// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Context-passing AST walker. Each overridden visit method has full control //! over what happens with its node, it can do its own traversal of the node's //! children (potentially passing in different contexts to each), call //! `visit::visit_*` to apply the default traversal algorithm (again, it can //! override the context), or prevent deeper traversal by doing nothing. //! //! Note: it is an important invariant that the default visitor walks the body //! of a function in "execution order" (more concretely, reverse post-order //! with respect to the CFG implied by the AST), meaning that if AST node A may //! execute before AST node B, then A is visited first. The borrow checker in //! particular relies on this property. //! //! Note: walking an AST before macro expansion is probably a bad idea. For //! instance, a walker looking for item names in a module will miss all of //! those that are created by the expansion of a macro. use abi::Abi; use ast::*; use ast; use ast_util; use codemap::Span; use parse; use owned_slice::OwnedSlice; use std::gc::Gc; pub enum FnKind<'a> { /// fn foo() or extern "Abi" fn foo() FkItemFn(Ident, &'a Generics, FnStyle, Abi), /// fn foo(&self) FkMethod(Ident, &'a Generics, &'a Method), /// |x, y| ... /// proc(x, y) ... FkFnBlock, } pub fn name_of_fn(fk: &FnKind) -> Ident { match *fk { FkItemFn(name, _, _, _) | FkMethod(name, _, _) => name, FkFnBlock(..) => parse::token::special_idents::invalid } } pub fn generics_of_fn(fk: &FnKind) -> Generics { match *fk { FkItemFn(_, generics, _, _) | FkMethod(_, generics, _) => { (*generics).clone() } FkFnBlock(..) => ast_util::empty_generics(), } } /// Each method of the Visitor trait is a hook to be potentially /// overridden. Each method's default implementation recursively visits /// the substructure of the input via the corresponding `walk` method; /// e.g. the `visit_mod` method by default calls `visit::walk_mod`. /// /// If you want to ensure that your code handles every variant /// explicitly, you need to override each method. (And you also need /// to monitor future changes to `Visitor` in case a new method with a /// new default implementation gets introduced.) pub trait Visitor { fn visit_ident(&mut self, _sp: Span, _ident: Ident, _e: E) { /*! Visit the idents */ } fn visit_mod(&mut self, m: &Mod, _s: Span, _n: NodeId, e: E) { walk_mod(self, m, e) } fn visit_view_item(&mut self, i: &ViewItem, e: E) { walk_view_item(self, i, e) } fn visit_foreign_item(&mut self, i: &ForeignItem, e: E) { walk_foreign_item(self, i, e) } fn visit_item(&mut self, i: &Item, e: E) { walk_item(self, i, e) } fn visit_local(&mut self, l: &Local, e: E) { walk_local(self, l, e) } fn visit_block(&mut self, b: &Block, e: E) { walk_block(self, b, e) } fn visit_stmt(&mut self, s: &Stmt, e: E) { walk_stmt(self, s, e) } fn visit_arm(&mut self, a: &Arm, e: E) { walk_arm(self, a, e) } fn visit_pat(&mut self, p: &Pat, e: E) { walk_pat(self, p, e) } fn visit_decl(&mut self, d: &Decl, e: E) { walk_decl(self, d, e) } fn visit_expr(&mut self, ex: &Expr, e: E) { walk_expr(self, ex, e) } fn visit_expr_post(&mut self, _ex: &Expr, _e: E) { } fn visit_ty(&mut self, t: &Ty, e: E) { walk_ty(self, t, e) } fn visit_generics(&mut self, g: &Generics, e: E) { walk_generics(self, g, e) } fn visit_fn(&mut self, fk: &FnKind, fd: &FnDecl, b: &Block, s: Span, _: NodeId, e: E) { walk_fn(self, fk, fd, b, s, e) } fn visit_ty_method(&mut self, t: &TypeMethod, e: E) { walk_ty_method(self, t, e) } fn visit_trait_item(&mut self, t: &TraitItem, e: E) { walk_trait_item(self, t, e) } fn