// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A growable list type, written `Vec` but pronounced 'vector.' //! //! Vectors have `O(1)` indexing, push (to the end) and pop (from the end). //! //! # Examples //! //! Explicitly creating a `Vec` with `new()`: //! //! ``` //! let xs: Vec = Vec::new(); //! ``` //! //! Using the `vec!` macro: //! //! ``` //! let ys: Vec = vec![]; //! //! let zs = vec![1i32, 2, 3, 4, 5]; //! ``` //! //! Push: //! //! ``` //! let mut xs = vec![1i32, 2]; //! //! xs.push(3); //! ``` //! //! And pop: //! //! ``` //! let mut xs = vec![1i32, 2]; //! //! let two = xs.pop(); //! ``` use core::prelude::*; use alloc::boxed::Box; use alloc::heap::{EMPTY, allocate, reallocate, deallocate}; use core::borrow::{Cow, IntoCow}; use core::cmp::max; use core::default::Default; use core::fmt; use core::hash::{mod, Hash}; use core::iter::repeat; use core::kinds::marker::{ContravariantLifetime, InvariantType}; use core::mem; use core::num::{Int, UnsignedInt}; use core::ops; use core::ptr; use core::raw::Slice as RawSlice; use core::uint; use slice::CloneSliceExt; /// A growable list type, written `Vec` but pronounced 'vector.' /// /// # Examples /// /// ``` /// let mut vec = Vec::new(); /// vec.push(1i); /// vec.push(2i); /// /// assert_eq!(vec.len(), 2); /// assert_eq!(vec[0], 1); /// /// assert_eq!(vec.pop(), Some(2)); /// assert_eq!(vec.len(), 1); /// /// vec[0] = 7i; /// assert_eq!(vec[0], 7); /// /// vec.push_all(&[1, 2, 3]); /// /// for x in vec.iter() { /// println!("{}", x); /// } /// assert_eq!(vec, vec![7i, 1, 2, 3]); /// ``` /// /// The `vec!` macro is provided to make initialization more convenient: /// /// ``` /// let mut vec = vec![1i, 2i, 3i]; /// vec.push(4); /// assert_eq!(vec, vec![1, 2, 3, 4]); /// ``` /// /// Use a `Vec` as an efficient stack: /// /// ``` /// let mut stack = Vec::new(); /// /// stack.push(1i); /// stack.push(2i); /// stack.push(3i); /// /// loop { /// let top = match stack.pop() { /// None => break, // empty /// Some(x) => x, /// }; /// // Prints 3, 2, 1 /// println!("{}", top); /// } /// ``` /// /// # Capacity and reallocation /// /// The capacity of a vector is the amount of space allocated for any future elements that will be /// added onto the vector. This is not to be confused with the *length* of a vector, which /// specifies the number of actual elements within the vector. If a vector's length exceeds its /// capacity, its capacity will automatically be increased, but its elements will have to be /// reallocated. /// /// For example, a vector with capacity 10 and length 0 would be an empty vector with space for 10 /// more elements. Pushing 10 or fewer elements onto the vector will not change its capacity or /// cause reallocation to occur. However, if the vector's length is increased to 11, it will have /// to reallocate, which can be slow. For this reason, it is recommended to use /// `Vec::with_capacity` whenever possible to specify how big the vector is expected to get. #[unsafe_no_drop_flag] #[stable] pub struct Vec { ptr: *mut T, len: uint, cap: uint, } /// A clone-on-write vector pub type CowVec<'a, T> = Cow<'a, Vec, [T]>; impl<'a, T> FromIterator for CowVec<'a, T> where T: Clone { fn from_iter>(it: I) -> CowVec<'a, T> { Cow::Owned(FromIterator::from_iter(it)) } } impl<'a, T: 'a> IntoCow<'a, Vec, [T]> for Vec where T: Clone { fn into_cow(self) -> CowVec<'a, T> { Cow::Owned(self) } } impl<'a, T> IntoCow<'a, Vec, [T]> for &'a [T] where T: Clone { fn into_cow(self) -> CowVec<'a, T> { Cow::Borrowed(self) } } impl Vec { /// Constructs a new, empty `Vec`. /// /// The vector will not allocate until elements are pushed onto it. /// /// # Examples /// /// ``` /// let mut vec: Vec = Vec::new(); /// ``` #[inline] #[stable] pub fn new() -> Vec { // We want ptr to never be NULL so instead we set it to some arbitrary // non-null value which is fine since we never call deallocate on the ptr // if cap is 0. The reason for this is because the pointer of a slice // being NULL would break the null pointer optimization for enums. Vec { ptr: EMPTY as *mut T, len: 0, cap: 0 } } /// Constructs a new, empty `Vec` with the specified capacity. /// /// The vector will be able to hold exactly `capacity` elements without reallocating. If /// `capacity` is 0, the vector will not allocate. /// /// It is important to note that this function does not specify the *length* of the returned /// vector, but only the *capacity*. (For an explanation of the difference between length and /// capacity, see the main `Vec` docs above, 'Capacity and reallocation'.) To create a /// vector of a given length, use `Vec::from_elem` or `Vec::from_fn`. /// /// # Examples /// /// ``` /// let mut vec: Vec = Vec::with_capacity(10); /// /// // The vector contains no items, even though it has capacity for more /// assert_eq!(vec.len(), 0); /// /// // These are all done without reallocating... /// for i in range(0i, 10) { /// vec.push(i); /// } /// /// // ...but this may make the vector reallocate /// vec.push(11); /// ``` #[inline] #[stable] pub fn with_capacity(capacity: uint) -> Vec { if mem::size_of::() == 0 { Vec { ptr: EMPTY as *mut T, len: 0, cap: uint::MAX } } else if capacity == 0 { Vec::new() } else { let size = capacity.checked_mul(mem::size_of::()) .expect("capacity overflow"); let ptr = unsafe { allocate(size, mem::min_align_of::()) }; if ptr.is_null() { ::alloc::oom() } Vec { ptr: ptr as *mut T, len: 0, cap: capacity } } } /// Creates and initializes a `Vec`. /// /// Creates a `Vec` of size `length` and initializes the elements to the value returned by /// the closure `op`. /// /// # Examples /// /// ``` /// let vec = Vec::from_fn(3, |idx| idx * 2); /// assert_eq!(vec, vec![0, 2, 4]); /// ``` #[inline] #[unstable = "the naming is uncertain as well as this migrating to unboxed \ closures in the future"] pub fn from_fn(length: uint, mut op: F) -> Vec where F: FnMut(uint) -> T { unsafe { let mut xs = Vec::with_capacity(length); while xs.len < length { let len = xs.len; ptr::write(xs.unsafe_mut(len), op(len)); xs.len += 1; } xs } } /// Creates a `Vec` directly from the raw components of another vector. /// /// This is highly unsafe, due to the number of invariants that aren't checked. /// /// # Examples /// /// ``` /// use std::ptr; /// use std::mem; /// /// fn main() { /// let mut v = vec![1i, 2, 3]; /// /// // Pull out the various important pieces of information about `v` /// let p = v.as_mut_ptr(); /// let len = v.len(); /// let cap = v.capacity(); /// /// unsafe { /// // Cast `v` into the void: no destructor run, so we are in /// // complete control of the allocation to which `p` points. /// mem::forget(v); /// /// // Overwrite memory with 4, 5, 6 /// for i in range(0, len as int) { /// ptr::write(p.offset(i), 4 + i); /// } /// /// // Put everything back together into a Vec /// let rebuilt = Vec::from_raw_parts(p, len, cap); /// assert_eq!(rebuilt, vec![4i, 5i, 6i]); /// } /// } /// ``` #[unstable = "needs finalization"] pub unsafe fn from_raw_parts(ptr: *mut T, length: uint, capacity: uint) -> Vec { Vec { ptr: ptr, len: length, cap: capacity } } /// Creates a vector by copying the elements from a raw pointer. /// /// This function will copy `elts` contiguous elements starting at `ptr` into a new allocation /// owned by the returned `Vec`. The elements of the buffer are copied into the vector /// without cloning, as if `ptr::read()` were called on them. #[inline] #[unstable = "just renamed from raw::from_buf"] pub unsafe fn from_raw_buf(ptr: *const T, elts: uint) -> Vec { let mut dst = Vec::with_capacity(elts); dst.set_len(elts); ptr::copy_nonoverlapping_memory(dst.as_mut_ptr(), ptr, elts); dst } /// Consumes the `Vec`, partitioning it based on a predicate. /// /// Partitions the `Vec` into two `Vec`s `(A,B)`, where all elements of `A` satisfy `f` /// and all elements of `B` do not. The order of elements is preserved. /// /// # Examples /// /// ``` /// let vec = vec![1i, 2i, 3i, 4i]; /// let (even, odd) = vec.partition(|&n| n % 2 == 0); /// assert_eq!