import vec::len; import vec::slice; export merge_sort; export quick_sort; export quick_sort3; type lteq = block(&T, &T) -> bool ; fn merge_sort<@T>(le: <eq, v: &[T]) -> [T] { fn merge<@T>(le: <eq, a: &[T], b: &[T]) -> [T] { let rs: [T] = ~[]; let a_len: uint = len[T](a); let a_ix: uint = 0u; let b_len: uint = len[T](b); let b_ix: uint = 0u; while a_ix < a_len && b_ix < b_len { if le(a.(a_ix), b.(b_ix)) { rs += ~[a.(a_ix)]; a_ix += 1u; } else { rs += ~[b.(b_ix)]; b_ix += 1u; } } rs += slice[T](a, a_ix, a_len); rs += slice[T](b, b_ix, b_len); ret rs; } let v_len: uint = len[T](v); if v_len <= 1u { ret v; } let mid: uint = v_len / 2u; let a: [T] = slice[T](v, 0u, mid); let b: [T] = slice[T](v, mid, v_len); ret merge[T](le, merge_sort[T](le, a), merge_sort[T](le, b)); } fn swap<@T>(arr: &[mutable T], x: uint, y: uint) { let a = arr.(x); arr.(x) = arr.(y); arr.(y) = a; } fn part<@T>(compare_func: <eq, arr: &[mutable T], left: uint, right: uint, pivot: uint) -> uint { let pivot_value = arr.(pivot); swap[T](arr, pivot, right); let storage_index: uint = left; let i: uint = left; while i < right { if compare_func({ arr.(i) }, pivot_value) { swap[T](arr, i, storage_index); storage_index += 1u; } i += 1u; } swap[T](arr, storage_index, right); ret storage_index; } fn qsort<@T>(compare_func: <eq, arr: &[mutable T], left: uint, right: uint) { if right > left { let pivot = (left + right) / 2u; let new_pivot = part[T](compare_func, arr, left, right, pivot); if new_pivot != 0u { // Need to do this check before recursing due to overflow qsort[T](compare_func, arr, left, new_pivot - 1u); } qsort[T](compare_func, arr, new_pivot + 1u, right); } } fn quick_sort<@T>(compare_func: <eq, arr: &[mutable T]) { if len[T](arr) == 0u { ret; } qsort[T](compare_func, arr, 0u, len[T](arr) - 1u); } // Based on algorithm presented by Sedgewick and Bentley here: // http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf // According to these slides this is the algorithm of choice for // 'randomly ordered keys, abstract compare' & 'small number of key values' fn qsort3<@T>(compare_func_lt: <eq, compare_func_eq: <eq, arr: &[mutable T], left: int, right: int) { if right <= left { ret; } let v: T = arr.(right); let i: int = left - 1; let j: int = right; let p: int = i; let q: int = j; while true { i += 1; while compare_func_lt({ arr.(i) }, v) { i += 1; } j -= 1; while compare_func_lt(v, { arr.(j) }) { if j == left { break; } j -= 1; } if i >= j { break; } swap[T](arr, i as uint, j as uint); if compare_func_eq({ arr.(i) }, v) { p += 1; swap[T](arr, p as uint, i as uint); } if compare_func_eq(v, { arr.(j) }) { q -= 1; swap[T](arr, j as uint, q as uint); } } swap[T](arr, i as uint, right as uint); j = i - 1; i += 1; let k: int = left; while k < p { swap[T](arr, k as uint, j as uint); k += 1; j -= 1; if k == len[T](arr) as int { break; } } k = right - 1; while k > q { swap[T](arr, i as uint, k as uint); k -= 1; i += 1; if k == 0 { break; } } qsort3[T](compare_func_lt, compare_func_eq, arr, left, j); qsort3[T](compare_func_lt, compare_func_eq, arr, i, right); } fn quick_sort3<@T>(compare_func_lt: <eq, compare_func_eq: <eq, arr: &[mutable T]) { if len[T](arr) == 0u { ret; } qsort3[T](compare_func_lt, compare_func_eq, arr, 0, (len[T](arr) as int) - 1); } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: