRef) -> ValueRef { unsafe { debug!("non_gc_box_cast"); add_comment(bcx, ~"non_gc_box_cast"); assert!(llvm::LLVMGetPointerAddressSpace(val_ty(val)) == gc_box_addrspace || bcx.unreachable); let non_gc_t = T_ptr(llvm::LLVMGetElementType(val_ty(val))); PointerCast(bcx, val, non_gc_t) } } // malloc_raw: expects an unboxed type and returns a pointer to // enough space for a box of that type. This includes a rust_opaque_box // header. pub fn malloc_raw(bcx: block, t: ty::t, heap: heap) -> Result { malloc_raw_dyn(bcx, t, heap, llsize_of(bcx.ccx(), type_of(bcx.ccx(), t))) } pub struct MallocResult { bcx: block, box: ValueRef, body: ValueRef } // malloc_general_dyn: usefully wraps malloc_raw_dyn; allocates a box, // and pulls out the body pub fn malloc_general_dyn(bcx: block, t: ty::t, heap: heap, size: ValueRef) -> MallocResult { let _icx = bcx.insn_ctxt("malloc_general"); let Result {bcx: bcx, val: llbox} = malloc_raw_dyn(bcx, t, heap, size); let non_gc_box = non_gc_box_cast(bcx, llbox); let body = GEPi(bcx, non_gc_box, [0u, abi::box_field_body]); MallocResult { bcx: bcx, box: llbox, body: body } } pub fn malloc_general(bcx: block, t: ty::t, heap: heap) -> MallocResult { malloc_general_dyn(bcx, t, heap, llsize_of(bcx.ccx(), type_of(bcx.ccx(), t))) } pub fn malloc_boxed(bcx: block, t: ty::t) -> MallocResult { malloc_general(bcx, t, heap_managed) } pub fn heap_for_unique(bcx: block, t: ty::t) -> heap { if ty::type_contents(bcx.tcx(), t).contains_managed() { heap_managed_unique } else { heap_exchange } } pub fn maybe_set_managed_unique_rc(bcx: block, bx: ValueRef, heap: heap) { if heap == heap_managed_unique { // In cases where we are looking at a unique-typed allocation in the // managed heap (thus have refcount 1 from the managed allocator), // such as a ~(@foo) or such. These need to have their refcount forced // to -2 so the annihilator ignores them. let rc = GEPi(bcx, bx, [0u, abi::box_field_refcnt]); Store(bcx, C_int(bcx.ccx(), -2), rc); } } pub fn malloc_unique(bcx: block, t: ty::t) -> MallocResult { malloc_general(bcx, t, heap_for_unique(bcx, t)) } // Type descriptor and type glue stuff pub fn get_tydesc_simple(ccx: @CrateContext, t: ty::t) -> ValueRef { get_tydesc(ccx, t).tydesc } pub fn get_tydesc(ccx: @CrateContext, t: ty::t) -> @mut tydesc_info { match ccx.tydescs.find(&t) { Some(&inf) => inf, _ => { ccx.stats.n_static_tydescs += 1u; let inf = glue::declare_tydesc(ccx, t); ccx.tydescs.insert(t, inf); inf } } } pub fn set_optimize_for_size(f: ValueRef) { unsafe { llvm::LLVMAddFunctionAttr(f, lib::llvm::OptimizeForSizeAttribute as c_uint, 0); } } pub fn set_no_inline(f: ValueRef) { unsafe { llvm::LLVMAddFunctionAttr(f, lib::llvm::NoInlineAttribute as c_uint, 0); } } pub fn set_no_unwind(f: ValueRef) { unsafe { llvm::LLVMAddFunctionAttr(f, lib::llvm::NoUnwindAttribute as c_uint, 0); } } // Tell LLVM to emit the information necessary to unwind the stack for the // function f. pub fn set_uwtable(f: ValueRef) { unsafe { llvm::LLVMAddFunctionAttr(f, lib::llvm::UWTableAttribute as c_uint, 0); } } pub fn set_inline_hint(f: ValueRef) { unsafe { llvm::LLVMAddFunctionAttr(f, lib::llvm::InlineHintAttribute as c_uint, 0); } } pub fn set_inline_hint_if_appr(attrs: &[ast::attribute], llfn: ValueRef) { match attr::find_inline_attr(attrs) { attr::ia_hint => set_inline_hint(llfn), attr::ia_always => set_always_inline(llfn), attr::ia_never => set_no_inline(llfn), attr::ia_none => { /* fallthrough */ } } } pub fn set_always_inline(f: ValueRef) { unsafe { llvm::LLVMAddFunctionAttr(f, lib::llvm::AlwaysInlineAttribute as c_uint, 0); } } pub fn set_fixed_stack_segment(f: ValueRef) { unsafe { llvm::LLVMAddFunctionAttr(f, 0, 1 << (39 - 32)); } } pub fn set_glue_inlining(f: ValueRef, t: ty::t) { if ty::type_is_structural(t) { set_optimize_for_size(f); } else { set_always_inline(f); } } // Double-check that we never ask LLVM to declare the same symbol twice. It // silently mangles such symbols, breaking our linkage model. pub fn note_unique_llvm_symbol(ccx: @CrateContext, sym: @~str) { if ccx.all_llvm_symbols.contains(&sym) { ccx.sess.bug(~"duplicate LLVM symbol: " + *sym); } ccx.all_llvm_symbols.insert(sym); } pub fn get_res_dtor(ccx: @CrateContext, did: ast::def_id, parent_id: ast::def_id, substs: &[ty::t]) -> ValueRef { let _icx = ccx.insn_ctxt("trans_res_dtor"); if !substs.is_empty() { let did = if did.crate != ast::local_crate { inline::maybe_instantiate_inline(ccx, did, true) } else { did }; assert!(did.crate == ast::local_crate); let (val, _) = monomorphize::monomorphic_fn(ccx, did, substs, None, None, None); val } else if did.crate == ast::local_crate { get_item_val(ccx, did.node) } else { let tcx = ccx.tcx; let name = csearch::get_symbol(ccx.sess.cstore, did); let class_ty = ty::subst_tps(tcx, substs, None, ty::lookup_item_type(tcx, parent_id).ty); let llty = type_of_dtor(ccx, class_ty); let name = name.to_managed(); // :-( get_extern_fn(ccx.externs, ccx.llmod, name, lib::llvm::CCallConv, llty) } } // Structural comparison: a rather involved form of glue. pub fn maybe_name_value(cx: @CrateContext, v: ValueRef, s: &str) { if cx.sess.opts.save_temps { let _: () = str::as_c_str(s, |buf| { unsafe { llvm::LLVMSetValueName(v, buf) } }); } } // Used only for creating scalar comparison glue. pub enum scalar_type { nil_type, signed_int, unsigned_int, floating_point, } // NB: This produces an i1, not a Rust bool (i8). pub fn compare_scalar_types(cx: block, lhs: ValueRef, rhs: ValueRef, t: ty::t, op: ast::binop) -> Result { let f = |a| compare_scalar_values(cx, lhs, rhs, a, op); match ty::get(t).sty { ty::ty_nil => rslt(cx, f(nil_type)), ty::ty_bool | ty::ty_ptr(_) => rslt(cx, f(unsigned_int)), ty::ty_int(_) => rslt(cx, f(signed_int)), ty::ty_uint(_) => rslt(cx, f(unsigned_int)), ty::ty_float(_) => rslt(cx, f(floating_point)), ty::ty_type => { rslt( controlflow::trans_fail( cx, None, @~"attempt to compare values of type type"), C_nil()) } _ => { // Should never get here, because t is scalar. cx.sess().bug(~"non-scalar type passed to \ compare_scalar_types") } } } // A helper function to do the actual comparison of scalar values. pub fn compare_scalar_values(cx: block, lhs: ValueRef, rhs: ValueRef, nt: scalar_type, op: ast::binop) -> ValueRef { let _icx = cx.insn_ctxt("compare_scalar_values"); fn die(cx: block) -> ! { cx.tcx().sess.bug(~"compare_scalar_values: must be a\ comparison operator"); } match nt { nil_type => { // We don't need to do actual comparisons for nil. // () == () holds but () < () does not. match op { ast::eq | ast::le | ast::ge => return C_i1(true), ast::ne | ast::lt | ast::gt => return C_i1(false), // refinements would be nice _ => die(cx) } } floating_point => { let cmp = match op { ast::eq => lib::llvm::RealOEQ, ast::ne => lib::llvm::RealUNE, ast::lt => lib::llvm::RealOLT, ast::le => lib::llvm::RealOLE, ast::gt => lib::llvm::RealOGT, ast::ge => lib::llvm::RealOGE, _ => die(cx) }; return FCmp(cx, cmp, lhs, rhs); } signed_int => { let cmp = match op { ast::eq => lib::llvm::IntEQ, ast::ne => lib::llvm::IntNE, ast::lt => lib::llvm::IntSLT, ast::le => lib::llvm::IntSLE, ast::gt => lib::llvm::IntSGT, ast::ge => lib::llvm::IntSGE, _ => die(cx) }; return ICmp(cx, cmp, lhs, rhs); } unsigned_int => { let cmp = match op { ast::eq => lib::llvm::IntEQ, ast::ne => lib::llvm::IntNE, ast::lt => lib::llvm::IntULT, ast::le => lib::llvm::IntULE, ast::gt => lib::llvm::IntUGT, ast::ge => lib::llvm::IntUGE, _ => die(cx) }; return ICmp(cx, cmp, lhs, rhs); } } } pub type val_pair_fn = @fn(block, ValueRef, ValueRef) -> block; pub type val_and_ty_fn = @fn(block, ValueRef, ty::t) -> block; pub fn load_inbounds(cx: block, p: ValueRef, idxs: &[uint]) -> ValueRef { return Load(cx, GEPi(cx, p, idxs)); } pub fn store_inbounds(cx: block, v: ValueRef, p: ValueRef, idxs: &[uint]) { Store(cx, v, GEPi(cx, p, idxs)); } // Iterates through the elements of a structural type. pub fn iter_structural_ty(cx: block, av: ValueRef, t: ty::t, f: val_and_ty_fn) -> block { let _icx = cx.insn_ctxt("iter_structural_ty"); fn iter_variant(cx: block, repr: &adt::Repr, av: ValueRef, variant: ty::VariantInfo, tps: &[ty::t], f: val_and_ty_fn) -> block { let _icx = cx.insn_ctxt("iter_variant"); let tcx = cx.tcx(); let mut cx = cx; for variant.args.eachi |i, &arg| { cx = f(cx, adt::trans_field_ptr(cx, repr, av, variant.disr_val, i), ty::subst_tps(tcx, tps, None, arg)); } return cx; } let mut cx = cx; match ty::get(t).sty { ty::ty_struct(*) => { let repr = adt::represent_type(cx.ccx(), t); do expr::with_field_tys(cx.tcx(), t, None) |discr, field_tys| { for vec::eachi(field_tys) |i, field_ty| { let llfld_a = adt::trans_field_ptr(cx, repr, av, discr, i); cx = f(cx, llfld_a, field_ty.mt.ty); } } } ty::ty_estr(ty::vstore_fixed(_)) | ty::ty_evec(_, ty::vstore_fixed(_)) => { let (base, len) = tvec::get_base_and_len(cx, av, t); cx = tvec::iter_vec_raw(cx, base, t, len, f); } ty::ty_tup(ref args) => { let repr = adt::represent_type(cx.ccx(), t); for args.eachi |i, arg| { let llfld_a = adt::trans_field_ptr(cx, repr, av, 0, i); cx = f(cx, llfld_a, *arg); } } ty::ty_enum(tid, ref substs) => { let ccx = cx.ccx(); let repr = adt::represent_type(ccx, t); let variants = ty::enum_variants(ccx.tcx, tid); let n_variants = (*variants).len(); // NB: we must hit the discriminant first so that structural // comparison know not to proceed when the discriminants differ. match adt::trans_switch(cx, repr, av) { (_match::single, None) => { cx = iter_variant(cx, repr, av, variants[0], substs.tps, f); } (_match::switch, Some(lldiscrim_a)) => { cx = f(cx, lldiscrim_a, ty::mk_int()); let unr_cx = sub_block(cx, ~"enum-iter-unr"); Unreachable(unr_cx); let llswitch = Switch(cx, lldiscrim_a, unr_cx.llbb, n_variants); let next_cx = sub_block(cx, ~"enum-iter-next"); for vec::each(*variants) |variant| { let variant_cx = sub_block(cx, ~"enum-iter-variant-" + int::to_str(variant.disr_val)); let variant_cx = iter_variant(variant_cx, repr, av, *variant, substs.tps, f); match adt::trans_case(cx, repr, variant.disr_val) { _match::single_result(r) => { AddCase(llswitch, r.val, variant_cx.llbb) } _ => ccx.sess.unimpl(~"value from adt::trans_case \ in iter_structural_ty") } Br(variant_cx, next_cx.llbb); } cx = next_cx; } _ => ccx.sess.unimpl(~"value from adt::trans_switch \ in iter_structural_ty") } } _ => cx.sess().unimpl(~"type in iter_structural_ty") } return cx; } pub fn cast_shift_expr_rhs(cx: block, op: ast::binop, lhs: ValueRef, rhs: ValueRef) -> ValueRef { cast_shift_rhs(op, lhs, rhs, |a,b| Trunc(cx, a, b), |a,b| ZExt(cx, a, b)) } pub fn cast_shift_const_rhs(op: ast::binop, lhs: ValueRef, rhs: ValueRef) -> ValueRef { cast_shift_rhs(op, lhs, rhs, |a, b| unsafe { llvm::LLVMConstTrunc(a, b) }, |a, b| unsafe { llvm::LLVMConstZExt(a, b) }) } pub fn cast_shift_rhs(op: ast::binop, lhs: ValueRef, rhs: ValueRef, trunc: &fn(ValueRef, TypeRef) -> ValueRef, zext: &fn(ValueRef, TypeRef) -> ValueRef) -> ValueRef { // Shifts may have any size int on the rhs unsafe { if ast_util::is_shift_binop(op) { let rhs_llty = val_ty(rhs); let lhs_llty = val_ty(lhs); let rhs_sz = llvm::LLVMGetIntTypeWidth(rhs_llty); let lhs_sz = llvm::LLVMGetIntTypeWidth(lhs_llty); if lhs_sz < rhs_sz { trunc(rhs, lhs_llty) } else if lhs_sz > rhs_sz { // FIXME (#1877: If shifting by negative // values becomes not undefined then this is wrong. zext(rhs, lhs_llty) } else { rhs } } else { rhs } } } pub fn fail_if_zero(cx: block, span: span, divrem: ast::binop, rhs: ValueRef, rhs_t: ty::t) -> block { let text = if divrem == ast::div { @~"attempted to divide by zero" } else { @~"attempted remainder with a divisor of zero" }; let is_zero = match ty::get(rhs_t).sty { ty::ty_int(t) => { let zero = C_integral(T_int_ty(cx.ccx(), t), 0u64, False); ICmp(cx, lib::llvm::IntEQ, rhs, zero) } ty::ty_uint(t) => { let zero = C_integral(T_uint_ty(cx.ccx(), t), 0u64, False); ICmp(cx, lib::llvm::IntEQ, rhs, zero) } _ => { cx.tcx().sess.bug(~"fail-if-zero on unexpected type: " + ty_to_str(cx.ccx().tcx, rhs_t)); } }; do with_cond(cx, is_zero) |bcx| { controlflow::trans_fail(bcx, Some(span), text) } } pub fn null_env_ptr(bcx: block) -> ValueRef { C_null(T_opaque_box_ptr(bcx.ccx())) } pub fn trans_external_path(ccx: @CrateContext, did: ast::def_id, t: ty::t) -> ValueRef { let name = csearch::get_symbol(ccx.sess.cstore, did).to_managed(); // Sad match ty::get(t).sty { ty::ty_bare_fn(_) | ty::ty_closure(_) => { let llty = type_of_fn_from_ty(ccx, t); return get_extern_fn(ccx.externs, ccx.llmod, name, lib::llvm::CCallConv, llty); } _ => { let llty = type_of(ccx, t); return get_extern_const(ccx.externs, ccx.llmod, name, llty); } }; } pub fn invoke(bcx: block, llfn: ValueRef, llargs: ~[ValueRef]) -> (ValueRef, block) { let _icx = bcx.insn_ctxt("invoke_"); if bcx.unreachable { return (C_null(T_i8()), bcx); } match bcx.node_info { None => debug!("invoke at ???"), Some(node_info) => { debug!("invoke at %s", bcx.sess().codemap.span_to_str(node_info.span)); } } if need_invoke(bcx) { unsafe { debug!("invoking %x at %x", ::core::cast::transmute(llfn), ::core::cast::transmute(bcx.llbb)); for llargs.each |&llarg| { debug!("arg: %x", ::core::cast::transmute(llarg)); } } let normal_bcx = sub_block(bcx, ~"normal return"); let llresult = Invoke(bcx, llfn, llargs, normal_bcx.llbb, get_landing_pad(bcx)); return (llresult, normal_bcx); } else { unsafe { debug!("calling %x at %x", ::core::cast::transmute(llfn), ::core::cast::transmute(bcx.llbb)); for llargs.each |&llarg| { debug!("arg: %x", ::core::cast::transmute(llarg)); } } let llresult = Call(bcx, llfn, llargs); return (llresult, bcx); } } pub fn need_invoke(bcx: block) -> bool { if (bcx.ccx().sess.opts.debugging_opts & session::no_landing_pads != 0) { return false; } // Avoid using invoke if we are already inside a landing pad. if bcx.is_lpad { return false; } if have_cached_lpad(bcx) { return true; } // Walk the scopes to look for cleanups let mut cur = bcx; loop { let current = &mut *cur; let kind = &mut *current.kind; match *kind { block_scope(ref mut inf) => { for vec::each((*inf).cleanups) |cleanup| { match *cleanup { clean(_, cleanup_type) | clean_temp(_, _, cleanup_type) => { if cleanup_type == normal_exit_and_unwind { return true; } } } } } _ => () } cur = match current.parent { Some(next) => next, None => return false } } } pub fn have_cached_lpad(bcx: block) -> bool { let mut res = false; do in_lpad_scope_cx(bcx) |inf| { match inf.landing_pad { Some(_) => res = true, None => res = false } } return res; } pub fn in_lpad_scope_cx(bcx: block, f: &fn(si: &mut scope_info)) { let mut bcx = bcx; loop { { // FIXME #4280: Borrow check bug workaround. let kind: &mut block_kind = &mut *bcx.kind; match *kind { block_scope(ref mut inf) => { if inf.cleanups.len() > 0u || bcx.parent.is_none() { f(inf); return; } } _ => () } } bcx = block_parent(bcx); } } pub fn get_landing_pad(bcx: block) -> BasicBlockRef { let _icx = bcx.insn_ctxt("get_landing_pad"); let mut cached = None, pad_bcx = bcx; // Guaranteed to be set below do in_lpad_scope_cx(bcx) |inf| { // If there is a valid landing pad still around, use it match inf.landing_pad { Some(target) => cached = Some(target), None => { pad_bcx = lpad_block(bcx, ~"unwind"); inf.landing_pad = Some(pad_bcx.llbb); } } } // Can't return from block above match cached { Some(b) => return b, None => () } // The landing pad return type (the type being propagated). Not sure what // this represents but it's determined by the personality function and // this is what the EH proposal example uses. let llretty = T_struct(~[T_ptr(T_i8()), T_i32()], false); // The exception handling personality function. This is the C++ // personality function __gxx_personality_v0, wrapped in our naming // convention. let personality = bcx.ccx().upcalls.rust_personality; // The only landing pad clause will be 'cleanup' let llretval = LandingPad(pad_bcx, llretty, personality, 1u); // The landing pad block is a cleanup SetCleanup(pad_bcx, llretval); // Because we may have unwound across a stack boundary, we must call into // the runtime to figure out which stack segment we are on and place the // stack limit back into the TLS. Call(pad_bcx, bcx.ccx().upcalls.reset_stack_limit, ~[]); // We store the retval in a function-central alloca, so that calls to // Resume can find it. match bcx.fcx.personality { Some(addr) => Store(pad_bcx, llretval, addr), None => { let addr = alloca(pad_bcx, val_ty(llretval)); bcx.fcx.personality = Some(addr); Store(pad_bcx, llretval, addr); } } // Unwind all parent scopes, and finish with a Resume instr cleanup_and_leave(pad_bcx, None, None); return pad_bcx.llbb; } // Arranges for the value found in `*root_loc` to be dropped once the scope // associated with `scope_id` exits. This is used to keep boxes live when // there are extant region pointers pointing at the interior. // // Note that `root_loc` is not the value itself but rather a pointer to the // value. Generally it in alloca'd value. The reason for this is that the // value is initialized in an inner block but may be freed in some outer // block, so an SSA value that is valid in the inner block may not be valid in // the outer block. In fact, the inner block may not even execute. Rather // than generate the full SSA form, we just use an alloca'd value. pub fn add_root_cleanup(bcx: block, root_info: RootInfo, root_loc: ValueRef, ty: ty::t) { debug!("add_root_cleanup(bcx=%s, \ scope=%d, \ freezes=%?, \ root_loc=%s, \ ty=%s)", bcx.to_str(), root_info.scope, root_info.freezes, val_str(bcx.ccx().tn, root_loc), ppaux::ty_to_str(bcx.ccx().tcx, ty)); let bcx_scope = find_bcx_for_scope(bcx, root_info.scope); if root_info.freezes { add_clean_frozen_root(bcx_scope, root_loc, ty); } else { add_clean_temp_mem(bcx_scope, root_loc, ty); } fn find_bcx_for_scope(bcx: block, scope_id: ast::node_id) -> block { let mut bcx_sid = bcx; loop { bcx_sid = match bcx_sid.node_info { Some(NodeInfo { id, _ }) if id == scope_id => { return bcx_sid } _ => { match bcx_sid.parent { None => bcx.tcx().sess.bug( fmt!("no enclosing scope with id %d", scope_id)), Some(bcx_par) => bcx_par } } } } } } pub fn do_spill(bcx: block, v: ValueRef, t: ty::t) -> ValueRef { if ty::type_is_bot(t) { return C_null(T_ptr(T_i8())); } let llptr = alloc_ty(bcx, t); Store(bcx, v, llptr); return llptr; } // Since this function does *not* root, it is the caller's responsibility to // ensure that the referent is pointed to by a root. pub fn do_spill_noroot(cx: block, v: ValueRef) -> ValueRef { let llptr = alloca(cx, val_ty(v)); Store(cx, v, llptr); return llptr; } pub fn spill_if_immediate(cx: block, v: ValueRef, t: ty::t) -> ValueRef { let _icx = cx.insn_ctxt("spill_if_immediate"); if ty::type_is_immediate(t) { return do_spill(cx, v, t); } return v; } pub fn load_if_immediate(cx: block, v: ValueRef, t: ty::t) -> ValueRef { let _icx = cx.insn_ctxt("load_if_immediate"); if ty::type_is_immediate(t) { return Load(cx, v); } return v; } pub fn trans_trace(bcx: block, sp_opt: Option, trace_str: @~str) { if !bcx.sess().trace() { return; } let _icx = bcx.insn_ctxt("trans_trace"); add_comment(bcx, *trace_str); let V_trace_str = C_cstr(bcx.ccx(), trace_str); let (V_filename, V_line) = match sp_opt { Some(sp) => { let sess = bcx.sess(); let loc = sess.parse_sess.cm.lookup_char_pos(sp.lo); (C_cstr(bcx.ccx(), @/*bad*/copy loc.file.name), loc.line as int) } None => { (C_cstr(bcx.ccx(), @~""), 0) } }; let ccx = bcx.ccx(); let V_trace_str = PointerCast(bcx, V_trace_str, T_ptr(T_i8())); let V_filename = PointerCast(bcx, V_filename, T_ptr(T_i8())); let args = ~[V_trace_str, V_filename, C_int(ccx, V_line)]; Call(bcx, ccx.upcalls.trace, args); } pub fn build_return(bcx: block) { let _icx = bcx.insn_ctxt("build_return"); Br(bcx, bcx.fcx.llreturn); } pub fn ignore_lhs(_bcx: block, local: @ast::local) -> bool { match local.node.pat.node { ast::pat_wild => true, _ => false } } pub fn init_local(bcx: block, local: @ast::local) -> block { debug!("init_local(bcx=%s, local.id=%?)", bcx.to_str(), local.node.id); let _indenter = indenter(); let _icx = bcx.insn_ctxt("init_local"); let ty = node_id_type(bcx, local.node.id); debug!("ty=%s", bcx.ty_to_str(ty)); if ignore_lhs(bcx, local) { // Handle let _ = e; just like e; match local.node.init { Some(init) => { return expr::trans_into(bcx, init, expr::Ignore); } None => { return bcx; } } } let llptr = match bcx.fcx.lllocals.find(&local.node.id) { Some(&local_mem(v)) => v, _ => { bcx.tcx().sess.span_bug(local.span, "init_local: Someone forgot to document why it's\ safe to assume local.node.init must be local_mem!"); } }; let mut bcx = bcx; match local.node.init { Some(init) => { bcx = expr::trans_into(bcx, init, expr::SaveIn(llptr)); } _ => { zero_mem(bcx, llptr, ty); } } // Make a note to drop this slot on the way out. debug!("adding clean for %?/%s to bcx=%s", local.node.id, bcx.ty_to_str(ty), bcx.to_str()); add_clean(bcx, llptr, ty); return _match::bind_irrefutable_pat(bcx, local.node.pat, llptr, false, _match::BindLocal); } pub fn trans_stmt(cx: block, s: &ast::stmt) -> block { let _icx = cx.insn_ctxt("trans_stmt"); debug!("trans_stmt(%s)", stmt_to_str(s, cx.tcx().sess.intr())); if !cx.sess().no_asm_comments() { add_span_comment(cx, s.span, stmt_to_str(s, cx.ccx().sess.intr())); } let mut bcx = cx; debuginfo::update_source_pos(cx, s.span); match s.node { ast::stmt_expr(e, _) | ast::stmt_semi(e, _) => { bcx = expr::trans_into(cx, e, expr::Ignore); } ast::stmt_decl(d, _) => { match d.node { ast::decl_local(ref locals) => { for locals.each |local| { bcx = init_local(bcx, *local); if cx.sess().opts.extra_debuginfo && fcx_has_nonzero_span(bcx.fcx) { debuginfo::create_local_var(bcx, *local); } } } ast::decl_item(i) => trans_item(*cx.fcx.ccx, i) } } ast::stmt_mac(*) => cx.tcx().sess.bug(~"unexpanded macro") } return bcx; } // You probably don't want to use this one. See the // next three functions instead. pub fn new_block(cx: fn_ctxt, parent: Option, kind: block_kind, is_lpad: bool, name: ~str, opt_node_info: Option) -> block { let s = if cx.ccx.sess.opts.save_temps || cx.ccx.sess.opts.debuginfo { (cx.ccx.names)(name) } else { special_idents::invalid }; unsafe { let llbb = str::as_c_str(*cx.ccx.sess.str_of(s), |buf| { llvm::LLVMAppendBasicBlock(cx.llfn, buf) }); let bcx = mk_block(llbb, parent, kind, is_lpad, opt_node_info, cx); for parent.each |cx| { if cx.unreachable { Unreachable(bcx); } }; bcx } } pub fn simple_block_scope() -> block_kind { block_scope(scope_info { loop_break: None, loop_label: None, cleanups: ~[], cleanup_paths: ~[], landing_pad: None }) } // Use this when you're at the top block of a function or the like. pub fn top_scope_block(fcx: fn_ctxt, opt_node_info: Option) -> block { return new_block(fcx, None, simple_block_scope(), false, ~"function top level", opt_node_info); } pub fn scope_block(bcx: block, opt_node_info: Option, n: ~str) -> block { return new_block(bcx.fcx, Some(bcx), simple_block_scope(), bcx.is_lpad, n, opt_node_info); } pub fn loop_scope_block(bcx: block, loop_break: block, loop_label: Option, n: ~str, opt_node_info: Option) -> block { return new_block(bcx.fcx, Some(bcx), block_scope(scope_info { loop_break: Some(loop_break), loop_label: loop_label, cleanups: ~[], cleanup_paths: ~[], landing_pad: None }), bcx.is_lpad, n, opt_node_info); } // Use this when creating a block for the inside of a landing pad. pub fn lpad_block(bcx: block, n: ~str) -> block { new_block(bcx.fcx, Some(bcx), block_non_scope, true, n, None) } // Use this when you're making a general CFG BB within a scope. pub fn sub_block(bcx: block, n: ~str) -> block { new_block(bcx.fcx, Some(bcx), block_non_scope, bcx.is_lpad, n, None) } pub fn raw_block(fcx: fn_ctxt, is_lpad: bool, llbb: BasicBlockRef) -> block { mk_block(llbb, None, block_non_scope, is_lpad, None, fcx) } // trans_block_cleanups: Go through all the cleanups attached to this // block and execute them. // // When translating a block that introduces new variables during its scope, we // need to make sure those variables go out of scope when the block ends. We // do that by running a 'cleanup' function for each variable. // trans_block_cleanups runs all the cleanup functions for the block. pub fn trans_block_cleanups(bcx: block, cleanups: ~[cleanup]) -> block { trans_block_cleanups_(bcx, cleanups, false) } pub fn trans_block_cleanups_(bcx: block, cleanups: ~[cleanup], /* cleanup_cx: block, */ is_lpad: bool) -> block { let _icx = bcx.insn_ctxt("trans_block_cleanups"); // NB: Don't short-circuit even if this block is unreachable because // GC-based cleanup needs to the see that the roots are live. let no_lpads = bcx.ccx().sess.opts.debugging_opts & session::no_landing_pads != 0; if bcx.unreachable && !no_lpads { return bcx; } let mut bcx = bcx; for cleanups.each_reverse |cu| { match *cu { clean(cfn, cleanup_type) | clean_temp(_, cfn, cleanup_type) => { // Some types don't need to be cleaned up during // landing pads because they can be freed en mass later if cleanup_type == normal_exit_and_unwind || !is_lpad { bcx = cfn(bcx); } } } } return bcx; } // In the last argument, Some(block) mean jump to this block, and none means // this is a landing pad and leaving should be accomplished with a resume // instruction. pub fn cleanup_and_leave(bcx: block, upto: Option, leave: Option) { let _icx = bcx.insn_ctxt("cleanup_and_leave"); let mut cur = bcx, bcx = bcx; let is_lpad = leave == None; loop { debug!("cleanup_and_leave: leaving %s", cur.to_str()); if bcx.sess().trace() { trans_trace( bcx, None, @fmt!("cleanup_and_leave(%s)", cur.to_str())); } { // FIXME #4280: Borrow check bug workaround. let kind: &mut block_kind = &mut *cur.kind; match *kind { block_scope(ref mut inf) if !inf.cleanups.is_empty() => { for vec::find((*inf).cleanup_paths, |cp| cp.target == leave).each |cp| { Br(bcx, cp.dest); return; } let sub_cx = sub_block(bcx, ~"cleanup"); Br(bcx, sub_cx.llbb); inf.cleanup_paths.push(cleanup_path { target: leave, dest: sub_cx.llbb }); bcx = trans_block_cleanups_(sub_cx, block_cleanups(cur), is_lpad); } _ => () } } match upto { Some(bb) => { if cur.llbb == bb { break; } } _ => () } cur = match cur.parent { Some(next) => next, None => { assert!(upto.is_none()); break; } }; } match leave { Some(target) => Br(bcx, target), None => { Resume(bcx, Load(bcx, bcx.fcx.personality.get())); } } } pub fn cleanup_and_Br(bcx: block, upto: block, target: BasicBlockRef) { let _icx = bcx.insn_ctxt("cleanup_and_Br"); cleanup_and_leave(bcx, Some(upto.llbb), Some(target)); } pub fn leave_block(bcx: block, out_of: block) -> block { let _icx = bcx.insn_ctxt("leave_block"); let next_cx = sub_block(block_parent(out_of), ~"next"); if bcx.unreachable { Unreachable(next_cx); } cleanup_and_Br(bcx, out_of, next_cx.llbb); next_cx } pub fn with_scope(bcx: block, opt_node_info: Option, name: ~str, f: &fn(block) -> block) -> block { let _icx = bcx.insn_ctxt("with_scope"); debug!("with_scope(bcx=%s, opt_node_info=%?, name=%s)", bcx.to_str(), opt_node_info, name); let _indenter = indenter(); let scope_cx = scope_block(bcx, opt_node_info, name); Br(bcx, scope_cx.llbb); leave_block(f(scope_cx), scope_cx) } pub fn with_scope_result(bcx: block, opt_node_info: Option, name: ~str, f: &fn(block) -> Result) -> Result { let _icx = bcx.insn_ctxt("with_scope_result"); let scope_cx = scope_block(bcx, opt_node_info, name); Br(bcx, scope_cx.llbb); let Result {bcx, val} = f(scope_cx); rslt(leave_block(bcx, scope_cx), val) } pub fn with_scope_datumblock(bcx: block, opt_node_info: Option, name: ~str, f: &fn(block) -> datum::DatumBlock) -> datum::DatumBlock { use middle::trans::datum::DatumBlock; let _icx = bcx.insn_ctxt("with_scope_result"); let scope_cx = scope_block(bcx, opt_node_info, name); Br(bcx, scope_cx.llbb); let DatumBlock {bcx, datum} = f(scope_cx); DatumBlock {bcx: leave_block(bcx, scope_cx), datum: datum} } pub fn block_locals(b: &ast::blk, it: &fn(@ast::local)) { for vec::each(b.node.stmts) |s| { match s.node { ast::stmt_decl(d, _) => { match d.node { ast::decl_local(ref locals) => { for locals.each |local| { it(*local); } } _ => {/* fall through */ } } } _ => {/* fall through */ } } } } pub fn alloc_local(cx: block, local: @ast::local) -> block { let _icx = cx.insn_ctxt("alloc_local"); let t = node_id_type(cx, local.node.id); let simple_name = match local.node.pat.node { ast::pat_ident(_, pth, None) => Some(path_to_ident(pth)), _ => None }; let val = alloc_ty(cx, t); if cx.sess().opts.debuginfo { for simple_name.each |name| { str::as_c_str(*cx.ccx().sess.str_of(*name), |buf| { unsafe { llvm::LLVMSetValueName(val, buf) } }); } } cx.fcx.lllocals.insert(local.node.id, local_mem(val)); cx } pub fn with_cond(bcx: block, val: ValueRef, f: &fn(block) -> block) -> block { let _icx = bcx.insn_ctxt("with_cond"); let next_cx = base::sub_block(bcx, ~"next"); let cond_cx = base::sub_block(bcx, ~"cond"); CondBr(bcx, val, cond_cx.llbb, next_cx.llbb); let after_cx = f(cond_cx); if !after_cx.terminated { Br(after_cx, next_cx.llbb); } next_cx } pub fn call_memcpy(cx: block, dst: ValueRef, src: ValueRef, n_bytes: ValueRef) { // FIXME (Related to #1645, I think?): Provide LLVM with better // alignment information when the alignment is statically known (it must // be nothing more than a constant int, or LLVM complains -- not even a // constant element of a tydesc works). let _icx = cx.insn_ctxt("call_memcpy"); let ccx = cx.ccx(); let key = match ccx.sess.targ_cfg.arch { X86 | Arm | Mips => { ~"llvm.memcpy.p0i8.p0i8.i32" } X86_64 => { ~"llvm.memcpy.p0i8.p0i8.i64" } }; let memcpy = *ccx.intrinsics.get(&key); let src_ptr = PointerCast(cx, src, T_ptr(T_i8())); let dst_ptr = PointerCast(cx, dst, T_ptr(T_i8())); let size = IntCast(cx, n_bytes, ccx.int_type); let align = C_i32(1i32); let volatile = C_i1(false); Call(cx, memcpy, ~[dst_ptr, src_ptr, size, align, volatile]); } pub fn memcpy_ty(bcx: block, dst: ValueRef, src: ValueRef, t: ty::t) { let _icx = bcx.insn_ctxt("memcpy_ty"); let ccx = bcx.ccx(); if ty::type_is_structural(t) { let llsz = llsize_of(ccx, type_of::type_of(ccx, t)); call_memcpy(bcx, dst, src, llsz); } else { Store(bcx, Load(bcx, src), dst); } } pub fn zero_mem(cx: block, llptr: ValueRef, t: ty::t) { let _icx = cx.insn_ctxt("zero_mem"); let bcx = cx; let ccx = cx.ccx(); let llty = type_of::type_of(ccx, t); memzero(bcx, llptr, llty); } // Always use this function instead of storing a zero constant to the memory // in question. If you store a zero constant, LLVM will drown in vreg // allocation for large data structures, and the generated code will be // awful. (A telltale sign of this is large quantities of // `mov [byte ptr foo],0` in the generated code.) pub fn memzero(cx: block, llptr: ValueRef, llty: TypeRef) { let _icx = cx.insn_ctxt("memzero"); let ccx = cx.ccx(); let intrinsic_key; match ccx.sess.targ_cfg.arch { X86 | Arm | Mips => { intrinsic_key = ~"llvm.memset.p0i8.i32"; } X86_64 => { intrinsic_key = ~"llvm.memset.p0i8.i64"; } } let llintrinsicfn = *ccx.intrinsics.get(&intrinsic_key); let llptr = PointerCast(cx, llptr, T_ptr(T_i8())); let llzeroval = C_u8(0); let size = IntCast(cx, machine::llsize_of(ccx, llty), ccx.int_type); let align = C_i32(1i32); let volatile = C_i1(false); Call(cx, llintrinsicfn, ~[llptr, llzeroval, size, align, volatile]); } pub fn alloc_ty(bcx: block, t: ty::t) -> ValueRef { let _icx = bcx.insn_ctxt("alloc_ty"); let ccx = bcx.ccx(); let llty = type_of::type_of(ccx, t); if ty::type_has_params(t) { debug!("%s", ty_to_str(ccx.tcx, t)); } assert!(!ty::type_has_params(t)); let val = alloca(bcx, llty); return val; } pub fn alloca(cx: block, t: TypeRef) -> ValueRef { alloca_maybe_zeroed(cx, t, false) } pub fn alloca_maybe_zeroed(cx: block, t: TypeRef, zero: bool) -> ValueRef { let _icx = cx.insn_ctxt("alloca"); if cx.unreachable { unsafe { return llvm::LLVMGetUndef(t); } } let initcx = base::raw_block(cx.fcx, false, cx.fcx.llstaticallocas); let p = Alloca(initcx, t); if zero { memzero(initcx, p, t); } return p; } pub fn arrayalloca(cx: block, t: TypeRef, v: ValueRef) -> ValueRef { let _icx = cx.insn_ctxt("arrayalloca"); if cx.unreachable { unsafe { return llvm::LLVMGetUndef(t); } } return ArrayAlloca( base::raw_block(cx.fcx, false, cx.fcx.llstaticallocas), t, v); } pub struct BasicBlocks { sa: BasicBlockRef, rt: BasicBlockRef } // Creates the standard set of basic blocks for a function pub fn mk_standard_basic_blocks(llfn: ValueRef) -> BasicBlocks { unsafe { BasicBlocks { sa: str::as_c_str(~"static_allocas", |buf| llvm::LLVMAppendBasicBlock(llfn, buf)), rt: str::as_c_str(~"return", |buf| llvm::LLVMAppendBasicBlock(llfn, buf)) } } } // Creates and returns space for, or returns the argument representing, the // slot where the return value of the function must go. pub fn make_return_pointer(fcx: fn_ctxt, output_type: ty::t) -> ValueRef { unsafe { if !ty::type_is_immediate(output_type) { llvm::LLVMGetParam(fcx.llfn, 0) } else { let lloutputtype = type_of::type_of(*fcx.ccx, output_type); alloca(raw_block(fcx, false, fcx.llstaticallocas), lloutputtype) } } } // NB: must keep 4 fns in sync: // // - type_of_fn // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args pub fn new_fn_ctxt_w_id(ccx: @CrateContext, path: path, llfndecl: ValueRef, id: ast::node_id, output_type: ty::t, impl_id: Option, param_substs: Option<@param_substs>, sp: Option) -> fn_ctxt { for param_substs.each |p| { p.validate(); } debug!("new_fn_ctxt_w_id(path=%s, id=%?, impl_id=%?, \ param_substs=%s)", path_str(ccx.sess, path), id, impl_id, param_substs.repr(ccx.tcx)); let llbbs = mk_standard_basic_blocks(llfndecl); let substd_output_type = match param_substs { None => output_type, Some(substs) => { ty::subst_tps(ccx.tcx, substs.tys, substs.self_ty, output_type) } }; let is_immediate = ty::type_is_immediate(substd_output_type); let fcx = @mut fn_ctxt_ { llfn: llfndecl, llenv: unsafe { llvm::LLVMGetParam(llfndecl, 1u as c_uint) }, llretptr: None, llstaticallocas: llbbs.sa, llloadenv: None, llreturn: llbbs.rt, llself: None, personality: None, loop_ret: None, has_immediate_return_value: is_immediate, llargs: @mut HashMap::new(), lllocals: @mut HashMap::new(), llupvars: @mut HashMap::new(), id: id, impl_id: impl_id, param_substs: param_substs, span: sp, path: path, ccx: @ccx }; fcx.llretptr = Some(make_return_pointer(fcx, substd_output_type)); fcx } pub fn new_fn_ctxt(ccx: @CrateContext, path: path, llfndecl: ValueRef, output_type: ty::t, sp: Option) -> fn_ctxt { new_fn_ctxt_w_id(ccx, path, llfndecl, -1, output_type, None, None, sp) } // NB: must keep 4 fns in sync: // // - type_of_fn // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args // create_llargs_for_fn_args: Creates a mapping from incoming arguments to // allocas created for them. // // When we translate a function, we need to map its incoming arguments to the // spaces that have been created for them (by code in the llallocas field of // the function's fn_ctxt). create_llargs_for_fn_args populates the llargs // field of the fn_ctxt with pub fn create_llargs_for_fn_args(cx: fn_ctxt, ty_self: self_arg, args: &[ast::arg]) -> ~[ValueRef] { let _icx = cx.insn_ctxt("create_llargs_for_fn_args"); match ty_self { impl_self(tt) => { cx.llself = Some(ValSelfData { v: cx.llenv, t: tt, is_owned: false }); } impl_owned_self(tt) => { cx.llself = Some(ValSelfData { v: cx.llenv, t: tt, is_owned: true }); } no_self => () } // Return an array containing the ValueRefs that we get from // llvm::LLVMGetParam for each argument. vec::from_fn(args.len(), |i| { unsafe { let arg_n = first_real_arg + i; llvm::LLVMGetParam(cx.llfn, arg_n as c_uint) } }) } pub fn copy_args_to_allocas(fcx: fn_ctxt, bcx: block, args: &[ast::arg], raw_llargs: &[ValueRef], arg_tys: &[ty::arg]) -> block { let _icx = fcx.insn_ctxt("copy_args_to_allocas"); let mut bcx = bcx; match fcx.llself { Some(copy slf) => { // We really should do this regardless of whether self is owned, but // it doesn't work right with default method impls yet. (FIXME: #2794) if slf.is_owned { let self_val = PointerCast(bcx, slf.v, T_ptr(type_of(bcx.ccx(), slf.t))); fcx.llself = Some(ValSelfData {v: self_val, ..slf}); add_clean(bcx, self_val, slf.t); } } _ => {} } for uint::range(0, arg_tys.len()) |arg_n| { let arg_ty = &arg_tys[arg_n]; let raw_llarg = raw_llargs[arg_n]; let arg_id = args[arg_n].id; // For certain mode/type combinations, the raw llarg values are passed // by value. However, within the fn body itself, we want to always // have all locals and arguments be by-ref so that we can cancel the // cleanup and for better interaction with LLVM's debug info. So, if // the argument would be passed by value, we store it into an alloca. // This alloca should be optimized away by LLVM's mem-to-reg pass in // the event it's not truly needed. // only by value if immediate: let llarg = if datum::appropriate_mode(arg_ty.ty).is_by_value() { let alloc = alloc_ty(bcx, arg_ty.ty); Store(bcx, raw_llarg, alloc); alloc } else { raw_llarg }; add_clean(bcx, llarg, arg_ty.ty); bcx = _match::bind_irrefutable_pat(bcx, args[arg_n].pat, llarg, false, _match::BindArgument); fcx.llargs.insert(arg_id, local_mem(llarg)); if fcx.ccx.sess.opts.extra_debuginfo && fcx_has_nonzero_span(fcx) { debuginfo::create_arg(bcx, args[arg_n], args[arg_n].ty.span); } } return bcx; } // Ties up the llstaticallocas -> llloadenv -> lltop edges, // and builds the return block. pub fn finish_fn(fcx: fn_ctxt, lltop: BasicBlockRef) { let _icx = fcx.insn_ctxt("finish_fn"); tie_up_header_blocks(fcx, lltop); build_return_block(fcx); } // Builds the return block for a function. pub fn build_return_block(fcx: fn_ctxt) { let ret_cx = raw_block(fcx, false, fcx.llreturn); // Return the value if this function immediate; otherwise, return void. if fcx.has_immediate_return_value { Ret(ret_cx, Load(ret_cx, fcx.llretptr.get())) } else { RetVoid(ret_cx) } } pub fn tie_up_header_blocks(fcx: fn_ctxt, lltop: BasicBlockRef) { let _icx = fcx.insn_ctxt("tie_up_header_blocks"); match fcx.llloadenv { Some(copy ll) => { Br(raw_block(fcx, false, fcx.llstaticallocas), ll); Br(raw_block(fcx, false, ll), lltop); } None => { Br(raw_block(fcx, false, fcx.llstaticallocas), lltop); } } } pub enum self_arg { impl_self(ty::t), impl_owned_self(ty::t), no_self, } // trans_closure: Builds an LLVM function out of a source function. // If the function closes over its environment a closure will be // returned. pub fn trans_closure(ccx: @CrateContext, path: path, decl: &ast::fn_decl, body: &ast::blk, llfndecl: ValueRef, ty_self: self_arg, param_substs: Option<@param_substs>, id: ast::node_id, impl_id: Option, attributes: &[ast::attribute], output_type: ty::t, maybe_load_env: &fn(fn_ctxt), finish: &fn(block)) { ccx.stats.n_closures += 1; let _icx = ccx.insn_ctxt("trans_closure"); set_uwtable(llfndecl); debug!