(even, vec![2, 4]); /// assert_eq!(odd, vec![1, 3]); /// ``` #[inline] #[experimental] pub fn partition(self, mut f: F) -> (Vec, Vec) where F: FnMut(&T) -> bool { let mut lefts = Vec::new(); let mut rights = Vec::new(); for elt in self.into_iter() { if f(&elt) { lefts.push(elt); } else { rights.push(elt); } } (lefts, rights) } } impl Vec { /// Constructs a `Vec` with copies of a value. /// /// Creates a `Vec` with `length` copies of `value`. /// /// # Examples /// /// ``` /// let vec = Vec::from_elem(3, "hi"); /// println!("{}", vec); // prints [hi, hi, hi] /// ``` #[inline] #[unstable = "this functionality may become more generic over all collections"] pub fn from_elem(length: uint, value: T) -> Vec { unsafe { let mut xs = Vec::with_capacity(length); while xs.len < length { let len = xs.len; ptr::write(xs.unsafe_mut(len), value.clone()); xs.len += 1; } xs } } /// Appends all elements in a slice to the `Vec`. /// /// Iterates over the slice `other`, clones each element, and then appends /// it to this `Vec`. The `other` vector is traversed in-order. /// /// # Examples /// /// ``` /// let mut vec = vec![1i]; /// vec.push_all(&[2i, 3, 4]); /// assert_eq!(vec, vec![1, 2, 3, 4]); /// ``` #[inline] #[experimental] pub fn push_all(&mut self, other: &[T]) { self.reserve(other.len()); for i in range(0, other.len()) { let len = self.len(); // Unsafe code so this can be optimised to a memcpy (or something similarly // fast) when T is Copy. LLVM is easily confused, so any extra operations // during the loop can prevent this optimisation. unsafe { ptr::write( self.unsafe_mut(len), other.unsafe_get(i).clone()); self.set_len(len + 1); } } } /// Grows the `Vec` in-place. /// /// Adds `n` copies of `value` to the `Vec`. /// /// # Examples /// /// ``` /// let mut vec = vec!["hello"]; /// vec.grow(2, "world"); /// assert_eq!(vec, vec!["hello", "world", "world"]); /// ``` #[stable] pub fn grow(&mut self, n: uint, value: T) { self.reserve(n); let mut i: uint = 0u; while i < n { self.push(value.clone()); i += 1u; } } /// Resizes the `Vec` in-place so that `len()` is equal to `new_len`. /// /// Calls either `extend()` or `truncate()` depending on whether `new_len` /// is larger than the current value of `len()` or not. /// /// # Examples /// /// ``` /// let mut vec = vec!["hello"]; /// vec.resize(3, "world"); /// assert_eq!(vec, vec!["hello", "world", "world"]); /// /// let mut vec = vec![1i, 2, 3, 4]; /// vec.resize(2, 0); /// assert_eq!(vec, vec![1, 2]); /// ``` #[unstable = "matches collection reform specification; waiting for dust to settle"] pub fn resize(&mut self, new_len: uint, value: T) { let len = self.len(); if new_len > len { self.extend(repeat(value).take(new_len - len)); } else { self.truncate(new_len); } } /// Partitions a vector based on a predicate. /// /// Clones the elements of the vector, partitioning them into two `Vec`s /// `(a, b)`, where all elements of `a` satisfy `f` and all elements of `b` /// do not. The order of elements is preserved. /// /// # Examples /// /// ``` /// let vec = vec![1i, 2, 3, 4]; /// let (even, odd) = vec.partitioned(|&n| n % 2 == 0); /// assert_eq!(even, vec![2i, 4]); /// assert_eq!(odd, vec![1i, 3]); /// ``` #[experimental] pub fn partitioned(&self, mut f: F) -> (Vec, Vec) where F: FnMut(&T) -> bool { let mut lefts = Vec::new(); let mut rights = Vec::new(); for elt in self.iter() { if f(elt) { lefts.push(elt.clone()); } else { rights.push(elt.clone()); } } (lefts, rights) } } #[stable] impl Clone for Vec { fn clone(&self) -> Vec { self.as_slice().to_vec() } fn clone_from(&mut self, other: &Vec) { // drop anything in self that will not be overwritten if self.len() > other.len() { self.truncate(other.len()) } // reuse the contained values' allocations/resources. for (place, thing) in self.iter_mut().zip(other.iter()) { place.clone_from(thing) } // self.len <= other.len due to the truncate above, so the // slice here is always in-bounds. let slice = other[self.len()..]; self.push_all(slice); } } #[experimental = "waiting on Index stability"] impl Index for Vec { #[inline] fn index<'a>(&'a self, index: &uint) -> &'a T { &self.as_slice()[*index] } } impl IndexMut for Vec { #[inline] fn index_mut<'a>(&'a mut self, index: &uint) -> &'a mut T { &mut self.as_mut_slice()[*index] } } impl ops::Slice for Vec { #[inline] fn as_slice_<'a>(&'a self) -> &'a [T] { self.as_slice() } #[inline] fn slice_from_or_fail<'a>(&'a self, start: &uint) -> &'a [T] { self.as_slice().slice_from_or_fail(start) } #[inline] fn slice_to_or_fail<'a>(&'a self, end: &uint) -> &'a [T] { self.as_slice().slice_to_or_fail(end) } #[inline] fn slice_or_fail<'a>(&'a self, start: &uint, end: &uint) -> &'a [T] { self.as_slice().slice_or_fail(start, end) } } impl ops::SliceMut for Vec { #[inline] fn as_mut_slice_<'a>(&'a mut self) -> &'a mut [T] { self.as_mut_slice() } #[inline] fn slice_from_or_fail_mut<'a>(&'a mut self, start: &uint) -> &'a mut [T] { self.as_mut_slice().slice_from_or_fail_mut(start) } #[inline] fn slice_to_or_fail_mut<'a>(&'a mut self, end: &uint) -> &'a mut [T] { self.as_mut_slice().slice_to_or_fail_mut(end) } #[inline] fn slice_or_fail_mut<'a>(&'a mut self, start: &uint, end: &uint) -> &'a mut [T] { self.as_mut_slice().slice_or_fail_mut(start, end) } } #[experimental = "waiting on Deref stability"] impl ops::Deref<[T]> for Vec { fn deref<'a>(&'a self) -> &'a [T] { self.as_slice() } } #[experimental = "waiting on DerefMut stability"] impl ops::DerefMut<[T]> for Vec { fn deref_mut<'a>(&'a mut self) -> &'a mut [T] { self.as_mut_slice() } } #[experimental = "waiting on FromIterator stability"] impl FromIterator for Vec { #[inline] fn from_iter>(mut iterator: I) -> Vec { let (lower, _) = iterator.size_hint(); let mut vector = Vec::with_capacity(lower); for element in iterator { vector.push(element) } vector } } #[experimental = "waiting on Extend stability"] impl Extend for Vec { #[inline] fn extend>(&mut self, mut iterator: I) { let (lower, _) = iterator.size_hint(); self.reserve(lower); for element in iterator { self.push(element) } } } impl PartialEq> for Vec where A: PartialEq { #[inline] fn eq(&self, other: &Vec) -> bool { PartialEq::eq(&**self, &**other) } #[inline] fn ne(&self, other: &Vec) -> bool { PartialEq::ne(&**self, &**other) } } macro_rules! impl_eq { ($lhs:ty, $rhs:ty) => { impl<'b, A, B> PartialEq<$rhs> for $lhs where A: PartialEq { #[inline] fn eq(&self, other: &$rhs) -> bool { PartialEq::eq(&**self, &**other) } #[inline] fn ne(&self, other: &$rhs) -> bool { PartialEq::ne(&**self, &**other) } } impl<'b, A, B> PartialEq<$lhs> for $rhs where B: PartialEq { #[inline] fn eq(&self, other: &$lhs) -> bool { PartialEq::eq(&**self, &**other) } #[inline] fn ne(&self, other: &$lhs) -> bool { PartialEq::ne(&**self, &**other) } } } } impl_eq! { Vec, &'b [B] } impl_eq! { Vec, &'b mut [B] } impl<'a, A, B> PartialEq> for CowVec<'a, A> where A: PartialEq + Clone { #[inline] fn eq(&self, other: &Vec) -> bool { PartialEq::eq(&**self, &**other) } #[inline] fn ne(&self, other: &Vec) -> bool { PartialEq::ne(&**self, &**other) } } impl<'a, A, B> PartialEq> for Vec where A: Clone, B: PartialEq { #[inline] fn eq(&self, other: &CowVec<'a, A>) -> bool { PartialEq::eq(&**self, &**other) } #[inline] fn ne(&self, other: &CowVec<'a, A>) -> bool { PartialEq::ne(&**self, &**other) } } macro_rules! impl_eq_for_cowvec { ($rhs:ty) => { impl<'a, 'b, A, B> PartialEq<$rhs> for CowVec<'a, A> where A: PartialEq + Clone { #[inline] fn eq(&self, other: &$rhs) -> bool { PartialEq::eq(&**self, &**other) } #[inline] fn ne(&self, other: &$rhs) -> bool { PartialEq::ne(&**self, &**other) } } impl<'a, 'b, A, B> PartialEq> for $rhs where A: Clone, B: PartialEq { #[inline] fn eq(&self, other: &CowVec<'a, A>) -> bool { PartialEq::eq(&**self, &**other) } #[inline] fn ne(&self, other: &CowVec<'a, A>) -> bool { PartialEq::ne(&**self, &**other) } } } } impl_eq_for_cowvec! { &'b [B] } impl_eq_for_cowvec! { &'b mut [B] } #[unstable = "waiting on PartialOrd stability"] impl PartialOrd