visit_struct_def(&mut self, s: &StructDef, _: Ident, _: &Generics, _: NodeId, e: E) { walk_struct_def(self, s, e) } fn visit_struct_field(&mut self, s: &StructField, e: E) { walk_struct_field(self, s, e) } fn visit_variant(&mut self, v: &Variant, g: &Generics, e: E) { walk_variant(self, v, g, e) } fn visit_opt_lifetime_ref(&mut self, _span: Span, opt_lifetime: &Option, env: E) { /*! * Visits an optional reference to a lifetime. The `span` is * the span of some surrounding reference should opt_lifetime * be None. */ match *opt_lifetime { Some(ref l) => self.visit_lifetime_ref(l, env), None => () } } fn visit_lifetime_ref(&mut self, _lifetime: &Lifetime, _e: E) { /*! Visits a reference to a lifetime */ } fn visit_lifetime_decl(&mut self, _lifetime: &LifetimeDef, _e: E) { /*! Visits a declaration of a lifetime */ } fn visit_explicit_self(&mut self, es: &ExplicitSelf, e: E) { walk_explicit_self(self, es, e) } fn visit_mac(&mut self, _macro: &Mac, _e: E) { fail!("visit_mac disabled by default"); // NB: see note about macros above. // if you really want a visitor that // works on macros, use this // definition in your trait impl: // visit::walk_mac(self, _macro, _e) } fn visit_path(&mut self, path: &Path, _id: ast::NodeId, e: E) { walk_path(self, path, e) } fn visit_attribute(&mut self, _attr: &Attribute, _e: E) {} } pub fn walk_inlined_item>(visitor: &mut V, item: &ast::InlinedItem, env: E) { match *item { IIItem(i) => visitor.visit_item(&*i, env), IIForeign(i) => visitor.visit_foreign_item(&*i, env), IITraitItem(_, iti) => { match iti { ProvidedInlinedTraitItem(m) => { walk_method_helper(visitor, &*m, env) } RequiredInlinedTraitItem(m) => { walk_method_helper(visitor, &*m, env) } } } } } pub fn walk_crate>(visitor: &mut V, krate: &Crate, env: E) { visitor.visit_mod(&krate.module, krate.span, CRATE_NODE_ID, env.clone()); for attr in krate.attrs.iter() { visitor.visit_attribute(attr, env.clone()); } } pub fn walk_mod>(visitor: &mut V, module: &Mod, env: E) { for view_item in module.view_items.iter() { visitor.visit_view_item(view_item, env.clone()) } for item in module.items.iter() { visitor.visit_item(&**item, env.clone()) } } pub fn walk_view_item>(visitor: &mut V, vi: &ViewItem, env: E) { match vi.node { ViewItemExternCrate(name, _, _) => { visitor.visit_ident(vi.span, name, env.clone()) } ViewItemUse(ref vp) => { match vp.node { ViewPathSimple(ident, ref path, id) => { visitor.visit_ident(vp.span, ident, env.clone()); visitor.visit_path(path, id, env.clone()); } ViewPathGlob(ref path, id) => { visitor.visit_path(path, id, env.clone()); } ViewPathList(ref path, ref list, _) => { for id in list.iter() { match id.node { PathListIdent { name, .. } => { visitor.visit_ident(id.span, name, env.clone()); } PathListMod { .. } => () } } walk_path(visitor, path, env.clone()); } } } } for attr in vi.attrs.iter() { visitor.visit_attribute(attr, env.clone()); } } pub fn walk_local>(visitor: &mut V, local: &Local, env: E) { visitor.visit_pat(&*local.pat, env.clone()); visitor.visit_ty(&*local.ty, env.clone()); match local.init { None => {} Some(initializer) => visitor.visit_expr(&*initializer, env), } } pub fn walk_explicit_self>(visitor: &mut V, explicit_self: &ExplicitSelf, env: E) { match explicit_self.node { SelfStatic | SelfValue(_) => {}, SelfRegion(ref lifetime, _, _) => { visitor.visit_opt_lifetime_ref(explicit_self.span, lifetime, env) } SelfExplicit(ref typ, _) => visitor.visit_ty(&**typ, env.clone()), } } /// Like with walk_method_helper this doesn't correspond to a method /// in Visitor, and so it gets a _helper suffix. pub fn