("trans_closure(..., param_substs=%s)", param_substs.repr(ccx.tcx)); // Set up arguments to the function. let fcx = new_fn_ctxt_w_id(ccx, path, llfndecl, id, output_type, impl_id, param_substs, Some(body.span)); let raw_llargs = create_llargs_for_fn_args(fcx, ty_self, decl.inputs); // Set the fixed stack segment flag if necessary. if attr::attrs_contains_name(attributes, "fixed_stack_segment") { set_no_inline(fcx.llfn); set_fixed_stack_segment(fcx.llfn); } // Set GC for function. if ccx.sess.opts.gc { do str::as_c_str("generic") |strategy| { unsafe { llvm::LLVMSetGC(fcx.llfn, strategy); } } *ccx.uses_gc = true; } // Create the first basic block in the function and keep a handle on it to // pass to finish_fn later. let bcx_top = top_scope_block(fcx, body.info()); let mut bcx = bcx_top; let lltop = bcx.llbb; let block_ty = node_id_type(bcx, body.node.id); let arg_tys = ty::ty_fn_args(node_id_type(bcx, id)); bcx = copy_args_to_allocas(fcx, bcx, decl.inputs, raw_llargs, arg_tys); maybe_load_env(fcx); // This call to trans_block is the place where we bridge between // translation calls that don't have a return value (trans_crate, // trans_mod, trans_item, et cetera) and those that do // (trans_block, trans_expr, et cetera). if body.node.expr.is_none() || ty::type_is_bot(block_ty) || ty::type_is_nil(block_ty) { bcx = controlflow::trans_block(bcx, body, expr::Ignore); } else { let dest = expr::SaveIn(fcx.llretptr.get()); bcx = controlflow::trans_block(bcx, body, dest); } finish(bcx); cleanup_and_Br(bcx, bcx_top, fcx.llreturn); // Insert the mandatory first few basic blocks before lltop. finish_fn(fcx, lltop); } // trans_fn: creates an LLVM function corresponding to a source language // function. pub fn trans_fn(ccx: @CrateContext, path: path, decl: &ast::fn_decl, body: &ast::blk, llfndecl: ValueRef, ty_self: self_arg, param_substs: Option<@param_substs>, id: ast::node_id, impl_id: Option, attrs: &[ast::attribute]) { let do_time = ccx.sess.trans_stats(); let start = if do_time { time::get_time() } else { time::Timespec::new(0, 0) }; debug!("trans_fn(ty_self=%?, param_substs=%s)", ty_self, param_substs.repr(ccx.tcx)); let _icx = ccx.insn_ctxt("trans_fn"); ccx.stats.n_fns += 1; let the_path_str = path_str(ccx.sess, path); let output_type = ty::ty_fn_ret(ty::node_id_to_type(ccx.tcx, id)); trans_closure(ccx, path, decl, body, llfndecl, ty_self, param_substs, id, impl_id, attrs, output_type, |fcx| { if ccx.sess.opts.extra_debuginfo && fcx_has_nonzero_span(fcx) { debuginfo::create_function(fcx); } }, |_bcx| { }); if do_time { let end = time::get_time(); log_fn_time(ccx, the_path_str, start, end); } } pub fn trans_enum_variant(ccx: @CrateContext, enum_id: ast::node_id, variant: &ast::variant, args: &[ast::variant_arg], disr: int, param_substs: Option<@param_substs>, llfndecl: ValueRef) { let _icx = ccx.insn_ctxt("trans_enum_variant"); // Translate variant arguments to function arguments. let fn_args = do args.map |varg| { ast::arg { is_mutbl: false, ty: varg.ty, pat: ast_util::ident_to_pat( ccx.tcx.sess.next_node_id(), codemap::dummy_sp(), special_idents::arg), id: varg.id, } }; let ty_param_substs = match param_substs { Some(ref substs) => { copy substs.tys } None => ~[] }; let enum_ty = ty::subst_tps(ccx.tcx, ty_param_substs, None, ty::node_id_to_type(ccx.tcx, enum_id)); let fcx = new_fn_ctxt_w_id(ccx, ~[], llfndecl, variant.node.id, enum_ty, None, param_substs, None); let raw_llargs = create_llargs_for_fn_args(fcx, no_self, fn_args); let bcx = top_scope_block(fcx, None), lltop = bcx.llbb; let arg_tys = ty::ty_fn_args(node_id_type(bcx, variant.node.id)); let bcx = copy_args_to_allocas(fcx, bcx, fn_args, raw_llargs, arg_tys); // XXX is there a better way to reconstruct the ty::t? let repr = adt::represent_type(ccx, enum_ty); debug!("trans_enum_variant: name=%s tps=%s repr=%? enum_ty=%s", unsafe { str::raw::from_c_str(llvm::LLVMGetValueName(llfndecl)) }, ~"[" + str::connect(ty_param_substs.map(|&t| ty_to_str(ccx.tcx, t)), ", ") + ~"]", repr, ty_to_str(ccx.tcx, enum_ty)); adt::trans_start_init(bcx, repr, fcx.llretptr.get(), disr); for vec::eachi(args) |i, va| { let lldestptr = adt::trans_field_ptr(bcx, repr, fcx.llretptr.get(), disr, i); // If this argument to this function is a enum, it'll have come in to // this function as an opaque blob due to the way that type_of() // works. So we have to cast to the destination's view of the type. let llarg = match fcx.llargs.find(&va.id) { Some(&local_mem(x)) => x, _ => fail!(~"trans_enum_variant: how do we know this works?"), }; let arg_ty = arg_tys[i].ty; memcpy_ty(bcx, lldestptr, llarg, arg_ty); } build_return(bcx); finish_fn(fcx, lltop); } // NB: In theory this should be merged with the function above. But the AST // structures are completely different, so very little code would be shared. pub fn trans_tuple_struct(ccx: @CrateContext, fields: &[@ast::struct_field], ctor_id: ast::node_id, param_substs: Option<@param_substs>, llfndecl: ValueRef) { let _icx = ccx.insn_ctxt("trans_tuple_struct"); // Translate struct fields to function arguments. let fn_args = do fields.map |field| { ast::arg { is_mutbl: false, ty: field.node.ty, pat: ast_util::ident_to_pat(ccx.tcx.sess.next_node_id(), codemap::dummy_sp(), special_idents::arg), id: field.node.id } }; // XXX is there a better way to reconstruct the ty::t? let ty_param_substs = match param_substs { Some(ref substs) => { copy substs.tys } None => ~[] }; let ctor_ty = ty::subst_tps(ccx.tcx, ty_param_substs, None, ty::node_id_to_type(ccx.tcx, ctor_id)); let tup_ty = match ty::get(ctor_ty).sty { ty::ty_bare_fn(ref bft) => bft.sig.output, _ => ccx.sess.bug(fmt!("trans_tuple_struct: unexpected ctor \ return type %s", ty_to_str(ccx.tcx, ctor_ty))) }; let fcx = new_fn_ctxt_w_id(ccx, ~[], llfndecl, ctor_id, tup_ty, None, param_substs, None); let raw_llargs = create_llargs_for_fn_args(fcx, no_self, fn_args); let bcx = top_scope_block(fcx, None); let lltop = bcx.llbb; let arg_tys = ty::ty_fn_args(node_id_type(bcx, ctor_id)); let bcx = copy_args_to_allocas(fcx, bcx, fn_args, raw_llargs, arg_tys); let repr = adt::represent_type(ccx, tup_ty); for fields.eachi |i, field| { let lldestptr = adt::trans_field_ptr(bcx, repr, fcx.llretptr.get(), 0, i); let llarg = match *fcx.llargs.get(&field.node.id) { local_mem(x) => x, _ => { ccx.tcx.sess.bug(~"trans_tuple_struct: llarg wasn't \ local_mem") } }; let arg_ty = arg_tys[i].ty; memcpy_ty(bcx, lldestptr, llarg, arg_ty); } build_return(bcx); finish_fn(fcx, lltop); } pub fn trans_enum_def(ccx: @CrateContext, enum_definition: &ast::enum_def, id: ast::node_id, path: @ast_map::path, vi: @~[ty::VariantInfo], i: &mut uint) { for vec::each(enum_definition.variants) |variant| { let disr_val = vi[*i].disr_val; *i += 1; match variant.node.kind { ast::tuple_variant_kind(ref args) if args.len() > 0 => { let llfn = get_item_val(ccx, variant.node.id); trans_enum_variant(ccx, id, variant, *args, disr_val, None, llfn); } ast::tuple_variant_kind(_) => { // Nothing to do. } ast::struct_variant_kind(struct_def) => { trans_struct_def(ccx, struct_def); } } } } pub fn trans_item(ccx: @CrateContext, item: &ast::item) { let _icx = ccx.insn_ctxt("trans_item"); let path = match *ccx.tcx.items.get(&item.id) { ast_map::node_item(_, p) => p, // tjc: ? _ => fail!(~"trans_item"), }; match item.node { ast::item_fn(ref decl, purity, _abis, ref generics, ref body) => { if purity == ast::extern_fn { let llfndecl = get_item_val(ccx, item.id); foreign::trans_foreign_fn(ccx, vec::append(/*bad*/copy *path, ~[path_name(item.ident)]), decl, body, llfndecl, item.id); } else if !generics.is_type_parameterized() { let llfndecl = get_item_val(ccx, item.id); trans_fn(ccx, vec::append(/*bad*/copy *path, ~[path_name(item.ident)]), decl, body, llfndecl, no_self, None, item.id, None, item.attrs); } else { for body.node.stmts.each |stmt| { match stmt.node { ast::stmt_decl(@codemap::spanned { node: ast::decl_item(i), _ }, _) => { trans_item(ccx, i); } _ => () } } } } ast::item_impl(ref generics, _, _, ref ms) => { meth::trans_impl(ccx, /*bad*/copy *path, item.ident, *ms, generics, None, item.id); } ast::item_mod(ref m) => { trans_mod(ccx, m); } ast::item_enum(ref enum_definition, ref generics) => { if !generics.is_type_parameterized() { let vi = ty::enum_variants(ccx.tcx, local_def(item.id)); let mut i = 0; trans_enum_def(ccx, enum_definition, item.id, path, vi, &mut i); } } ast::item_const(_, expr) => consts::trans_const(ccx, expr, item.id), ast::item_foreign_mod(ref foreign_mod) => { foreign::trans_foreign_mod(ccx, path, foreign_mod); } ast::item_struct(struct_def, ref generics) => { if !generics.is_type_parameterized() { trans_struct_def(ccx, struct_def); } } _ => {/* fall through */ } } } pub fn trans_struct_def(ccx: @CrateContext, struct_def: @ast::struct_def) { // If this is a tuple-like struct, translate the constructor. match struct_def.ctor_id { // We only need to translate a constructor if there are fields; // otherwise this is a unit-like struct. Some(ctor_id) if struct_def.fields.len() > 0 => { let llfndecl = get_item_val(ccx, ctor_id); trans_tuple_struct(ccx, struct_def.fields, ctor_id, None, llfndecl); } Some(_) | None => {} } } // Translate a module. Doing this amounts to translating the items in the // module; there ends up being no artifact (aside from linkage names) of // separate modules in the compiled program. That's because modules exist // only as a convenience for humans working with the code, to organize names // and control visibility. pub fn trans_mod(ccx: @CrateContext, m: &ast::_mod) { let _icx = ccx.insn_ctxt("trans_mod"); for m.items.each |item| { trans_item(ccx, *item); } } pub fn register_fn(ccx: @CrateContext, sp: span, path: path, node_id: ast::node_id, attrs: &[ast::attribute]) -> ValueRef { let t = ty::node_id_to_type(ccx.tcx, node_id); register_fn_full(ccx, sp, path, node_id, attrs, t) } pub fn register_fn_full(ccx: @CrateContext, sp: span, path: path, node_id: ast::node_id, attrs: &[ast::attribute], node_type: ty::t) -> ValueRef { let llfty = type_of_fn_from_ty(ccx, node_type); register_fn_fuller(ccx, sp, path, node_id, attrs, node_type, lib::llvm::CCallConv, llfty) } pub fn register_fn_fuller(ccx: @CrateContext, sp: span, path: path, node_id: ast::node_id, attrs: &[ast::attribute], node_type: ty::t, cc: lib::llvm::CallConv, llfty: TypeRef) -> ValueRef { debug!