for Vec { #[inline] fn partial_cmp(&self, other: &Vec) -> Option { self.as_slice().partial_cmp(other.as_slice()) } } #[unstable = "waiting on Eq stability"] impl Eq for Vec {} #[allow(deprecated)] #[deprecated = "Use overloaded `core::cmp::PartialEq`"] impl> Equiv for Vec { #[inline] fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() } } #[unstable = "waiting on Ord stability"] impl Ord for Vec { #[inline] fn cmp(&self, other: &Vec) -> Ordering { self.as_slice().cmp(other.as_slice()) } } impl> Hash for Vec { #[inline] fn hash(&self, state: &mut S) { self.as_slice().hash(state); } } // FIXME: #13996: need a way to mark the return value as `noalias` #[inline(never)] unsafe fn alloc_or_realloc(ptr: *mut T, old_size: uint, size: uint) -> *mut T { if old_size == 0 { allocate(size, mem::min_align_of::()) as *mut T } else { reallocate(ptr as *mut u8, old_size, size, mem::min_align_of::()) as *mut T } } #[inline] unsafe fn dealloc(ptr: *mut T, len: uint) { if mem::size_of::() != 0 { deallocate(ptr as *mut u8, len * mem::size_of::(), mem::min_align_of::()) } } impl Vec { /// Returns the number of elements the vector can hold without reallocating. /// /// # Examples /// /// ``` /// let vec: Vec = Vec::with_capacity(10); /// assert_eq!(vec.capacity(), 10); /// ``` #[inline] #[stable] pub fn capacity(&self) -> uint { self.cap } /// Deprecated: Renamed to `reserve`. #[deprecated = "Renamed to `reserve`"] pub fn reserve_additional(&mut self, extra: uint) { self.reserve(extra) } /// Reserves capacity for at least `additional` more elements to be inserted in the given /// `Vec`. The collection may reserve more space to avoid frequent reallocations. /// /// # Panics /// /// Panics if the new capacity overflows `uint`. /// /// # Examples /// /// ``` /// let mut vec: Vec = vec![1]; /// vec.reserve(10); /// assert!(vec.capacity() >= 11); /// ``` #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn reserve(&mut self, additional: uint) { if self.cap - self.len < additional { let err_msg = "Vec::reserve: `uint` overflow"; let new_cap = self.len.checked_add(additional).expect(err_msg) .checked_next_power_of_two().expect(err_msg); self.grow_capacity(new_cap); } } /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the /// given `Vec`. Does nothing if the capacity is already sufficient. /// /// Note that the allocator may give the collection more space than it requests. Therefore /// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future /// insertions are expected. /// /// # Panics /// /// Panics if the new capacity overflows `uint`. /// /// # Examples /// /// ``` /// let mut vec: Vec = vec![1]; /// vec.reserve_exact(10); /// assert!(vec.capacity() >= 11); /// ``` #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn reserve_exact(&mut self, additional: uint) { if self.cap - self.len < additional { match self.len.checked_add(additional) { None => panic!("Vec::reserve: `uint` overflow"), Some(new_cap) => self.grow_capacity(new_cap) } } } /// Shrinks the capacity of the vector as much as possible. /// /// It will drop down as close as possible to the length but the allocator may still inform the /// vector that there is space for a few more elements. /// /// # Examples /// /// ``` /// let mut vec: Vec = Vec::with_capacity(10); /// /// vec.push_all(&[1, 2, 3]); /// assert_eq!(vec.capacity(), 10); /// /// vec.shrink_to_fit(); /// assert!(vec.capacity() >= 3); /// ``` #[stable] pub fn shrink_to_fit(&mut self) { if mem::size_of::() == 0 { return } if self.len == 0 { if self.cap != 0 { unsafe { dealloc(self.ptr, self.cap) } self.cap = 0; } } else { unsafe { // Overflow check is unnecessary as the vector is already at // least this large. self.ptr = reallocate(self.ptr as *mut u8, self.cap * mem::size_of::(), self.len * mem::size_of::(), mem::min_align_of::()) as *mut T; if self.ptr.is_null() { ::alloc::oom() } } self.cap = self.len; } } /// Convert the vector into Box<[T]>. /// /// Note that this will drop any excess capacity. Calling this and converting back to a vector /// with `into_vec()` is equivalent to calling `shrink_to_fit()`. #[experimental] pub fn into_boxed_slice(mut self) -> Box<[T]> { self.shrink_to_fit(); unsafe { let xs: Box<[T]> = mem::transmute(self.as_mut_slice()); mem::forget(self); xs } } /// Shorten a vector, dropping excess elements. /// /// If `len` is greater than the vector's current length, this has no /// effect. /// /// # Examples /// /// ``` /// let mut vec = vec![1i, 2, 3, 4]; /// vec.truncate(2); /// assert_eq!(vec, vec![1, 2]); /// ``` #[unstable = "matches collection reform specification; waiting on panic semantics"] pub fn truncate(&mut self, len: uint) { unsafe { // drop any extra elements while len < self.len { // decrement len before the read(), so a panic on Drop doesn't // re-drop the just-failed value. self.len -= 1; ptr::read(self.unsafe_get(self.len)); } } } /// Returns a mutable slice of the elements of `self`. /// /// # Examples /// /// ``` /// fn foo(slice: &mut [int]) {} /// /// let mut vec = vec![1i, 2]; /// foo(vec.as_mut_slice()); /// ``` #[inline] #[stable] pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [T] { unsafe { mem::transmute(RawSlice { data: self.ptr as *const T, len: self.len, }) } } /// Creates a consuming iterator, that is, one that moves each value out of the vector (from /// start to end). The vector cannot be used after calling this. /// /// # Examples /// /// ``` /// let v = vec!["a".to_string(), "b".to_string()]; /// /// for s in v.into_iter() { /// // s has type String, not &String /// println!("{}", s); /// } /// ``` #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn into_iter(self) -> MoveItems { unsafe { let ptr = self.ptr; let cap = self.cap; let begin = self.ptr as *const T; let end = if mem::size_of::() == 0 { (ptr as uint + self.len()) as *const T } else { ptr.offset(self.len() as int) as *const T }; mem::forget(self); MoveItems { allocation: ptr, cap: cap, ptr: begin, end: end } } } /// Sets the length of a vector. /// /// This will explicitly set the size of the vector, without actually modifying its buffers, so /// it is up to the caller to ensure that the vector is actually the specified size. /// /// # Examples /// /// ``` /// let mut v = vec![1u, 2, 3, 4]; /// unsafe { /// v.set_len(1); /// } /// ``` #[inline] #[stable] pub unsafe fn set_len(&mut self, len: uint) { self.len = len; } /// Removes an element from anywhere in the vector and return it, replacing it with the last /// element. /// /// This does not preserve ordering, but is O(1). /// /// Returns `None` if `index` is out of bounds. /// /// # Examples /// /// ``` /// let mut v = vec!["foo", "bar", "baz", "qux"]; /// /// assert_eq!(v.swap_remove(1), Some("bar")); /// assert_eq!(v, vec!["foo", "qux", "baz"]); /// /// assert_eq!(v.swap_remove(0), Some("foo")); /// assert_eq!(v, vec!["baz", "qux"]); /// /// assert_eq!(v.swap_remove(2), None); /// ``` #[inline] #[unstable = "the naming of this function may be altered"] pub fn swap_remove(&mut self, index: uint) -> Option { let length = self.len(); if length > 0 && index < length - 1 { self.swap(index, length - 1); } else if index >= length { return None } self.pop() } /// Inserts an element at position `index` within the vector, shifting all elements after /// position `i` one position to the right. /// /// # Panics /// /// Panics if `index` is not between `0` and the vector's length (both bounds inclusive). /// /// # Examples /// /// ``` /// let mut vec = vec![1i, 2, 3]; /// vec.insert(1, 4); /// assert_eq!(vec, vec![1, 4, 2, 3]); /// vec.insert(4, 5); /// assert_eq!(vec, vec![1, 4, 2, 3, 5]); /// ``` #[unstable = "panic semantics need settling"] pub fn insert(&mut self, index: uint, element: T) { let len = self.len(); assert!