walk_trait_ref_helper>(visitor: &mut V, trait_ref: &TraitRef, env: E) { visitor.visit_path(&trait_ref.path, trait_ref.ref_id, env) } pub fn walk_item>(visitor: &mut V, item: &Item, env: E) { visitor.visit_ident(item.span, item.ident, env.clone()); match item.node { ItemStatic(ref typ, _, ref expr) => { visitor.visit_ty(&**typ, env.clone()); visitor.visit_expr(&**expr, env.clone()); } ItemFn(declaration, fn_style, abi, ref generics, body) => { visitor.visit_fn(&FkItemFn(item.ident, generics, fn_style, abi), &*declaration, &*body, item.span, item.id, env.clone()) } ItemMod(ref module) => { visitor.visit_mod(module, item.span, item.id, env.clone()) } ItemForeignMod(ref foreign_module) => { for view_item in foreign_module.view_items.iter() { visitor.visit_view_item(view_item, env.clone()) } for foreign_item in foreign_module.items.iter() { visitor.visit_foreign_item(&**foreign_item, env.clone()) } } ItemTy(ref typ, ref type_parameters) => { visitor.visit_ty(&**typ, env.clone()); visitor.visit_generics(type_parameters, env.clone()) } ItemEnum(ref enum_definition, ref type_parameters) => { visitor.visit_generics(type_parameters, env.clone()); walk_enum_def(visitor, enum_definition, type_parameters, env.clone()) } ItemImpl(ref type_parameters, ref trait_reference, typ, ref impl_items) => { visitor.visit_generics(type_parameters, env.clone()); match *trait_reference { Some(ref trait_reference) => walk_trait_ref_helper(visitor, trait_reference, env.clone()), None => () } visitor.visit_ty(&*typ, env.clone()); for impl_item in impl_items.iter() { match *impl_item { MethodImplItem(method) => { walk_method_helper(visitor, &*method, env.clone()) } } } } ItemStruct(ref struct_definition, ref generics) => { visitor.visit_generics(generics, env.clone()); visitor.visit_struct_def(&**struct_definition, item.ident, generics, item.id, env.clone()) } ItemTrait(ref generics, _, ref trait_paths, ref methods) => { visitor.visit_generics(generics, env.clone()); for trait_path in trait_paths.iter() { visitor.visit_path(&trait_path.path, trait_path.ref_id, env.clone()) } for method in methods.iter() { visitor.visit_trait_item(method, env.clone()) } } ItemMac(ref macro) => visitor.visit_mac(macro, env.clone()), } for attr in item.attrs.iter() { visitor.visit_attribute(attr, env.clone()); } } pub fn walk_enum_def>(visitor: &mut V, enum_definition: &EnumDef, generics: &Generics, env: E) { for &variant in enum_definition.variants.iter() { visitor.visit_variant(&*variant, generics, env.clone()); } } pub fn walk_variant>(visitor: &mut V, variant: &Variant, generics: &Generics, env: E) { visitor.visit_ident(variant.span, variant.node.name, env.clone()); match variant.node.kind { TupleVariantKind(ref variant_arguments) => { for variant_argument in variant_arguments.iter() { visitor.visit_ty(&*variant_argument.ty, env.clone()) } } StructVariantKind(ref struct_definition) => { visitor.visit_struct_def(&**struct_definition, variant.node.name, generics, variant.node.id, env.clone()) } } match variant.node.disr_expr { Some(ref expr) => visitor.visit_expr(&**expr, env.clone()), None => () } for attr in variant.node.attrs.iter() { visitor.visit_attribute(attr, env.clone()); } } pub fn skip_ty>(_: &mut V, _: &Ty, _: E) { // Empty! } pub fn walk_ty>(visitor: &mut V, typ: &Ty, env: E) { match typ.node { TyUniq(ty) | TyVec(ty) | TyBox(ty) | TyParen(ty) => { visitor.visit_ty(&*ty, env) } TyPtr(ref mutable_type) => { visitor.visit_ty(&*mutable_type.ty, env) } TyRptr(ref lifetime, ref mutable_type) => { visitor.visit_opt_lifetime_ref(typ.span, lifetime, env.clone()); visitor.visit_ty(&*mutable_type.ty, env) } TyTup(ref tuple_element_types) => { for &tuple_element_type in tuple_element_types.iter() { visitor.visit_ty(&*tuple_element_type, env.clone()) } } TyClosure(ref function_declaration, ref region) => { for argument in function_declaration.decl.inputs.iter() { visitor.visit_ty(&*argument.ty, env.clone()) } visitor.visit_ty(&*function_declaration.decl.output, env.clone()); for bounds in function_declaration.bounds.iter() { walk_ty_param_bounds(visitor, bounds, env.clone()) } visitor.visit_opt_lifetime_ref( typ.span, region, env.clone()); walk_lifetime_decls(visitor, &function_declaration.lifetimes, env.clone()); } TyProc(ref function_declaration) => { for argument in function_declaration.decl.inputs.iter() { visitor.visit_ty(&*argument.ty, env.clone()) } visitor.visit_ty(&*function_declaration.decl.output, env.clone()); for bounds in function_declaration.bounds.iter() { walk_ty_param_bounds(visitor, bounds, env.clone()) } walk_lifetime_decls(visitor, &function_declaration.lifetimes, env.clone()); } TyBareFn(ref function_declaration) => { for argument in function_declaration.decl.inputs.iter() { visitor.visit_ty(&*argument.ty, env.clone()) } visitor.visit_ty(&*function_declaration.decl.output, env.clone()); walk_lifetime_decls(visitor, &function_declaration.lifetimes, env.clone()); } TyUnboxedFn(ref function_declaration) => { for argument in function_declaration.decl.inputs.iter() { visitor.visit_ty(&*argument.ty, env.clone()) } visitor.visit_ty(&*function_declaration.decl.output, env.clone()); } TyPath(ref path, ref bounds, id) => { visitor.visit_path(path, id, env.clone()); for bounds in bounds.iter() { walk_ty_param_bounds(visitor, bounds, env.clone()) } } TyFixedLengthVec(ref ty, ref expression) => { visitor.visit_ty(&**ty, env.clone()); visitor.visit_expr(&**expression, env) } TyTypeof(ref expression) => { visitor.visit_expr(&**expression, env) } TyNil | TyBot | TyInfer => {} } } fn walk_lifetime_decls>(visitor: &mut V, lifetimes: &Vec, env: E) { for l in lifetimes.iter() { visitor.visit_lifetime_decl(l, env.clone()); } } pub fn walk_path>(visitor: &mut V, path: &Path, env: E) { for segment in path.segments.iter() { visitor.visit_ident(path.span, segment.identifier, env.clone()); for typ in segment.types.iter() { visitor.visit_ty(&**typ, env.clone()); } for lifetime in segment.lifetimes.iter() { visitor.visit_lifetime_ref(lifetime, env.clone()); } } } pub fn walk_pat>(visitor: &mut V, pattern: &Pat, env: E) { match pattern.node { PatEnum(ref path, ref children) => { visitor.visit_path(path, pattern.id, env.clone()); for children in children.iter() { for child in children.iter() { visitor.visit_pat(&**child, env.clone()) } } } PatStruct(ref path, ref fields, _) => { visitor.visit_path(path, pattern.id, env.clone()); for field in fields.iter() { visitor.visit_pat(&*field.pat, env.clone()) } } PatTup(ref tuple_elements) => { for tuple_element in tuple_elements.iter() { visitor.visit_pat(&**tuple_element, env.clone()) } } PatBox(ref subpattern) | PatRegion(ref subpattern) => { visitor.visit_pat(&**subpattern, env) } PatIdent(_, ref pth1, ref optional_subpattern) => { visitor.visit_ident(pth1.span, pth1.node, env.clone()); match *optional_subpattern { None => {} Some(ref subpattern) => visitor.visit_pat(&**subpattern, env), } } PatLit(ref expression) => visitor.visit_expr(&**expression, env), PatRange(ref lower_bound, ref upper_bound) => { visitor.visit_expr(&**lower_bound, env.clone()); visitor.visit_expr(&**upper_bound, env) } PatWild(_) => (), PatVec(ref prepattern, ref slice_pattern, ref postpatterns) => { for prepattern in