("register_fn_fuller creating fn for item %d with path %s", node_id, ast_map::path_to_str(path, ccx.sess.parse_sess.interner)); let ps = if attr::attrs_contains_name(attrs, "no_mangle") { path_elt_to_str(*path.last(), ccx.sess.parse_sess.interner) } else { mangle_exported_name(ccx, /*bad*/copy path, node_type) }; // XXX: Bad copy. let llfn: ValueRef = decl_fn(ccx.llmod, copy ps, cc, llfty); ccx.item_symbols.insert(node_id, ps); // FIXME #4404 android JNI hacks let is_entry = is_entry_fn(&ccx.sess, node_id) && (!*ccx.sess.building_library || (*ccx.sess.building_library && ccx.sess.targ_cfg.os == session::os_android)); if is_entry { create_entry_wrapper(ccx, sp, llfn); } llfn } pub fn is_entry_fn(sess: &Session, node_id: ast::node_id) -> bool { match *sess.entry_fn { Some((entry_id, _)) => node_id == entry_id, None => false } } // Create a _rust_main(args: ~[str]) function which will be called from the // runtime rust_start function pub fn create_entry_wrapper(ccx: @CrateContext, _sp: span, main_llfn: ValueRef) { let et = ccx.sess.entry_type.unwrap(); if et == session::EntryMain { let llfn = create_main(ccx, main_llfn); create_entry_fn(ccx, llfn, true); } else { create_entry_fn(ccx, main_llfn, false); } fn create_main(ccx: @CrateContext, main_llfn: ValueRef) -> ValueRef { let nt = ty::mk_nil(); let llfty = type_of_fn(ccx, ~[], nt); let llfdecl = decl_fn(ccx.llmod, ~"_rust_main", lib::llvm::CCallConv, llfty); let fcx = new_fn_ctxt(ccx, ~[], llfdecl, nt, None); let bcx = top_scope_block(fcx, None); let lltop = bcx.llbb; // Call main. let lloutputarg = C_null(T_ptr(T_i8())); let llenvarg = unsafe { llvm::LLVMGetParam(llfdecl, 1 as c_uint) }; let mut args = ~[lloutputarg, llenvarg]; let llresult = Call(bcx, main_llfn, args); Store(bcx, llresult, fcx.llretptr.get()); build_return(bcx); finish_fn(fcx, lltop); return llfdecl; } fn create_entry_fn(ccx: @CrateContext, rust_main: ValueRef, use_start_lang_item: bool) { let llfty = T_fn(~[ccx.int_type, T_ptr(T_ptr(T_i8()))], ccx.int_type); // FIXME #4404 android JNI hacks let llfn = if *ccx.sess.building_library { decl_cdecl_fn(ccx.llmod, ~"amain", llfty) } else { let main_name = match ccx.sess.targ_cfg.os { session::os_win32 => ~"WinMain@16", _ => ~"main", }; decl_cdecl_fn(ccx.llmod, main_name, llfty) }; let llbb = str::as_c_str(~"top", |buf| { unsafe { llvm::LLVMAppendBasicBlock(llfn, buf) } }); let bld = ccx.builder.B; unsafe { llvm::LLVMPositionBuilderAtEnd(bld, llbb); let start_def_id = ccx.tcx.lang_items.start_fn(); if start_def_id.crate == ast::local_crate { ccx.sess.bug(~"start lang item is never in the local crate") } else { let start_fn_type = csearch::get_type(ccx.tcx, start_def_id).ty; trans_external_path(ccx, start_def_id, start_fn_type); } let retptr = llvm::LLVMBuildAlloca(bld, T_i8(), noname()); let crate_map = ccx.crate_map; let opaque_crate_map = llvm::LLVMBuildPointerCast(bld, crate_map, T_ptr(T_i8()), noname()); let (start_fn, args) = if use_start_lang_item { let start_def_id = ccx.tcx.lang_items.start_fn(); let start_fn = if start_def_id.crate == ast::local_crate { ccx.sess.bug(~"start lang item is never in the local \ crate") } else { let start_fn_type = csearch::get_type(ccx.tcx, start_def_id).ty; trans_external_path(ccx, start_def_id, start_fn_type) }; let args = { let opaque_rust_main = llvm::LLVMBuildPointerCast( bld, rust_main, T_ptr(T_i8()), noname()); ~[ retptr, C_null(T_opaque_box_ptr(ccx)), opaque_rust_main, llvm::LLVMGetParam(llfn, 0), llvm::LLVMGetParam(llfn, 1), opaque_crate_map ] }; (start_fn, args) } else { debug!("using user-defined start fn"); let args = { ~[ retptr, C_null(T_opaque_box_ptr(ccx)), llvm::LLVMGetParam(llfn, 0 as c_uint), llvm::LLVMGetParam(llfn, 1 as c_uint), opaque_crate_map ] }; (rust_main, args) }; let result = llvm::LLVMBuildCall(bld, start_fn, &args[0], args.len() as c_uint, noname()); llvm::LLVMBuildRet(bld, result); } } } pub fn fill_fn_pair(bcx: block, pair: ValueRef, llfn: ValueRef, llenvptr: ValueRef) { let ccx = bcx.ccx(); let code_cell = GEPi(bcx, pair, [0u, abi::fn_field_code]); Store(bcx, llfn, code_cell); let env_cell = GEPi(bcx, pair, [0u, abi::fn_field_box]); let llenvblobptr = PointerCast(bcx, llenvptr, T_opaque_box_ptr(ccx)); Store(bcx, llenvblobptr, env_cell); } pub fn item_path(ccx: @CrateContext, i: @ast::item) -> path { let base = match *ccx.tcx.items.get(&i.id) { ast_map::node_item(_, p) => p, // separate map for paths? _ => fail!(~"item_path") }; vec::append(/*bad*/copy *base, ~[path_name(i.ident)]) } pub fn get_item_val(ccx: @CrateContext, id: ast::node_id) -> ValueRef { debug!("get_item_val(id=`%?`)", id); let tcx = ccx.tcx; match ccx.item_vals.find(&id) { Some(&v) => v, None => { let mut exprt = false; let val = match *ccx.tcx.items.get(&id) { ast_map::node_item(i, pth) => { let my_path = vec::append(/*bad*/copy *pth, ~[path_name(i.ident)]); match i.node { ast::item_const(_, expr) => { let typ = ty::node_id_to_type(ccx.tcx, i.id); let s = mangle_exported_name(ccx, my_path, typ); // We need the translated value here, because for enums the // LLVM type is not fully determined by the Rust type. let v = consts::const_expr(ccx, expr); ccx.const_values.insert(id, v); unsafe { let llty = llvm::LLVMTypeOf(v); let g = str::as_c_str(s, |buf| { llvm::LLVMAddGlobal(ccx.llmod, llty, buf) }); ccx.item_symbols.insert(i.id, s); g } } ast::item_fn(_, purity, _, _, _) => { let llfn = if purity != ast::extern_fn { register_fn(ccx, i.span, my_path, i.id, i.attrs) } else { foreign::register_foreign_fn(ccx, i.span, my_path, i.id, i.attrs) }; set_inline_hint_if_appr(i.attrs, llfn); llfn } _ => fail!(~"get_item_val: weird result in table") } } ast_map::node_trait_method(trait_method, _, pth) => { debug!("get_item_val(): processing a node_trait_method"); match *trait_method { ast::required(_) => { ccx.sess.bug(~"unexpected variant: required trait method in \ get_item_val()"); } ast::provided(m) => { exprt = true; register_method(ccx, id, pth, m) } } } ast_map::node_method(m, _, pth) => { exprt = true; register_method(ccx, id, pth, m) } ast_map::node_foreign_item(ni, _, _, pth) => { exprt = true; match ni.node { ast::foreign_item_fn(*) => { register_fn(ccx, ni.span, vec::append(/*bad*/copy *pth, ~[path_name(ni.ident)]), ni.id, ni.attrs) } ast::foreign_item_const(*) => { let typ = ty::node_id_to_type(ccx.tcx, ni.id); let ident = ccx.sess.parse_sess.interner.get(ni.ident); let g = do str::as_c_str(*ident) |buf| { unsafe { llvm::LLVMAddGlobal(ccx.llmod, type_of(ccx, typ), buf) } }; g } } } ast_map::node_variant(ref v, enm, pth) => { let llfn; match v.node.kind { ast::tuple_variant_kind(ref args) => { assert!(args.len() != 0u); let pth = vec::append(/*bad*/copy *pth, ~[path_name(enm.ident), path_name((*v).node.name)]); llfn = match enm.node { ast::item_enum(_, _) => { register_fn(ccx, (*v).span, pth, id, enm.attrs) } _ => fail!(~"node_variant, shouldn't happen") }; } ast::struct_variant_kind(_) => { fail!(~"struct variant kind unexpected in get_item_val") } } set_inline_hint(llfn); llfn } ast_map::node_struct_ctor(struct_def, struct_item, struct_path) => { // Only register the constructor if this is a tuple-like struct. match struct_def.ctor_id { None => { ccx.tcx.sess.bug(~"attempt to register a constructor of \ a non-tuple-like struct") } Some(ctor_id) => { let llfn = register_fn(ccx, struct_item.span, /*bad*/copy *struct_path, ctor_id, struct_item.attrs); set_inline_hint(llfn); llfn } } } ref variant => { ccx.sess.bug(fmt!("get_item_val(): unexpected variant: %?", variant)) } }; if !(exprt || ccx.reachable.contains(&id)) { lib::llvm::SetLinkage(val, lib::llvm::InternalLinkage); } ccx.item_vals.insert(id, val); val } } } pub fn register_method(ccx: @CrateContext, id: ast::node_id, pth: @ast_map::path, m: @ast::method) -> ValueRef { let mty = ty::node_id_to_type(ccx.tcx, id); let pth = vec::append(/*bad*/copy *pth, ~[path_name((ccx.names)(~"meth")), path_name(m.ident)]); let llfn = register_fn_full(ccx, m.span, pth, id, m.attrs, mty); set_inline_hint_if_appr(m.attrs, llfn); llfn } // The constant translation pass. pub fn trans_constant(ccx: @CrateContext, it: @ast::item) { let _icx = ccx.insn_ctxt("trans_constant"); match it.node { ast::item_enum(ref enum_definition, _) => { let vi = ty::enum_variants(ccx.tcx, ast::def_id { crate: ast::local_crate, node: it.id }); let mut i = 0; let path = item_path(ccx, it); for vec::each((*enum_definition).variants) |variant| { let p = vec::append(/*bad*/copy path, ~[ path_name(variant.node.name), path_name(special_idents::descrim) ]); let s = @mangle_exported_name(ccx, p, ty::mk_int()); let disr_val = vi[i].disr_val; note_unique_llvm_symbol(ccx, s); let discrim_gvar = str::as_c_str(*s, |buf| { unsafe { llvm::LLVMAddGlobal(ccx.llmod, ccx.int_type, buf) } }); unsafe { llvm::LLVMSetInitializer(discrim_gvar, C_int(ccx, disr_val)); llvm::LLVMSetGlobalConstant(discrim_gvar, True); } ccx.discrims.insert( local_def(variant.node.id), discrim_gvar); ccx.discrim_symbols.insert(variant.node.id, s); i += 1; } } _ => () } } pub fn trans_constants(ccx: @CrateContext, crate: &ast::crate) { visit::visit_crate( crate, (), visit::mk_simple_visitor(@visit::SimpleVisitor { visit_item: |a| trans_constant(ccx, a), ..*visit::default_simple_visitor() })); } pub fn vp2i(cx: block, v: ValueRef) -> ValueRef { let ccx = cx.ccx(); return PtrToInt(cx, v, ccx.int_type); } pub fn p2i(ccx: @CrateContext, v: ValueRef) -> ValueRef { unsafe { return llvm::LLVMConstPtrToInt(v, ccx.int_type); } } pub fn declare_intrinsics(llmod: ModuleRef) -> HashMap<~str, ValueRef> { let T_memcpy32_args: ~[TypeRef] = ~[T_ptr(T_i8()), T_ptr(T_i8()), T_i32(), T_i32(), T_i1()]; let T_memcpy64_args: ~[TypeRef] = ~[T_ptr(T_i8()), T_ptr(T_i8()), T_i64(), T_i32(), T_i1()]; let T_memset32_args: ~[TypeRef] = ~[T_ptr(T_i8()), T_i8(), T_i32(), T_i32(), T_i1()]; let T_memset64_args: ~[TypeRef] = ~[T_ptr(T_i8()), T_i8(), T_i64(), T_i32(), T_i1()]; let T_trap_args: ~[TypeRef] = ~[]; let T_frameaddress_args: ~[TypeRef] = ~[T_i32()]; let gcroot = decl_cdecl_fn(llmod, ~"llvm.gcroot", T_fn(~[T_ptr(T_ptr(T_i8())), T_ptr(T_i8())], T_void())); let gcread = decl_cdecl_fn(llmod, ~"llvm.gcread", T_fn(~[T_ptr(T_i8()), T_ptr(T_ptr(T_i8()))], T_void())); let memcpy32 = decl_cdecl_fn(llmod, ~"llvm.memcpy.p0i8.p0i8.i32", T_fn(copy T_memcpy32_args, T_void())); let memcpy64 = decl_cdecl_fn(llmod, ~"llvm.memcpy.p0i8.p0i8.i64", T_fn(copy T_memcpy64_args, T_void())); let memmove32 = decl_cdecl_fn(llmod, ~"llvm.memmove.p0i8.p0i8.i32", T_fn(T_memcpy32_args, T_void())); let memmove64 = decl_cdecl_fn(llmod, ~"llvm.memmove.p0i8.p0i8.i64", T_fn(T_memcpy64_args, T_void())); let memset32 = decl_cdecl_fn(llmod, ~"llvm.memset.p0i8.i32", T_fn(T_memset32_args, T_void())); let memset64 = decl_cdecl_fn(llmod, ~"llvm.memset.p0i8.i64", T_fn(T_memset64_args, T_void())); let trap = decl_cdecl_fn(llmod, ~"llvm.trap", T_fn(T_trap_args, T_void())); let frameaddress = decl_cdecl_fn(llmod, ~"llvm.frameaddress", T_fn(T_frameaddress_args, T_ptr(T_i8()))); let sqrtf32 = decl_cdecl_fn(llmod, ~"llvm.sqrt.f32", T_fn(~[T_f32()], T_f32())); let sqrtf64 = decl_cdecl_fn(llmod, ~"llvm.sqrt.f64", T_fn(~[T_f64()], T_f64())); let powif32 = decl_cdecl_fn(llmod, ~"llvm.powi.f32", T_fn(~[T_f32(), T_i32()], T_f32())); let powif64 = decl_cdecl_fn(llmod, ~"llvm.powi.f64", T_fn(~[T_f64(), T_i32()], T_f64())); let sinf32 = decl_cdecl_fn(llmod, ~"llvm.sin.f32", T_fn(~[T_f32()], T_f32())); let sinf64 = decl_cdecl_fn(llmod, ~"llvm.sin.f64", T_fn(~[T_f64()], T_f64())); let cosf32 = decl_cdecl_fn(llmod, ~"llvm.cos.f32", T_fn(~[T_f32()], T_f32())); let cosf64 = decl_cdecl_fn(llmod, ~"llvm.cos.f64", T_fn(~[T_f64()], T_f64())); let powf32 = decl_cdecl_fn(llmod, ~"llvm.pow.f32", T_fn(~[T_f32(), T_f32()], T_f32())); let powf64 = decl_cdecl_fn(llmod, ~"llvm.pow.f64", T_fn(~[T_f64(), T_f64()], T_f64())); let expf32 = decl_cdecl_fn(llmod, ~"llvm.exp.f32", T_fn(~[T_f32()], T_f32())); let expf64 = decl_cdecl_fn(llmod, ~"llvm.exp.f64", T_fn(~[T_f64()], T_f64())); let exp2f32 = decl_cdecl_fn(llmod, ~"llvm.exp2.f32", T_fn(~[T_f32()], T_f32())); let exp2f64 = decl_cdecl_fn(llmod, ~"llvm.exp2.f64", T_fn(~[T_f64()], T_f64())); let logf32 = decl_cdecl_fn(llmod, ~"llvm.log.f32", T_fn(~[T_f32()], T_f32())); let logf64 = decl_cdecl_fn(llmod, ~"llvm.log.f64", T_fn(~[T_f64()], T_f64())); let log10f32 = decl_cdecl_fn(llmod, ~"llvm.log10.f32", T_fn(~[T_f32()], T_f32())); let log10f64 = decl_cdecl_fn(llmod, ~"llvm.log10.f64", T_fn(~[T_f64()], T_f64())); let log2f32 = decl_cdecl_fn(llmod, ~"llvm.log2.f32", T_fn(~[T_f32()], T_f32())); let log2f64 = decl_cdecl_fn(llmod, ~"llvm.log2.f64", T_fn(~[T_f64()], T_f64())); let fmaf32 = decl_cdecl_fn(llmod, ~"llvm.fma.f32", T_fn(~[T_f32(), T_f32(), T_f32()], T_f32())); let fmaf64 = decl_cdecl_fn(llmod, ~"llvm.fma.f64", T_fn(~[T_f64(), T_f64(), T_f64()], T_f64())); let fabsf32 = decl_cdecl_fn(llmod, ~"llvm.fabs.f32", T_fn(~[T_f32()], T_f32())); let fabsf64 = decl_cdecl_fn(llmod, ~"llvm.fabs.f64", T_fn(~[T_f64()], T_f64())); let floorf32 = decl_cdecl_fn(llmod, ~"llvm.floor.f32", T_fn(~[T_f32()], T_f32())); let floorf64 = decl_cdecl_fn(llmod, ~"llvm.floor.f64", T_fn(~[T_f64()], T_f64())); let ceilf32 = decl_cdecl_fn(llmod, ~"llvm.ceil.f32", T_fn(~[T_f32()], T_f32())); let ceilf64 = decl_cdecl_fn(llmod, ~"llvm.ceil.f64", T_fn(~[T_f64()], T_f64())); let truncf32 = decl_cdecl_fn(llmod, ~"llvm.trunc.f32", T_fn(~[T_f32()], T_f32())); let truncf64 = decl_cdecl_fn(llmod, ~"llvm.trunc.f64", T_fn(~[T_f64()], T_f64())); let ctpop8 = decl_cdecl_fn(llmod, ~"llvm.ctpop.i8", T_fn(~[T_i8()], T_i8())); let ctpop16 = decl_cdecl_fn(llmod, ~"llvm.ctpop.i16", T_fn(~[T_i16()], T_i16())); let ctpop32 = decl_cdecl_fn(llmod, ~"llvm.ctpop.i32", T_fn(~[T_i32()], T_i32())); let ctpop64 = decl_cdecl_fn(llmod, ~"llvm.ctpop.i64", T_fn(~[T_i64()], T_i64())); let ctlz8 = decl_cdecl_fn(llmod, ~"llvm.ctlz.i8", T_fn(~[T_i8(), T_i1()], T_i8())); let ctlz16 = decl_cdecl_fn(llmod, ~"llvm.ctlz.i16", T_fn(~[T_i16(), T_i1()], T_i16())); let ctlz32 = decl_cdecl_fn(llmod, ~"llvm.ctlz.i32", T_fn(~[T_i32(), T_i1()], T_i32())); let ctlz64 = decl_cdecl_fn(llmod, ~"llvm.ctlz.i64", T_fn(~[T_i64(), T_i1()], T_i64())); let cttz8 = decl_cdecl_fn(llmod, ~"llvm.cttz.i8", T_fn(~[T_i8(), T_i1()], T_i8())); let cttz16 = decl_cdecl_fn(llmod, ~"llvm.cttz.i16", T_fn(~[T_i16(), T_i1()], T_i16())); let cttz32 = decl_cdecl_fn(llmod, ~"llvm.cttz.i32", T_fn(~[T_i32(), T_i1()], T_i32())); let cttz64 = decl_cdecl_fn(llmod, ~"llvm.cttz.i64", T_fn(~[T_i64(), T_i1()], T_i64())); let bswap16 = decl_cdecl_fn(llmod, ~"llvm.bswap.i16", T_fn(~[T_i16()], T_i16())); let bswap32 = decl_cdecl_fn(llmod, ~"llvm.bswap.i32", T_fn(~[T_i32()], T_i32())); let bswap64 = decl_cdecl_fn(llmod, ~"llvm.bswap.i64", T_fn(~[T_i64()], T_i64())); let mut intrinsics = HashMap::new(); intrinsics.insert(~"llvm.gcroot", gcroot); intrinsics.insert(~"llvm.gcread", gcread); intrinsics.insert(~"llvm.memcpy.p0i8.p0i8.i32", memcpy32); intrinsics.insert(~"llvm.memcpy.p0i8.p0i8.i64", memcpy64); intrinsics.insert(~"llvm.memmove.p0i8.p0i8.i32", memmove32); intrinsics.insert(~"llvm.memmove.p0i8.p0i8.i64", memmove64); intrinsics.insert(~"llvm.memset.p0i8.i32", memset32); intrinsics.insert(~"llvm.memset.p0i8.i64", memset64); intrinsics.insert(~"llvm.trap", trap); intrinsics.insert(~"llvm.frameaddress", frameaddress); intrinsics.insert(~"llvm.sqrt.f32", sqrtf32); intrinsics.insert(~"llvm.sqrt.f64", sqrtf64); intrinsics.insert(~"llvm.powi.f32", powif32); intrinsics.insert(~"llvm.powi.f64", powif64); intrinsics.insert(~"llvm.sin.f32", sinf32); intrinsics.insert(~"llvm.sin.f64", sinf64); intrinsics.insert(~"llvm.cos.f32", cosf32); intrinsics.insert(~"llvm.cos.f64", cosf64); intrinsics.insert(~"llvm.pow.f32", powf32); intrinsics.insert(~"llvm.pow.f64", powf64); intrinsics.insert(~"llvm.exp.f32", expf32); intrinsics.insert(~"llvm.exp.f64", expf64); intrinsics.insert(~"llvm.exp2.f32", exp2f32); intrinsics.insert(~"llvm.exp2.f64", exp2f64); intrinsics.insert(~"llvm.log.f32", logf32); intrinsics.insert(~"llvm.log.f64", logf64); intrinsics.insert(~"llvm.log10.f32", log10f32); intrinsics.insert(~"llvm.log10.f64", log10f64); intrinsics.insert(~"llvm.log2.f32", log2f32); intrinsics.insert(~"llvm.log2.f64", log2f64); intrinsics.insert(~"llvm.fma.f32", fmaf32); intrinsics.insert(~"llvm.fma.f64", fmaf64); intrinsics.insert(~"llvm.fabs.f32", fabsf32); intrinsics.insert(~"llvm.fabs.f64", fabsf64); intrinsics.insert(~"llvm.floor.f32", floorf32); intrinsics.insert(~"llvm.floor.f64", floorf64); intrinsics.insert(~"llvm.ceil.f32", ceilf32); intrinsics.insert(~"llvm.ceil.f64", ceilf64); intrinsics.insert(~"llvm.trunc.f32", truncf32); intrinsics.insert(~"llvm.trunc.f64", truncf64); intrinsics.insert(~"llvm.ctpop.i8", ctpop8); intrinsics.insert(~"llvm.ctpop.i16", ctpop16); intrinsics.insert(~"llvm.ctpop.i32", ctpop32); intrinsics.insert(~"llvm.ctpop.i64", ctpop64); intrinsics.insert(~"llvm.ctlz.i8", ctlz8); intrinsics.insert(~"llvm.ctlz.i16", ctlz16); intrinsics.insert(~"llvm.ctlz.i32", ctlz32); intrinsics.insert(~"llvm.ctlz.i64", ctlz64); intrinsics.insert(~"llvm.cttz.i8", cttz8); intrinsics.insert(~"llvm.cttz.i16", cttz16); intrinsics.insert(~"llvm.cttz.i32", cttz32); intrinsics.insert(~"llvm.cttz.i64", cttz64); intrinsics.insert(~"llvm.bswap.i16", bswap16); intrinsics.insert(~"llvm.bswap.i32", bswap32); intrinsics.insert(~"llvm.bswap.i64", bswap64); return intrinsics; } pub fn declare_dbg_intrinsics(llmod: ModuleRef, intrinsics: &mut HashMap<~str, ValueRef>) { let declare = decl_cdecl_fn(llmod, ~"llvm.dbg.declare", T_fn(~[T_metadata(), T_metadata()], T_void())); let value = decl_cdecl_fn(llmod, ~"llvm.dbg.value", T_fn(~[T_metadata(), T_i64(), T_metadata()], T_void())); intrinsics.insert(~"llvm.dbg.declare", declare); intrinsics.insert(~"llvm.dbg.value", value); } pub fn trap(bcx: block) { let v: ~[ValueRef] = ~[]; match bcx.ccx().intrinsics.find(&~"llvm.trap") { Some(&x) => { Call(bcx, x, v); }, _ => bcx.sess().bug(~"unbound llvm.trap in trap") } } pub fn decl_gc_metadata(ccx: @CrateContext, llmod_id: &str) { if !ccx.sess.opts.gc || !