(index <= len); // space for the new element self.reserve(1); unsafe { // infallible // The spot to put the new value { let p = self.as_mut_ptr().offset(index as int); // Shift everything over to make space. (Duplicating the // `index`th element into two consecutive places.) ptr::copy_memory(p.offset(1), &*p, len - index); // Write it in, overwriting the first copy of the `index`th // element. ptr::write(&mut *p, element); } self.set_len(len + 1); } } /// Removes and returns the element at position `index` within the vector, shifting all /// elements after position `index` one position to the left. Returns `None` if `i` is out of /// bounds. /// /// # Examples /// /// ``` /// let mut v = vec![1i, 2, 3]; /// assert_eq!(v.remove(1), Some(2)); /// assert_eq!(v, vec![1, 3]); /// /// assert_eq!(v.remove(4), None); /// // v is unchanged: /// assert_eq!(v, vec![1, 3]); /// ``` #[unstable = "panic semantics need settling"] pub fn remove(&mut self, index: uint) -> Option { let len = self.len(); if index < len { unsafe { // infallible let ret; { // the place we are taking from. let ptr = self.as_mut_ptr().offset(index as int); // copy it out, unsafely having a copy of the value on // the stack and in the vector at the same time. ret = Some(ptr::read(ptr as *const T)); // Shift everything down to fill in that spot. ptr::copy_memory(ptr, &*ptr.offset(1), len - index - 1); } self.set_len(len - 1); ret } } else { None } } /// Retains only the elements specified by the predicate. /// /// In other words, remove all elements `e` such that `f(&e)` returns false. This method /// operates in place and preserves the order of the retained elements. /// /// # Examples /// /// ``` /// let mut vec = vec![1i, 2, 3, 4]; /// vec.retain(|&x| x%2 == 0); /// assert_eq!(vec, vec![2, 4]); /// ``` #[unstable = "the closure argument may become an unboxed closure"] pub fn retain(&mut self, mut f: F) where F: FnMut(&T) -> bool { let len = self.len(); let mut del = 0u; { let v = self.as_mut_slice(); for i in range(0u, len) { if !f(&v[i]) { del += 1; } else if del > 0 { v.swap(i-del, i); } } } if del > 0 { self.truncate(len - del); } } /// Expands a vector in place, initializing the new elements to the result of a function. /// /// The vector is grown by `n` elements. The i-th new element are initialized to the value /// returned by `f(i)` where `i` is in the range [0, n). /// /// # Examples /// /// ``` /// let mut vec = vec![0u, 1]; /// vec.grow_fn(3, |i| i); /// assert_eq!(vec, vec![0, 1, 0, 1, 2]); /// ``` #[unstable = "this function may be renamed or change to unboxed closures"] pub fn grow_fn(&mut self, n: uint, mut f: F) where F: FnMut(uint) -> T { self.reserve(n); for i in range(0u, n) { self.push(f(i)); } } /// Appends an element to the back of a collection. /// /// # Panics /// /// Panics if the number of elements in the vector overflows a `uint`. /// /// # Examples /// /// ```rust /// let mut vec = vec!(1i, 2); /// vec.push(3); /// assert_eq!(vec, vec!(1, 2, 3)); /// ``` #[inline] #[stable] pub fn push(&mut self, value: T) { if mem::size_of::() == 0 { // zero-size types consume no memory, so we can't rely on the address space running out self.len = self.len.checked_add(1).expect("length overflow"); unsafe { mem::forget(value); } return } if self.len == self.cap { let old_size = self.cap * mem::size_of::(); let size = max(old_size, 2 * mem::size_of::()) * 2; if old_size > size { panic!("capacity overflow") } unsafe { self.ptr = alloc_or_realloc(self.ptr, old_size, size); if self.ptr.is_null() { ::alloc::oom() } } self.cap = max(self.cap, 2) * 2; } unsafe { let end = (self.ptr as *const T).offset(self.len as int) as *mut T; ptr::write(&mut *end, value); self.len += 1; } } /// Removes the last element from a vector and returns it, or `None` if it is empty. /// /// # Examples /// /// ```rust /// let mut vec = vec![1i, 2, 3]; /// assert_eq!(vec.pop(), Some(3)); /// assert_eq!(vec, vec![1, 2]); /// ``` #[inline] #[stable] pub fn pop(&mut self) -> Option { if self.len == 0 { None } else { unsafe { self.len -= 1; Some(ptr::read(self.unsafe_get(self.len()))) } } } /// Creates a draining iterator that clears the `Vec` and iterates over /// the removed items from start to end. /// /// # Examples /// /// ``` /// let mut v = vec!["a".to_string(), "b".to_string()]; /// for s in v.drain() { /// // s has type String, not &String /// println!("{}", s); /// } /// assert!(v.is_empty()); /// ``` #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn drain<'a>(&'a mut self) -> Drain<'a, T> { unsafe { let begin = self.ptr as *const T; let end = if mem::size_of::() == 0 { (self.ptr as uint + self.len()) as *const T } else { self.ptr.offset(self.len() as int) as *const T }; self.set_len(0); Drain { ptr: begin, end: end, marker: ContravariantLifetime, } } } /// Clears the vector, removing all values. /// /// # Examples /// /// ``` /// let mut v = vec![1i, 2, 3]; /// /// v.clear(); /// /// assert!(v.is_empty()); /// ``` #[inline] #[stable] pub fn clear(&mut self) { self.truncate(0) } /// Returns the number of elements in the vector. /// /// # Examples /// /// ``` /// let a = vec![1i, 2, 3]; /// assert_eq!(a.len(), 3); /// ``` #[inline] #[stable] pub fn len(&self) -> uint { self.len } /// Returns `true` if the vector contains no elements. /// /// # Examples /// /// ``` /// let mut v = Vec::new(); /// assert!(v.is_empty()); /// /// v.push(1i); /// assert!(!v.is_empty()); /// ``` #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Reserves capacity for exactly `capacity` elements in the given vector. /// /// If the capacity for `self` is already equal to or greater than the /// requested capacity, then no action is taken. fn grow_capacity(&mut self, capacity: uint) { if mem::size_of::() == 0 { return } if capacity > self.cap { let size = capacity.checked_mul(mem::size_of::()) .expect("capacity overflow"); unsafe { self.ptr = alloc_or_realloc(self.ptr, self.cap * mem::size_of::(), size); if self.ptr.is_null() { ::alloc::oom() } } self.cap = capacity; } } } impl Vec { /// Removes consecutive repeated elements in the vector. /// /// If the vector is sorted, this removes all duplicates. /// /// # Examples /// /// ``` /// let mut vec = vec![1i, 2, 2, 3, 2]; /// /// vec.dedup(); /// /// assert_eq!(vec, vec![1i, 2, 3, 2]); /// ``` #[unstable = "this function may be renamed"] pub fn dedup(&mut self) { unsafe { // Although we have a mutable reference to `self`, we cannot make // *arbitrary* changes. The `PartialEq` comparisons could panic, so we // must ensure that the vector is in a valid state at all time. // // The way that we handle this is by using swaps; we iterate // over all the elements, swapping as we go so that at the end // the elements we wish to keep are in the front, and those we // wish to reject are at the back. We can then truncate the // vector. This operation is still O(n). // // Example: We start in this state, where `r` represents "next // read" and `w` represents "next_write`. // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this is not a duplicate, so // we swap self[r] and self[w] (no effect as r==w) and then increment both // r and w, leaving us with: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this value is a duplicate, // so we increment `r` but leave everything else unchanged: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this is not a duplicate, // so swap self[r] and self[w] and advance r and w: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 1 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Not a duplicate, repeat: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 3 | 1 | 3 | // +---+---+---+---+---+---+ // w // // Duplicate, advance r. End of vec. Truncate to w. let ln = self.len(); if ln < 1 { return; } // Avoid bounds checks by using unsafe pointers. let p = self.as_mut_ptr(); let mut r = 1; let mut w = 1; while r < ln { let p_r = p.offset(r as int); let p_wm1 = p.offset((w - 1) as int); if *p_r != *p_wm1 { if r != w { let p_w = p_wm1.offset(1); mem::swap(&mut *p_r, &mut *p_w); } w += 1; } r += 1; } self.truncate(w); } } } impl AsSlice for Vec { /// Returns a slice into `self`. /// /// # Examples /// /// ``` /// fn foo(slice: &[int]) {} /// /// let vec = vec![1i, 