prepattern.iter() { visitor.visit_pat(&**prepattern, env.clone()) } for slice_pattern in slice_pattern.iter() { visitor.visit_pat(&**slice_pattern, env.clone()) } for postpattern in postpatterns.iter() { visitor.visit_pat(&**postpattern, env.clone()) } } PatMac(ref macro) => visitor.visit_mac(macro, env), } } pub fn walk_foreign_item>(visitor: &mut V, foreign_item: &ForeignItem, env: E) { visitor.visit_ident(foreign_item.span, foreign_item.ident, env.clone()); match foreign_item.node { ForeignItemFn(ref function_declaration, ref generics) => { walk_fn_decl(visitor, &**function_declaration, env.clone()); visitor.visit_generics(generics, env.clone()) } ForeignItemStatic(ref typ, _) => visitor.visit_ty(&**typ, env.clone()), } for attr in foreign_item.attrs.iter() { visitor.visit_attribute(attr, env.clone()); } } pub fn walk_ty_param_bounds>(visitor: &mut V, bounds: &OwnedSlice, env: E) { for bound in bounds.iter() { match *bound { TraitTyParamBound(ref typ) => { walk_trait_ref_helper(visitor, typ, env.clone()) } StaticRegionTyParamBound => {} UnboxedFnTyParamBound(ref function_declaration) => { for argument in function_declaration.decl.inputs.iter() { visitor.visit_ty(&*argument.ty, env.clone()) } visitor.visit_ty(&*function_declaration.decl.output, env.clone()); } OtherRegionTyParamBound(..) => {} } } } pub fn walk_generics>(visitor: &mut V, generics: &Generics, env: E) { for type_parameter in generics.ty_params.iter() { walk_ty_param_bounds(visitor, &type_parameter.bounds, env.clone()); match type_parameter.default { Some(ref ty) => visitor.visit_ty(&**ty, env.clone()), None => {} } } walk_lifetime_decls(visitor, &generics.lifetimes, env.clone()); for predicate in generics.where_clause.predicates.iter() { visitor.visit_ident(predicate.span, predicate.ident, env.clone()); walk_ty_param_bounds(visitor, &predicate.bounds, env.clone()); } } pub fn walk_fn_decl>(visitor: &mut V, function_declaration: &FnDecl, env: E) { for argument in function_declaration.inputs.iter() { visitor.visit_pat(&*argument.pat, env.clone()); visitor.visit_ty(&*argument.ty, env.clone()) } visitor.visit_ty(&*function_declaration.output, env) } // Note: there is no visit_method() method in the visitor, instead override // visit_fn() and check for FkMethod(). I named this visit_method_helper() // because it is not a default impl of any method, though I doubt that really // clarifies anything. - Niko pub fn walk_method_helper>(visitor: &mut V, method: &Method, env: E) { match method.node { MethDecl(ident, ref generics, _, _, _, decl, body, _) => { visitor.visit_ident(method.span, ident, env.clone()); visitor.visit_fn(&FkMethod(ident, generics, method), &*decl, &*body, method.span, method.id, env.clone()); for attr in method.attrs.iter() { visitor.visit_attribute(attr, env.clone()); } }, MethMac(ref mac) => visitor.visit_mac(mac, env.clone()) } } pub fn walk_fn>(visitor: &mut V, function_kind: &FnKind, function_declaration: &FnDecl, function_body: &Block, _span: Span, env: E) { walk_fn_decl(visitor, function_declaration, env.clone()); match *function_kind { FkItemFn(_, generics, _, _) => { visitor.visit_generics(generics, env.clone()); } FkMethod(_, generics, method) => { visitor.visit_generics(generics, env.clone()); match method.node { MethDecl(_, _, _, ref explicit_self, _, _, _, _) => visitor.visit_explicit_self(explicit_self, env.clone()), MethMac(ref mac) => visitor.visit_mac(mac, env.clone()) } } FkFnBlock(..) => {} } visitor.visit_block(function_body, env) } pub fn walk_ty_method>(visitor: &mut V, method_type: &TypeMethod, env: E) { visitor.visit_ident(method_type.span, method_type.ident, env.clone()); visitor.visit_explicit_self(&method_type.explicit_self, env.clone()); for argument_type in method_type.decl.inputs.iter() { visitor.visit_ty(&*argument_type.ty, env.clone()) } visitor.visit_generics(&method_type.generics, env.clone()); visitor.visit_ty(&*method_type.decl.output, env.clone()); for attr in method_type.attrs.iter() { visitor.visit_attribute(attr, env.clone()); } } pub fn walk_trait_item>(visitor: &mut V, trait_method: &TraitItem, env: E) { match *trait_method { RequiredMethod(ref method_type) => { visitor.visit_ty_method(method_type, env) } ProvidedMethod(ref method) => walk_method_helper(visitor, &**method, env), } } pub fn walk_struct_def>(visitor: &mut V, struct_definition: &StructDef, env: E) { match struct_definition.super_struct { Some(ref t) => visitor.visit_ty(&**t, env.clone()), None => {}, } for field in struct_definition.fields.iter() { visitor.visit_struct_field(field, env.clone()) } } pub fn walk_struct_field>(visitor: &mut V, struct_field: &StructField, env: E) { match struct_field.node.kind { NamedField(name, _) => { visitor.visit_ident(struct_field.span, name, env.clone()) } _ => {} } visitor.visit_ty(&*struct_field.node.ty, env.clone()); for attr in struct_field.node.attrs.iter() { visitor.visit_attribute(attr, env.clone()); } } pub fn walk_block>(visitor: &mut V, block: &Block, env: E) { for view_item in block.view_items.iter() { visitor.visit_view_item(view_item, env.clone()) } for statement in block.stmts.iter() { visitor.visit_stmt(&**statement, env.clone()) } walk_expr_opt(visitor, block.expr, env) } pub fn walk_stmt>(visitor: &mut V, statement: &Stmt, env: E) { match statement.node { StmtDecl(ref declaration, _) => visitor.visit_decl(&**declaration, env), StmtExpr(ref expression, _) | StmtSemi(ref expression, _) => { visitor.visit_expr(&**expression, env) } StmtMac(ref macro, _) => visitor.visit_mac(macro, env), } } pub fn walk_decl>(visitor: &mut V, declaration: &Decl, env: E) { match declaration.node { DeclLocal(ref local) => visitor.visit_local(&**local, env), DeclItem(ref item) => visitor.visit_item(&**item, env), } } pub fn walk_expr_opt>(visitor: &mut V, optional_expression: Option>, env: E) { match optional_expression { None => {} Some(ref expression) => visitor.visit_expr(&**expression, env), } } pub fn walk_exprs>(visitor: &mut V, expressions: &[Gc], env: E) { for expression in expressions.iter() { visitor.visit_expr(&**expression, env.clone()) } } pub fn walk_mac>(_: &mut V, _: &Mac, _: E) { // Empty! } pub fn walk_expr>(visitor: &mut V, expression: &Expr, env: E) { match expression.node { ExprVstore(ref subexpression, _) => { visitor.visit_expr(&**subexpression, env.clone()) } ExprBox(ref place, ref subexpression) => { visitor.visit_expr(&**place, env.clone()); visitor.visit_expr(&**subexpression, env.clone()) } ExprVec(ref subexpressions) => { walk_exprs(visitor, subexpressions.as_slice(), env.clone()) } ExprRepeat(ref element, ref count) => { visitor.visit_expr(&**element, env.clone()); visitor.visit_expr(&**count, env.clone()) } ExprStruct(ref path, ref fields, optional_base) => { visitor.visit_path(path, expression.id, env.clone()); for field in fields.iter() { visitor.visit_expr(&*field.expr, env.clone()) } walk_expr_opt(visitor, optional_base, env.clone()) } ExprTup(ref subexpressions) => { for subexpression in subexpressions.iter() { visitor.visit_expr(&**subexpression, env.clone()) } } ExprCall(ref callee_expression, ref arguments) => { for argument in arguments.iter() { visitor.visit_expr(&**argument, env.clone()) } visitor.visit_expr(&**callee_expression, env.clone()) } ExprMethodCall(_, ref types, ref arguments) => { walk_exprs(visitor, arguments.as_slice(), env.clone()); for typ in types.iter() { visitor.visit_ty(&**typ, env.clone()) } } ExprBinary(_, ref left_expression, ref right_expression) => { visitor.visit_expr(&**left_expression, env.clone()); visitor.visit_expr(&**right_expression, env.clone()) } ExprAddrOf(_, ref subexpression) | ExprUnary(_, ref subexpression) => { visitor.visit_expr(&**subexpression, env.clone()) } ExprLit(_) => {} ExprCast(ref subexpression, ref typ) => { visitor.visit_expr(&**subexpression, env.clone()); visitor.visit_ty(&**typ, env.clone()) } ExprIf(ref head_expression, ref if_block, optional_else) => { visitor.visit_expr(&**head_expression, env.clone()); visitor.visit_block(&**if_block, env.clone()); walk_expr_opt(visitor, optional_else, env.clone()) } ExprWhile(ref subexpression, ref block) => { visitor.visit_expr(&**subexpression, env.clone()); visitor.visit_block(&**block, env.clone()) } ExprForLoop(ref pattern, ref subexpression, ref block, _) => { visitor.visit_pat(&**pattern, env.clone()); visitor.visit_expr(&**subexpression, env.clone()); visitor.visit_block(&**block, env.clone()) } ExprLoop(ref block, _) => visitor.visit_block(&**block, env.clone()), ExprMatch(ref subexpression, ref arms) => { visitor.visit_expr(&**subexpression, env.clone()); for arm in arms.iter() { visitor.visit_arm(arm, env.clone()) } } ExprFnBlock(_, ref function_declaration, ref body) => { visitor.visit_fn(&FkFnBlock, &**function_declaration, &**body, expression.span, expression.id, env.clone()) } ExprUnboxedFn(_, _, ref function_declaration, ref body) => { visitor.visit_fn(&FkFnBlock, &**function_declaration, &**body, expression.span, expression.id, env.clone()) } ExprProc(ref function_declaration, ref body) => { visitor.visit_fn(&FkFnBlock, &**function_declaration, &**body, expression.span, expression.id, env.clone()) } ExprBlock(ref block) => visitor.visit_block(&**block, env.clone()), ExprAssign(ref left_hand_expression, ref right_hand_expression) => { visitor.visit_expr(&**right_hand_expression, env.clone()); visitor.visit_expr(&**left_hand_expression, env.clone()) } ExprAssignOp(_, ref left_expression, ref right_expression) => { visitor.visit_expr(&**right_expression, env.clone()); visitor.visit_expr(&**left_expression, env.clone()) } ExprField(ref subexpression, _, ref types) => { visitor.visit_expr(&**subexpression, env.clone()); for typ in types.iter() { visitor.visit_ty(&**typ, env.clone()) } } ExprIndex(ref main_expression, ref index_expression) => { visitor.visit_expr(&**main_expression, env.clone()); visitor.visit_expr(&**index_expression, env.clone()) } ExprPath(ref path) => { visitor.visit_path(path, expression.id, env.clone()) } ExprBreak(_) | ExprAgain(_) => {} ExprRet(optional_expression) => { walk_expr_opt(visitor, optional_expression, env.clone()) } ExprMac(ref macro) => visitor.visit_mac(macro, env.clone()), ExprParen(ref subexpression) => { visitor.visit_expr(&**subexpression, env.clone()) } ExprInlineAsm(ref assembler) => { for &(_, ref input) in assembler.inputs.iter() { visitor.visit_expr(&**input, env.clone()) } for &(_, ref output) in assembler.outputs.iter() { visitor.visit_expr(&**output, env.clone()) } } } visitor.visit_expr_post(expression, env.clone()) } pub fn walk_arm>(visitor: &mut V, arm: &Arm, env: E) { for pattern in arm.pats.iter() { visitor.visit_pat(&**pattern, env.clone()) } walk_expr_opt(visitor, arm.guard, env.clone()); visitor.visit_expr(&*arm.body, env.clone()); for attr in arm.attrs.iter() { visitor.visit_attribute(attr, env.clone()); } }