*ccx.uses_gc { return; } let gc_metadata_name = ~"_gc_module_metadata_" + llmod_id; let gc_metadata = do str::as_c_str(gc_metadata_name) |buf| { unsafe { llvm::LLVMAddGlobal(ccx.llmod, T_i32(), buf) } }; unsafe { llvm::LLVMSetGlobalConstant(gc_metadata, True); lib::llvm::SetLinkage(gc_metadata, lib::llvm::ExternalLinkage); ccx.module_data.insert(~"_gc_module_metadata", gc_metadata); } } pub fn create_module_map(ccx: @CrateContext) -> ValueRef { let elttype = T_struct(~[ccx.int_type, ccx.int_type], false); let maptype = T_array(elttype, ccx.module_data.len() + 1); let map = str::as_c_str(~"_rust_mod_map", |buf| { unsafe { llvm::LLVMAddGlobal(ccx.llmod, maptype, buf) } }); lib::llvm::SetLinkage(map, lib::llvm::InternalLinkage); let mut elts: ~[ValueRef] = ~[]; for ccx.module_data.each |key, &val| { let elt = C_struct(~[p2i(ccx, C_cstr(ccx, @/*bad*/ copy *key)), p2i(ccx, val)]); elts.push(elt); } let term = C_struct(~[C_int(ccx, 0), C_int(ccx, 0)]); elts.push(term); unsafe { llvm::LLVMSetInitializer(map, C_array(elttype, elts)); } return map; } pub fn decl_crate_map(sess: session::Session, mapmeta: LinkMeta, llmod: ModuleRef) -> ValueRef { let targ_cfg = sess.targ_cfg; let int_type = T_int(targ_cfg); let mut n_subcrates = 1; let cstore = sess.cstore; while cstore::have_crate_data(cstore, n_subcrates) { n_subcrates += 1; } let mapname = if *sess.building_library { mapmeta.name.to_owned() + ~"_" + mapmeta.vers.to_owned() + ~"_" + mapmeta.extras_hash.to_owned() } else { ~"toplevel" }; let sym_name = ~"_rust_crate_map_" + mapname; let arrtype = T_array(int_type, n_subcrates as uint); let maptype = T_struct(~[T_i32(), T_ptr(T_i8()), int_type, arrtype], false); let map = str::as_c_str(sym_name, |buf| { unsafe { llvm::LLVMAddGlobal(llmod, maptype, buf) } }); lib::llvm::SetLinkage(map, lib::llvm::ExternalLinkage); return map; } pub fn fill_crate_map(ccx: @CrateContext, map: ValueRef) { let mut subcrates: ~[ValueRef] = ~[]; let mut i = 1; let cstore = ccx.sess.cstore; while cstore::have_crate_data(cstore, i) { let cdata = cstore::get_crate_data(cstore, i); let nm = ~"_rust_crate_map_" + *cdata.name + ~"_" + *cstore::get_crate_vers(cstore, i) + ~"_" + *cstore::get_crate_hash(cstore, i); let cr = str::as_c_str(nm, |buf| { unsafe { llvm::LLVMAddGlobal(ccx.llmod, ccx.int_type, buf) } }); subcrates.push(p2i(ccx, cr)); i += 1; } subcrates.push(C_int(ccx, 0)); let llannihilatefn; let annihilate_def_id = ccx.tcx.lang_items.annihilate_fn(); if annihilate_def_id.crate == ast::local_crate { llannihilatefn = get_item_val(ccx, annihilate_def_id.node); } else { let annihilate_fn_type = csearch::get_type(ccx.tcx, annihilate_def_id).ty; llannihilatefn = trans_external_path(ccx, annihilate_def_id, annihilate_fn_type); } unsafe { llvm::LLVMSetInitializer(map, C_struct( ~[C_i32(1), lib::llvm::llvm::LLVMConstPointerCast(llannihilatefn, T_ptr(T_i8())), p2i(ccx, create_module_map(ccx)), C_array(ccx.int_type, subcrates)])); } } pub fn crate_ctxt_to_encode_parms(cx: @CrateContext) -> encoder::EncodeParams { let encode_inlined_item: encoder::encode_inlined_item = |ecx, ebml_w, path, ii| astencode::encode_inlined_item(ecx, ebml_w, path, ii, cx.maps); encoder::EncodeParams { diag: cx.sess.diagnostic(), tcx: cx.tcx, reachable: cx.reachable, reexports2: cx.exp_map2, item_symbols: cx.item_symbols, discrim_symbols: cx.discrim_symbols, link_meta: /*bad*/copy cx.link_meta, cstore: cx.sess.cstore, encode_inlined_item: encode_inlined_item } } pub fn write_metadata(cx: @CrateContext, crate: &ast::crate) { if !*cx.sess.building_library { return; } let encode_parms = crate_ctxt_to_encode_parms(cx); let llmeta = C_bytes(encoder::encode_metadata(encode_parms, crate)); let llconst = C_struct(~[llmeta]); let mut llglobal = str::as_c_str(~"rust_metadata", |buf| { unsafe { llvm::LLVMAddGlobal(cx.llmod, val_ty(llconst), buf) } }); unsafe { llvm::LLVMSetInitializer(llglobal, llconst); str::as_c_str(cx.sess.targ_cfg.target_strs.meta_sect_name, |buf| { llvm::LLVMSetSection(llglobal, buf) }); lib::llvm::SetLinkage(llglobal, lib::llvm::InternalLinkage); let t_ptr_i8 = T_ptr(T_i8()); llglobal = llvm::LLVMConstBitCast(llglobal, t_ptr_i8); let llvm_used = str::as_c_str(~"llvm.used", |buf| { llvm::LLVMAddGlobal(cx.llmod, T_array(t_ptr_i8, 1u), buf) }); lib::llvm::SetLinkage(llvm_used, lib::llvm::AppendingLinkage); llvm::LLVMSetInitializer(llvm_used, C_array(t_ptr_i8, ~[llglobal])); } } // Writes the current ABI version into the crate. pub fn write_abi_version(ccx: @CrateContext) { mk_global(ccx, ~"rust_abi_version", C_uint(ccx, abi::abi_version), false); } pub fn trans_crate(sess: session::Session, crate: @ast::crate, tcx: ty::ctxt, output: &Path, emap2: resolve::ExportMap2, maps: astencode::Maps) -> (ModuleRef, LinkMeta) { let symbol_hasher = @hash::default_state(); let link_meta = link::build_link_meta(sess, crate, output, symbol_hasher); let reachable = reachable::find_reachable( &crate.node.module, emap2, tcx, maps.method_map ); // Append ".rc" to crate name as LLVM module identifier. // // LLVM code generator emits a ".file filename" directive // for ELF backends. Value of the "filename" is set as the // LLVM module identifier. Due to a LLVM MC bug[1], LLVM // crashes if the module identifer is same as other symbols // such as a function name in the module. // 1. http://llvm.org/bugs/show_bug.cgi?id=11479 let llmod_id = link_meta.name.to_owned() + ~".rc"; unsafe { let llmod = str::as_c_str(llmod_id, |buf| { llvm::LLVMModuleCreateWithNameInContext (buf, llvm::LLVMGetGlobalContext()) }); let data_layout: &str = sess.targ_cfg.target_strs.data_layout; let targ_triple: &str = sess.targ_cfg.target_strs.target_triple; let _: () = str::as_c_str(data_layout, |buf| llvm::LLVMSetDataLayout(llmod, buf)); let _: () = str::as_c_str(targ_triple, |buf| llvm::LLVMSetTarget(llmod, buf)); let targ_cfg = sess.targ_cfg; let td = mk_target_data(sess.targ_cfg.target_strs.data_layout); let tn = mk_type_names(); let mut intrinsics = declare_intrinsics(llmod); if sess.opts.extra_debuginfo { declare_dbg_intrinsics(llmod, &mut intrinsics); } let int_type = T_int(targ_cfg); let float_type = T_float(targ_cfg); let task_type = T_task(targ_cfg); let taskptr_type = T_ptr(task_type); lib::llvm::associate_type(tn, @"taskptr", taskptr_type); let tydesc_type = T_tydesc(targ_cfg); lib::llvm::associate_type(tn, @"tydesc", tydesc_type); let crate_map = decl_crate_map(sess, link_meta, llmod); let dbg_cx = if sess.opts.debuginfo { Some(debuginfo::mk_ctxt(copy llmod_id, sess.parse_sess.interner)) } else { None }; let ccx = @CrateContext { sess: sess, llmod: llmod, td: td, tn: tn, externs: @mut HashMap::new(), intrinsics: intrinsics, item_vals: @mut HashMap::new(), exp_map2: emap2, reachable: reachable, item_symbols: @mut HashMap::new(), link_meta: link_meta, enum_sizes: @mut HashMap::new(), discrims: @mut HashMap::new(), discrim_symbols: @mut HashMap::new(), tydescs: @mut HashMap::new(), finished_tydescs: @mut false, external: @mut HashMap::new(), monomorphized: @mut HashMap::new(), monomorphizing: @mut HashMap::new(), type_use_cache: @mut HashMap::new(), vtables: @mut HashMap::new(), const_cstr_cache: @mut HashMap::new(), const_globals: @mut HashMap::new(), const_values: @mut HashMap::new(), extern_const_values: @mut HashMap::new(), module_data: @mut HashMap::new(), lltypes: @mut HashMap::new(), llsizingtypes: @mut HashMap::new(), adt_reprs: @mut HashMap::new(), names: new_namegen(sess.parse_sess.interner), next_addrspace: new_addrspace_gen(), symbol_hasher: symbol_hasher, type_hashcodes: @mut HashMap::new(), type_short_names: @mut HashMap::new(), all_llvm_symbols: @mut HashSet::new(), tcx: tcx, maps: maps, stats: @mut Stats { n_static_tydescs: 0u, n_glues_created: 0u, n_null_glues: 0u, n_real_glues: 0u, n_fns: 0u, n_monos: 0u, n_inlines: 0u, n_closures: 0u, llvm_insn_ctxt: @mut ~[], llvm_insns: @mut HashMap::new(), fn_times: @mut ~[] }, upcalls: upcall::declare_upcalls(targ_cfg, llmod), tydesc_type: tydesc_type, int_type: int_type, float_type: float_type, task_type: task_type, opaque_vec_type: T_opaque_vec(targ_cfg), builder: BuilderRef_res(unsafe { llvm::LLVMCreateBuilder() }), shape_cx: mk_ctxt(llmod), crate_map: crate_map, uses_gc: @mut false, dbg_cx: dbg_cx, do_not_commit_warning_issued: @mut false }; { let _icx = ccx.insn_ctxt("data"); trans_constants(ccx, crate); } { let _icx = ccx.insn_ctxt("text"); trans_mod(ccx, &crate.node.module); } decl_gc_metadata(ccx, llmod_id); fill_crate_map(ccx, crate_map); glue::emit_tydescs(ccx); write_abi_version(ccx); // Translate the metadata. write_metadata(ccx, crate); if ccx.sess.trans_stats() { io::println(~"--- trans stats ---"); io::println(fmt!("n_static_tydescs: %u", ccx.stats.n_static_tydescs)); io::println(fmt!("n_glues_created: %u", ccx.stats.n_glues_created)); io::println(fmt!("n_null_glues: %u", ccx.stats.n_null_glues)); io::println(fmt!("n_real_glues: %u", ccx.stats.n_real_glues)); io::println(fmt!("n_fns: %u", ccx.stats.n_fns)); io::println(fmt!("n_monos: %u", ccx.stats.n_monos)); io::println(fmt!("n_inlines: %u", ccx.stats.n_inlines)); io::println(fmt!("n_closures: %u", ccx.stats.n_closures)); } if ccx.sess.count_llvm_insns() { for ccx.stats.llvm_insns.each |&k, &v| { io::println(fmt!("%-7u %s", v, k)); } } return (llmod, link_meta); } }