2]; /// foo(vec.as_slice()); /// ``` #[inline] #[stable] fn as_slice<'a>(&'a self) -> &'a [T] { unsafe { mem::transmute(RawSlice { data: self.ptr as *const T, len: self.len }) } } } impl<'a, T: Clone> Add<&'a [T], Vec> for Vec { #[inline] fn add(mut self, rhs: &[T]) -> Vec { self.push_all(rhs); self } } #[unsafe_destructor] impl Drop for Vec { fn drop(&mut self) { // This is (and should always remain) a no-op if the fields are // zeroed (when moving out, because of #[unsafe_no_drop_flag]). if self.cap != 0 { unsafe { for x in self.iter() { ptr::read(x); } dealloc(self.ptr, self.cap) } } } } #[stable] impl Default for Vec { #[stable] fn default() -> Vec { Vec::new() } } #[experimental = "waiting on Show stability"] impl fmt::Show for Vec { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.as_slice().fmt(f) } } /// An iterator that moves out of a vector. pub struct MoveItems { allocation: *mut T, // the block of memory allocated for the vector cap: uint, // the capacity of the vector ptr: *const T, end: *const T } impl MoveItems { /// Drops all items that have not yet been moved and returns the empty vector. #[inline] #[unstable] pub fn into_inner(mut self) -> Vec { unsafe { for _x in self { } let MoveItems { allocation, cap, ptr: _ptr, end: _end } = self; mem::forget(self); Vec { ptr: allocation, cap: cap, len: 0 } } } /// Deprecated, use .into_inner() instead #[deprecated = "use .into_inner() instead"] pub fn unwrap(self) -> Vec { self.into_inner() } } impl Iterator for MoveItems { #[inline] fn next<'a>(&'a mut self) -> Option { unsafe { if self.ptr == self.end { None } else { if mem::size_of::() == 0 { // purposefully don't use 'ptr.offset' because for // vectors with 0-size elements this would return the // same pointer. self.ptr = mem::transmute(self.ptr as uint + 1); // Use a non-null pointer value Some(ptr::read(mem::transmute(1u))) } else { let old = self.ptr; self.ptr = self.ptr.offset(1); Some(ptr::read(old)) } } } } #[inline] fn size_hint(&self) -> (uint, Option) { let diff = (self.end as uint) - (self.ptr as uint); let size = mem::size_of::(); let exact = diff / (if size == 0 {1} else {size}); (exact, Some(exact)) } } impl DoubleEndedIterator for MoveItems { #[inline] fn next_back<'a>(&'a mut self) -> Option { unsafe { if self.end == self.ptr { None } else { if mem::size_of::() == 0 { // See above for why 'ptr.offset' isn't used self.end = mem::transmute(self.end as uint - 1); // Use a non-null pointer value Some(ptr::read(mem::transmute(1u))) } else { self.end = self.end.offset(-1); Some(ptr::read(mem::transmute(self.end))) } } } } } impl ExactSizeIterator for MoveItems {} #[unsafe_destructor] impl Drop for MoveItems { fn drop(&mut self) { // destroy the remaining elements if self.cap != 0 { for _x in *self {} unsafe { dealloc(self.allocation, self.cap); } } } } /// An iterator that drains a vector. #[unsafe_no_drop_flag] pub struct Drain<'a, T> { ptr: *const T, end: *const T, marker: ContravariantLifetime<'a>, } impl<'a, T> Iterator for Drain<'a, T> { #[inline] fn next(&mut self) -> Option { unsafe { if self.ptr == self.end { None } else { if mem::size_of::() == 0 { // purposefully don't use 'ptr.offset' because for // vectors with 0-size elements this would return the // same pointer. self.ptr = mem::transmute(self.ptr as uint + 1); // Use a non-null pointer value Some(ptr::read(mem::transmute(1u))) } else { let old = self.ptr; self.ptr = self.ptr.offset(1); Some(ptr::read(old)) } } } } #[inline] fn size_hint(&self) -> (uint, Option) { let diff = (self.end as uint) - (self.ptr as uint); let size = mem::size_of::(); let exact = diff / (if size == 0 {1} else {size}); (exact, Some(exact)) } } impl<'a, T> DoubleEndedIterator for Drain<'a, T> { #[inline] fn next_back(&mut self) -> Option { unsafe { if self.end == self.ptr { None } else { if mem::size_of::() == 0 { // See above for why 'ptr.offset' isn't used self.end = mem::transmute(self.end as uint - 1); // Use a non-null pointer value Some(ptr::read(mem::transmute(1u))) } else { self.end = self.end.offset(-1); Some(ptr::read(self.end)) } } } } } impl<'a, T> ExactSizeIterator for Drain<'a, T> {} #[unsafe_destructor] impl<'a, T> Drop for Drain<'a, T> { fn drop(&mut self) { // self.ptr == self.end == null if drop has already been called, // so we can use #[unsafe_no_drop_flag]. // destroy the remaining elements for _x in *self {} } } /// Converts an iterator of pairs into a pair of vectors. /// /// Returns a tuple containing two vectors where the i-th element of the first vector contains the /// first element of the i-th tuple of the input iterator, and the i-th element of the second /// vector contains the second element of the i-th tuple of the input iterator. #[unstable = "this functionality may become more generic over time"] pub fn unzip>(mut iter: V) -> (Vec, Vec) { let (lo, _) = iter.size_hint(); let mut ts = Vec::with_capacity(lo); let mut us = Vec::with_capacity(lo); for (t, u) in iter { ts.push(t); us.push(u); } (ts, us) } /// Wrapper type providing a `&Vec` reference via `Deref`. #[experimental] pub struct DerefVec<'a, T> { x: Vec, l: ContravariantLifetime<'a> } impl<'a, T> Deref> for DerefVec<'a, T> { fn deref<'b>(&'b self) -> &'b Vec { &self.x } } // Prevent the inner `Vec` from attempting to deallocate memory. #[unsafe_destructor] impl<'a, T> Drop for DerefVec<'a, T> { fn drop(&mut self) { self.x.len = 0; self.x.cap = 0; } } /// Convert a slice to a wrapper type providing a `&Vec` reference. #[experimental] pub fn as_vec<'a, T>(x: &'a [T]) -> DerefVec<'a, T> { unsafe { DerefVec { x: Vec::from_raw_parts(x.as_ptr() as *mut T, x.len(), x.len()), l: ContravariantLifetime::<'a> } } } /// Unsafe vector operations. #[deprecated] pub mod raw { use super::Vec; /// Constructs a vector from an unsafe pointer to a buffer. /// /// The elements of the buffer are copied into the vector without cloning, /// as if `ptr::read()` were called on them. #[inline] #[deprecated = "renamed to Vec::from_raw_buf"] pub unsafe fn from_buf(ptr: *const T, elts: uint) -> Vec { Vec::from_raw_buf(ptr, elts) } } /// An owned, partially type-converted vector of elements with non-zero size. /// /// `T` and `U` must have the same, non-zero size. They must also have the same /// alignment. /// /// When the destructor of this struct runs, all `U`s from `start_u` (incl.) to /// `end_u` (excl.) and all `T`s from `start_t` (incl.) to `end_t` (excl.) are /// destructed. Additionally the underlying storage of `vec` will be freed. struct PartialVecNonZeroSized { vec: Vec, start_u: *mut U, end_u: *mut U, start_t: *mut T, end_t: *mut T, } /// An owned, partially type-converted vector of zero-sized elements. /// /// When the destructor of this struct runs, all `num_t` `T`s and `num_u` `U`s /// are destructed. struct PartialVecZeroSized { num_t: uint, num_u: uint, marker_t: InvariantType, marker_u: InvariantType, } #[unsafe_destructor] impl Drop for PartialVecNonZeroSized { fn drop(&mut self) { unsafe { // `vec` hasn't been modified until now. As it has a length // currently, this would run destructors of `T`s which might not be // there. So at first, set `vec`s length to `0`. This must be done // at first to remain memory-safe as the destructors of `U` or `T` // might cause unwinding where `vec`s destructor would be executed. self.vec.set_len(0); // We have instances of `U`s and `T`s in `vec`. Destruct them. while self.start_u != self.end_u { let _ = ptr::read(self.start_u as *const U); // Run a `U` destructor. self.start_u = self.start_u.offset(1); } while self.start_t != self.end_t { let _ = ptr::read(self.start_t as *const T); // Run a `T` destructor. self.start_t = self.start_t.offset(1); } // After this destructor ran, the destructor of `vec` will run, // deallocating the underlying memory. } } } #[unsafe_destructor] impl Drop for PartialVecZeroSized { fn drop(&mut self) { unsafe { // Destruct the instances of `T` and `U` this struct owns. while self.num_t != 0 { let _: T = mem::uninitialized(); // Run a `T` destructor. self.num_t -= 1; } while self.num_u != 0 { let _: U = mem::uninitialized(); // Run a `U` destructor. self.num_u -= 1; } } } } impl Vec { /// Converts a `Vec` to a `Vec` where `T` and `U` have the same /// size and in case they are not zero-sized the same minimal alignment. /// /// # Panics /// /// Panics if `T` and `U` have differing sizes or are not zero-sized and /// have differing minimal alignments. /// /// # Examples /// /// ``` /// let v = vec![0u, 1, 2]; /// let w = v.map_in_place(|i| i + 3); /// assert_eq!(w.as_slice(), [3, 4, 5].as_slice()); /// /// #[deriving(PartialEq, Show)] /// struct Newtype(u8); /// let bytes = vec![0x11, 0x22]; /// let newtyped_bytes = bytes.map_in_place(|x| Newtype(x)); /// assert_eq!(newtyped_bytes.as_slice(), [Newtype(0x11), Newtype(0x22)].as_slice()); /// ``` pub fn map_in_place(self, mut f: F) -> Vec where F: FnMut(T) -> U { // FIXME: Assert statically that the types `T` and `U` have the same // size. assert!(mem::size_of::() == mem::size_of::()); let mut vec = self; if mem::size_of::() != 0 { // FIXME: Assert statically that the types `T` and `U` have the // same minimal alignment in case they are not zero-sized. // These asserts are necessary because the `min_align_of` of the // types are passed to the allocator by `Vec`. assert!(mem::min_align_of::() == mem::min_align_of::()); // This `as int` cast is safe, because the size of the elements of the // vector is not 0, and: // // 1) If the size of the elements in the vector is 1, the `int` may // overflow, but it has the correct bit pattern so that the // `.offset()` function will work. // // Example: // Address space 0x0-0xF. // `u8` array at: 0x1. // Size of `u8` array: 0x8. // Calculated `offset`: -0x8. // After `array.offset(offset)`: 0x9. // (0x1 + 0x8 = 0x1 - 0x8) // // 2) If the size of the elements in the vector is >1, the `uint` -> // `int` conversion can't overflow. let offset = vec.len() as int; let start = vec.as_mut_ptr(); let mut pv = PartialVecNonZeroSized { vec: vec, start_t: start, // This points inside the vector, as the vector has length // `offset`. end_t: unsafe { start.offset(offset) }, start_u: start as *mut U, end_u: start as *mut U, }; // start_t // start_u // | // +-+-+-+-+-+-+ // |T|T|T|...|T| // +-+-+-+-+-+-+ // | | // end_u end_t while pv.end_u as *mut T != pv.end_t { unsafe { // start_u start_t // | | // +-+-+-+-+-+-+-+-+-+ // |U|...|U|T|T|...|T| // +-+-+-+-+-+-+-+-+-+ // | | // end_u end_t let t = ptr::read(pv.start_t as *const T); // start_u start_t // | | // +-+-+-+-+-+-+-+-+-+ // |U|...|U|X|T|...|T| // +-+-+-+-+-+-+-+-+-+ // | | // end_u end_t // We must not panic here, one cell is marked as `T` // although it is not `T`. pv.start_t = pv.start_t.offset(1); // start_u start_t // | | // +-+-+-+-+-+-+-+-+-+ // |U|...|U|X|T|...|T| // +-+-+-+-+-+-+-+-+-+ // | | // end_u end_t // We may panic again. // The function given by the user might panic. let u = f(t); ptr::write(pv.end_u, u); // start_u start_t // | | // +-+-+-+-+-+-+-+-+-+ // |U|...|U|U|T|...|T| // +-+-+-+-+-+-+-+-+-+ // | | // end_u end_t // We should not panic here, because that would leak the `U` // pointed to by `end_u`. pv.end_u = pv.end_u.offset(1); // start_u start_t // | | // +-+-+-+-+-+-+-+-+-+ // |U|...|U|U|T|...|T| // +-+-+-+-+-+-+-+-+-+ // | | // end_u end_t // We may panic again. } } // start_u start_t // | | // +-+-+-+-+-+-+ // |U|...|U|U|U| // +-+-+-+-+-+-+ // | // end_t // end_u // Extract `vec` and prevent the destructor of // `PartialVecNonZeroSized` from running. Note that none of the // function calls can panic, thus no resources can be leaked (as the // `vec` member of `PartialVec` is the only one which holds // allocations -- and it is returned from this function. None of // this can panic. unsafe { let vec_len = pv.vec.len(); let vec_cap = pv.vec.capacity(); let vec_ptr = pv.vec.as_mut_ptr() as *mut U; mem::forget(pv); Vec::from_raw_parts(vec_ptr, vec_len, vec_cap) } } else { // Put the `Vec` into the `PartialVecZeroSized` structure and // prevent the destructor of the `Vec` from running. Since the // `Vec` contained zero-sized objects, it did not allocate, so we // are not leaking memory here. let mut pv = PartialVecZeroSized:: { num_t: vec.len(), num_u: 0, marker_t: InvariantType, marker_u: InvariantType, }; unsafe { mem::forget(vec); } while pv.num_t != 0 { unsafe { // Create a `T` out of thin air and decrement `num_t`. This // must not panic between these steps, as otherwise a // destructor of `T` which doesn't exist runs. let t = mem::uninitialized(); pv.num_t -= 1; // The function given by the user might panic. let u = f(t); // Forget the `U` and increment `num_u`. This increment // cannot overflow the `uint` as we only do this for a // number of times that fits into a `uint` (and start with // `0`). Again, we should not panic between these steps. mem::forget(u); pv.num_u += 1; } } // Create a `Vec` from our `PartialVecZeroSized` and make sure the // destructor of the latter will not run. None of this can panic. let mut result = Vec::new(); unsafe { result.set_len(pv.num_u); mem::forget(pv); } result } } } impl<'a> fmt::FormatWriter for Vec { fn write(&mut self, buf: &[u8]) -> fmt::Result { self.push_all(buf); Ok(()) } } #[cfg(test)] mod tests { use prelude::*; use core::mem::size_of; use test::Bencher; use super::{as_vec, unzip, raw}; struct DropCounter<'a> { count: &'a mut int } #[unsafe_destructor] impl<'a> Drop for DropCounter<'a> { fn drop(&mut self) { *self.count += 1; } } #[test] fn test_as_vec() { let xs = [1u8, 2u8, 3u8]; assert_eq!(as_vec(&xs).as_slice(), xs); } #[test] fn test_as_vec_dtor() { let (mut count_x, mut count_y) = (0, 0); { let xs = &[DropCounter { count: &mut count_x }, DropCounter { count: &mut count_y }]; assert_eq!(as_vec(xs).len(), 2); } assert_eq!(count_x, 1); assert_eq!(count_y, 1); } #[test] fn test_small_vec_struct() { assert!(size_of::>() == size_of::() * 3); } #[test] fn test_double_drop() { struct TwoVec { x: Vec, y: Vec } let (mut count_x, mut count_y) = (0, 0); { let mut tv = TwoVec { x: Vec::new(), y: Vec::new() }; tv.x.push(DropCounter {count: &mut count_x}); tv.y.push(DropCounter {count: &mut count_y}); // If Vec had a drop flag, here is where it would be zeroed. // Instead, it should rely on its internal state to prevent // doing anything significant when dropped multiple times. drop(tv.x); // Here tv goes out of scope, tv.y should be dropped, but not tv.x. } assert_eq!(count_x, 1); assert_eq!(count_y, 1); } #[test] fn test_reserve() { let mut v = Vec::new(); assert_eq!(v.capacity(), 0); v.reserve(2); assert!(v.capacity() >= 2); for i in range(0i, 16) { v.push(i); } assert!(v.capacity() >= 16); v.reserve(16); assert!(v.capacity() >= 32); v.push(16); v.reserve(16); assert!(v.capacity() >= 33) } #[test] fn test_extend() { let mut v = Vec::new(); let mut w = Vec::new(); v.extend(range(0i, 3)); for i in range(0i, 3) { w.push(i) } assert_eq!(v, w); v.extend(range(3i, 10)); for i in range(3i, 10) { w.push(i) } assert_eq!(v, w); } #[test] fn test_slice_from_mut() { let mut values = vec![1u8,2,3,4,5]; { let slice = values.slice_from_mut(2); assert!(slice == [3, 4, 5]); for p in slice.iter_mut() { *p += 2; } } assert!(values == [1, 2, 5, 6, 7]); } #[test] fn test_slice_to_mut() { let mut values = vec![1u8,2,3,4,5]; { let slice = values.slice_to_mut(2); assert!(slice == [1, 2]); for p in slice.iter_mut() { *p += 1; } } assert!(values == [2, 3, 3, 4, 5]); } #[test] fn test_split_at_mut() { let mut values = vec![1u8,2,3,4,5]; { let (left, right) = values.split_at_mut(2); { let left: &[_] = left; assert!(left[0..left.len()] == [1, 2][]); } for p in left.iter_mut() { *p += 1; } { let right: &[_] = right; assert!(right[0..right.len()] == [3, 4, 5][]); } for p in right.iter_mut() { *p += 2; } } assert!(values == vec![2u8, 3, 5, 6, 7]); } #[test] fn test_clone() { let v: Vec = vec!(); let w = vec!(1i, 2, 3); assert_eq!(v, v.clone()); let z = w.clone(); assert_eq!(w, z); // they should be disjoint in memory. assert!(w.as_ptr() != z.as_ptr()) } #[test] fn test_clone_from() { let mut v = vec!(); let three = vec!(box 1i, box 2, box 3); let two = vec!(box 4i, box 5); // zero, long v.clone_from(&three); assert_eq!(v, three); // equal v.clone_from(&three); assert_eq!(v, three); // long, short v.clone_from(&two); assert_eq!(v, two); // short, long v.clone_from(&three); assert_eq!(v, three) } #[test] fn test_grow_fn() { let mut v = vec![0u, 1]; v.grow_fn(3, |i| i); assert!(v == vec![0u, 1, 0, 1, 2]); } #[test] fn test_retain() { let mut vec = vec![1u, 2, 3, 4]; vec.retain(|&x| x % 2 == 0); assert!(vec == vec![2u, 4]); } #[test] fn zero_sized_values() { let mut v = Vec::new(); assert_eq!(v.len(), 0); v.push(()); assert_eq!(v.len(), 1); v.push(()); assert_eq!(v.len(), 2); assert_eq!(v.pop(), Some(())); assert_eq!(v.pop(), Some(())); assert_eq!(v.pop(), None); assert_eq!(v.iter().count(), 0); v.push(()); assert_eq!(v.iter().count(), 1); v.push(()); assert_eq!(v.iter().count(), 2); for &() in v.iter() {} assert_eq!(v.iter_mut().count(), 2); v.push(()); assert_eq!(v.iter_mut().count(), 3); v.push(()); assert_eq!(v.iter_mut().count(), 4); for &() in v.iter_mut() {} unsafe { v.set_len(0); } assert_eq!(v.iter_mut().count(), 0); } #[test] fn test_partition() { assert_eq!(vec![].partition(|x: &int| *x < 3), (vec![], vec![])); assert_eq!(vec![1i, 2, 3].partition(|x: &int| *x < 4), (vec![1, 2, 3], vec![])); assert_eq!(vec![1i, 2, 3].partition(|x: &int| *x < 2), (vec![1], vec![2, 3])); assert_eq!(vec![1i, 2, 3].partition(|x: &int| *x < 0), (vec![], vec![1, 2, 3])); } #[test] fn test_partitioned() { assert_eq!(vec![].partitioned(|x: &int| *x < 3), (vec![], vec![])); assert_eq!(vec![1i, 2, 3].partitioned(|x: &int| *x < 4), (vec![1, 2, 3], vec![])); assert_eq!(vec![1i, 2, 3].partitioned(|x: &int| *x < 2), (vec![1], vec![2, 3])); assert_eq!(vec![1i, 2, 3].partitioned(|x: &int| *x < 0), (vec![], vec![1, 2, 3])); } #[test] fn test_zip_unzip() { let z1 = vec![(1i, 4i), (2, 5), (3, 6)]; let (left, right) = unzip(z1.iter().map(|&x| x)); assert_eq!((1, 4), (left[0], right[0])); assert_eq!((2, 5), (left[1], right[1])); assert_eq!((3, 6), (left[2], right[2])); } #[test] fn test_unsafe_ptrs() { unsafe { // Test on-stack copy-from-buf. let a = [1i, 2, 3]; let ptr = a.as_ptr(); let b = raw::from_buf(ptr, 3u); assert_eq!(b, vec![1, 2, 3]); // Test on-heap copy-from-buf. let c = vec![1i, 2, 3, 4, 5]; let ptr = c.as_ptr(); let d = raw::from_buf(ptr, 5u); assert_eq!(d, vec![1, 2, 3, 4, 5]); } } #[test] fn test_vec_truncate_drop() { static mut drops: uint = 0; struct Elem(int); impl Drop for Elem { fn drop(&mut self) { unsafe { drops += 1; } } } let mut v = vec![Elem(1), Elem(2), Elem(3), Elem(4), Elem(5)]; assert_eq!(unsafe { drops }, 0); v.truncate(3); assert_eq!(unsafe { drops }, 2); v.truncate(0); assert_eq!(unsafe { drops }, 5); } #[test] #[should_fail] fn test_vec_truncate_fail() { struct BadElem(int); impl Drop for BadElem { fn drop(&mut self) { let BadElem(ref mut x) = *self; if *x == 0xbadbeef { panic!("BadElem panic: 0xbadbeef") } } } let mut v = vec![BadElem(1), BadElem(2), BadElem(0xbadbeef), BadElem(4)]; v.truncate(0); } #[test] fn test_index() { let vec = vec!(1i, 2, 3); assert!(vec[1] == 2); } #[test] #[should_fail] fn test_index_out_of_bounds() { let vec = vec!(1i, 2, 3); let _ = vec[3]; } #[test] #[should_fail] fn test_slice_out_of_bounds_1() { let x: Vec = vec![1, 2, 3, 4, 5]; x[-1..]; } #[test] #[should_fail] fn test_slice_out_of_bounds_2() { let x: Vec = vec![1, 2, 3, 4, 5]; x[..6]; } #[test] #[should_fail] fn test_slice_out_of_bounds_3() { let x: Vec = vec![1, 2, 3, 4, 5]; x[-1..4]; } #[test] #[should_fail] fn test_slice_out_of_bounds_4() { let x: Vec = vec![1, 2, 3, 4, 5]; x[1..6]; } #[test] #[should_fail] fn test_slice_out_of_bounds_5() { let x: Vec = vec![1, 2, 3, 4, 5]; x[3..2]; } #[test] fn test_swap_remove_empty() { let mut vec: Vec = vec!(); assert_eq!(vec.swap_remove(0), None); } #[test] fn test_move_iter_unwrap() { let mut vec: Vec = Vec::with_capacity(7); vec.push(1); vec.push(2); let ptr = vec.as_ptr(); vec = vec.into_iter().unwrap(); assert_eq!(vec.as_ptr(), ptr); assert_eq!(vec.capacity(), 7); assert_eq!(vec.len(), 0); } #[test] #[should_fail] fn test_map_in_place_incompatible_types_fail() { let v = vec![0u, 1, 2]; v.map_in_place(|_| ()); } #[test] fn test_map_in_place() { let v = vec![0u, 1, 2]; assert_eq!(v.map_in_place(|i: uint| i as int - 1), [-1i, 0, 1]); } #[test] fn test_map_in_place_zero_sized() { let v = vec![(), ()]; #[deriving(PartialEq, Show)] struct ZeroSized; assert_eq!(v.map_in_place(|_| ZeroSized), [ZeroSized, ZeroSized]); } #[test] fn test_map_in_place_zero_drop_count() { use std::sync::atomic; use std::sync::atomic::AtomicUint; #[deriving(Clone, PartialEq, Show)] struct Nothing; impl Drop for Nothing { fn drop(&mut self) { } } #[deriving(Clone, PartialEq, Show)] struct ZeroSized; impl Drop for ZeroSized { fn drop(&mut self) { DROP_COUNTER.fetch_add(1, atomic::Relaxed); } } const NUM_ELEMENTS: uint = 2; static DROP_COUNTER: AtomicUint = atomic::INIT_ATOMIC_UINT; let v = Vec::from_elem(NUM_ELEMENTS, Nothing); DROP_COUNTER.store(0, atomic::Relaxed); let v = v.map_in_place(|_| ZeroSized); assert_eq!(DROP_COUNTER.load(atomic::Relaxed), 0); drop(v); assert_eq!(DROP_COUNTER.load(atomic::Relaxed), NUM_ELEMENTS); } #[test] fn test_move_items() { let vec = vec![1, 2, 3]; let mut vec2 : Vec = vec![]; for i in vec.into_iter() { vec2.push(i); } assert!(vec2 == vec![1, 2, 3]); } #[test] fn test_move_items_reverse() { let vec = vec![1, 2, 3]; let mut vec2 : Vec = vec![]; for i in vec.into_iter().rev() { vec2.push(i); } assert!(vec2 == vec![3, 2, 1]); } #[test] fn test_move_items_zero_sized() { let vec = vec![(), (), ()]; let mut vec2 : Vec<()> = vec![]; for i in vec.into_iter() { vec2.push(i); } assert!(vec2 == vec![(), (), ()]); } #[test] fn test_drain_items() { let mut vec = vec![1, 2, 3]; let mut vec2: Vec = vec![]; for i in vec.drain() { vec2.push(i); } assert_eq!(vec, []); assert_eq!(vec2, [ 1, 2, 3 ]); } #[test] fn test_drain_items_reverse() { let mut vec = vec![1, 2, 3]; let mut vec2: Vec = vec![]; for i in vec.drain().rev() { vec2.push(i); } assert_eq!(vec, []); assert_eq!(vec2, [ 3, 2, 1 ]); } #[test] fn test_drain_items_zero_sized() { let mut vec = vec![(), (), ()]; let mut vec2: Vec<()> = vec![]; for i in vec.drain() { vec2.push(i); } assert_eq!(vec, []); assert_eq!(vec2, [(), (), ()]); } #[test] fn test_into_boxed_slice() { let xs = vec![1u, 2, 3]; let ys = xs.into_boxed_slice(); assert_eq!(ys.as_slice(), [1u, 2, 3]); } #[bench] fn bench_new(b: &mut Bencher) { b.iter(|| { let v: Vec = Vec::new(); assert_eq!(v.len(), 0); assert_eq!(v.capacity(), 0); }) } fn do_bench_with_capacity(b: &mut Bencher, src_len: uint) { b.bytes = src_len as u64; b.iter(|| { let v: Vec = Vec::with_capacity(src_len); assert_eq!(v.len(), 0); assert_eq!(v.capacity(), src_len); }) } #[bench] fn bench_with_capacity_0000(b: &mut Bencher) { do_bench_with_capacity(b, 0) } #[bench] fn bench_with_capacity_0010(b: &mut Bencher) { do_bench_with_capacity(b, 10) } #[bench] fn bench_with_capacity_0100(b: &mut Bencher) { do_bench_with_capacity(b, 100) } #[bench] fn bench_with_capacity_1000(b: &mut Bencher) { do_bench_with_capacity(b, 1000) } fn do_bench_from_fn(b: &mut Bencher, src_len: uint) { b.bytes = src_len as u64; b.iter(|| { let dst = Vec::from_fn(src_len, |i| i); assert_eq!(dst.len(), src_len); assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); }) } #[bench] fn bench_from_fn_0000(b: &mut Bencher) { do_bench_from_fn(b, 0) } #[bench] fn bench_from_fn_0010(b: &mut Bencher) { do_bench_from_fn(b, 10) } #[bench] fn bench_from_fn_0100(b: &mut Bencher) { do_bench_from_fn(b, 100) } #[bench] fn bench_from_fn_1000(b: &mut Bencher) { do_bench_from_fn(b, 1000) } fn do_bench_from_elem(b: &mut Bencher, src_len: uint) { b.bytes = src_len as u64; b.iter(|| { let dst: Vec = Vec::from_elem(src_len, 5); assert_eq!(dst.len(), src_len); assert!(dst.iter().all(|x| *x == 5)); }) } #[bench] fn bench_from_elem_0000(b: &mut Bencher) { do_bench_from_elem(b, 0) } #[bench] fn bench_from_elem_0010(b: &mut Bencher) { do_bench_from_elem(b, 10) } #[bench] fn bench_from_elem_0100(b: &mut Bencher) { do_bench_from_elem(b, 100) } #[bench] fn bench_from_elem_1000(b: &mut Bencher) { do_bench_from_elem(b, 1000) } fn do_bench_from_slice(b: &mut Bencher, src_len: uint) { let src: Vec = FromIterator::from_iter(range(0, src_len)); b.bytes = src_len as u64; b.iter(|| { let dst = src.clone().as_slice().to_vec(); assert_eq!(dst.len(), src_len); assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); }); } #[bench] fn bench_from_slice_0000(b: &mut Bencher) { do_bench_from_slice(b, 0) } #[bench] fn bench_from_slice_0010(b: &mut Bencher) { do_bench_from_slice(b, 10) } #[bench] fn bench_from_slice_0100(b: &mut Bencher) { do_bench_from_slice(b, 100) } #[bench] fn bench_from_slice_1000(b: &mut Bencher) { do_bench_from_slice(b, 1000) } fn do_bench_from_iter(b: &mut Bencher, src_len: uint) { let src: Vec = FromIterator::from_iter(range(0, src_len)); b.bytes = src_len as u64; b.iter(|| { let dst: Vec = FromIterator::from_iter(src.clone().into_iter()); assert_eq!(dst.len(), src_len); assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); }); } #[bench] fn bench_from_iter_0000(b: &mut Bencher) { do_bench_from_iter(b, 0) } #[bench] fn bench_from_iter_0010(b: &mut Bencher) { do_bench_from_iter(b, 10) } #[bench] fn bench_from_iter_0100(b: &mut Bencher) { do_bench_from_iter(b, 100) } #[bench] fn bench_from_iter_1000(b: &mut Bencher) { do_bench_from_iter(b, 1000) } fn do_bench_extend(b: &mut Bencher, dst_len: uint, src_len: uint) { let dst: Vec = FromIterator::from_iter(range(0, dst_len)); let src: Vec = FromIterator::from_iter(range(dst_len, dst_len + src_len)); b.bytes = src_len as u64; b.iter(|| { let mut dst = dst.clone(); dst.extend(src.clone().into_iter()); assert_eq!(dst.len(), dst_len + src_len); assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); }); } #[bench] fn bench_extend_0000_0000(b: &mut Bencher) { do_bench_extend(b, 0, 0) } #[bench] fn bench_extend_0000_0010(b: &mut Bencher) { do_bench_extend(b, 0, 10) } #[bench] fn bench_extend_0000_0100(b: &mut Bencher) { do_bench_extend(b, 0, 100) } #[bench] fn bench_extend_0000_1000(b: &mut Bencher) { do_bench_extend(b, 0, 1000) } #[bench] fn bench_extend_0010_0010(b: &mut Bencher) { do_bench_extend(b, 10, 10) } #[bench] fn bench_extend_0100_0100(b: &mut Bencher) { do_bench_extend(b, 100, 100) } #[bench] fn bench_extend_1000_1000(b: &mut Bencher) { do_bench_extend(b, 1000, 1000) } fn do_bench_push_all(b: &mut Bencher, dst_len: uint, src_len: uint) { let dst: Vec = FromIterator::from_iter(range(0, dst_len)); let src: Vec = FromIterator::from_iter(range(dst_len, dst_len + src_len)); b.bytes = src_len as u64; b.iter(|| { let mut dst = dst.clone(); dst.push_all(src.as_slice()); assert_eq!(dst.len(), dst_len + src_len); assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); }); } #[bench] fn bench_push_all_0000_0000(b: &mut Bencher) { do_bench_push_all(b, 0, 0) } #[bench] fn bench_push_all_0000_0010(b: &mut Bencher) { do_bench_push_all(b, 0, 10) } #[bench] fn bench_push_all_0000_0100(b: &mut Bencher) { do_bench_push_all(b, 0, 100) } #[bench] fn bench_push_all_0000_1000(b: &mut Bencher) { do_bench_push_all(b, 0, 1000) } #[bench] fn bench_push_all_0010_0010(b: &mut Bencher) { do_bench_push_all(b, 10, 10) } #[bench] fn bench_push_all_0100_0100(b: &mut Bencher) { do_bench_push_all(b, 100, 100) } #[bench] fn bench_push_all_1000_1000(b: &mut Bencher) { do_bench_push_all(b, 1000, 1000) } fn do_bench_push_all_move(b: &mut Bencher, dst_len: uint, src_len: uint) { let dst: Vec = FromIterator::from_iter(range(0u, dst_len)); let src: Vec = FromIterator::from_iter(range(dst_len, dst_len + src_len)); b.bytes = src_len as u64; b.iter(|| { let mut dst = dst.clone(); dst.extend(src.clone().into_iter()); assert_eq!(dst.len(), dst_len + src_len); assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); }); } #[bench] fn bench_push_all_move_0000_0000(b: &mut Bencher) { do_bench_push_all_move(b, 0, 0) } #[bench] fn bench_push_all_move_0000_0010(b: &mut Bencher) { do_bench_push_all_move(b, 0, 10) } #[bench] fn bench_push_all_move_0000_0100(b: &mut Bencher) { do_bench_push_all_move(b, 0, 100) } #[bench] fn bench_push_all_move_0000_1000(b: &mut Bencher) { do_bench_push_all_move(b, 0, 1000) } #[bench] fn bench_push_all_move_0010_0010(b: &mut Bencher) { do_bench_push_all_move(b, 10, 10) } #[bench] fn bench_push_all_move_0100_0100(b: &mut Bencher) { do_bench_push_all_move(b, 100, 100) } #[bench] fn bench_push_all_move_1000_1000(b: &mut Bencher) { do_bench_push_all_move(b, 1000, 1000) } fn do_bench_clone(b: &mut Bencher, src_len: uint) { let src: Vec = FromIterator::from_iter(range(0, src_len)); b.bytes = src_len as u64; b.iter(|| { let dst = src.clone(); assert_eq!(dst.len(), src_len); assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); }); } #[bench] fn bench_clone_0000(b: &mut Bencher) { do_bench_clone(b, 0) } #[bench] fn bench_clone_0010(b: &mut Bencher) { do_bench_clone(b, 10) } #[bench] fn bench_clone_0100(b: &mut Bencher) { do_bench_clone(b, 100) } #[bench] fn bench_clone_1000(b: &mut Bencher) { do_bench_clone(b, 1000) } fn do_bench_clone_from(b: &mut Bencher, times: uint, dst_len: uint, src_len: uint) { let dst: Vec = FromIterator::from_iter(range(0, src_len)); let src: Vec = FromIterator::from_iter(range(dst_len, dst_len + src_len)); b.bytes = (times * src_len) as u64; b.iter(|| { let mut dst = dst.clone(); for _ in range(0, times) { dst.clone_from(&src); assert_eq!(dst.len(), src_len); assert!(dst.iter().enumerate().all(|(i, x)| dst_len + i == *x)); } }); } #[bench] fn bench_clone_from_01_0000_0000(b: &mut Bencher) { do_bench_clone_from(b, 1, 0, 0) } #[bench] fn bench_clone_from_01_0000_0010(b: &mut Bencher) { do_bench_clone_from(b, 1, 0, 10) } #[bench] fn bench_clone_from_01_0000_0100(b: &mut Bencher) { do_bench_clone_from(b, 1, 0, 100) } #[bench] fn bench_clone_from_01_0000_1000(b: &mut Bencher) { do_bench_clone_from(b, 1, 0, 1000) } #[bench] fn bench_clone_from_01_0010_0010(b: &mut Bencher) { do_bench_clone_from(b, 1, 10, 10) } #[bench] fn bench_clone_from_01_0100_0100(b: &mut Bencher) { do_bench_clone_from(b, 1, 100, 100) } #[bench] fn bench_clone_from_01_1000_1000(b: &mut Bencher) { do_bench_clone_from(b, 1, 1000, 1000) } #[bench] fn bench_clone_from_01_0010_0100(b: &mut Bencher) { do_bench_clone_from(b, 1, 10, 100) } #[bench] fn bench_clone_from_01_0100_1000(b: &mut Bencher) { do_bench_clone_from(b, 1, 100, 1000) } #[bench] fn bench_clone_from_01_0010_0000(b: &mut Bencher) { do_bench_clone_from(b, 1, 10, 0) } #[bench] fn bench_clone_from_01_0100_0010(b: &mut Bencher) { do_bench_clone_from(b, 1, 100, 10) } #[bench] fn bench_clone_from_01_1000_0100(b: &mut Bencher) { do_bench_clone_from(b, 1, 1000, 100) } #[bench] fn bench_clone_from_10_0000_0000(b: &mut Bencher) { do_bench_clone_from(b, 10, 0, 0) } #[bench] fn bench_clone_from_10_0000_0010(b: &mut Bencher) { do_bench_clone_from(b, 10, 0, 10) } #[bench] fn bench_clone_from_10_0000_0100(b: &mut Bencher) { do_bench_clone_from(b, 10, 0, 100) } #[bench] fn bench_clone_from_10_0000_1000(b: &mut Bencher) { do_bench_clone_from(b, 10, 0, 1000) } #[bench] fn bench_clone_from_10_0010_0010(b: &mut Bencher) { do_bench_clone_from(b, 10, 10, 10) } #[bench] fn bench_clone_from_10_0100_0100(b: &mut Bencher) { do_bench_clone_from(b, 10, 100, 100) } #[bench] fn bench_clone_from_10_1000_1000(b: &mut Bencher) { do_bench_clone_from(b, 10, 1000, 1000) } #[bench] fn bench_clone_from_10_0010_0100(b: &mut Bencher) { do_bench_clone_from(b, 10, 10, 100) } #[bench] fn bench_clone_from_10_0100_1000(b: &mut Bencher) { do_bench_clone_from(b, 10, 100, 1000) } #[bench] fn bench_clone_from_10_0010_0000(b: &mut Bencher) { do_bench_clone_from(b, 10, 10, 0) } #[bench] fn bench_clone_from_10_0100_0010(b: &mut Bencher) { do_bench_clone_from(b, 10, 100, 10) } #[bench] fn bench_clone_from_10_1000_0100(b: &mut Bencher) { do_bench_clone_from(b, 10, 1000, 100) } }