// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Interface to random number generators in Rust. //! //! This is an experimental library which lives underneath the standard library //! in its dependency chain. This library is intended to define the interface //! for random number generation and also provide utilities around doing so. It //! is not recommended to use this library directly, but rather the official //! interface through `std::rand`. #![crate_name = "rand"] #![license = "MIT/ASL2"] #![crate_type = "rlib"] #![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk.png", html_favicon_url = "http://www.rust-lang.org/favicon.ico", html_root_url = "http://doc.rust-lang.org/nightly/", html_playground_url = "http://play.rust-lang.org/")] #![feature(macro_rules, phase, globs)] #![no_std] #![experimental] #[phase(plugin, link)] extern crate core; #[cfg(test)] #[phase(plugin, link)] extern crate std; #[cfg(test)] #[phase(plugin, link)] extern crate log; #[cfg(test)] extern crate native; use core::prelude::*; pub use isaac::{IsaacRng, Isaac64Rng}; pub use chacha::ChaChaRng; use distributions::{Range, IndependentSample}; use distributions::range::SampleRange; #[cfg(test)] static RAND_BENCH_N: u64 = 100; pub mod distributions; pub mod isaac; pub mod chacha; pub mod reseeding; mod rand_impls; /// A type that can be randomly generated using an `Rng`. pub trait Rand { /// Generates a random instance of this type using the specified source of /// randomness. fn rand(rng: &mut R) -> Self; } /// A random number generator. pub trait Rng { /// Return the next random u32. /// /// This rarely needs to be called directly, prefer `r.gen()` to /// `r.next_u32()`. // FIXME #7771: Should be implemented in terms of next_u64 fn next_u32(&mut self) -> u32; /// Return the next random u64. /// /// By default this is implemented in terms of `next_u32`. An /// implementation of this trait must provide at least one of /// these two methods. Similarly to `next_u32`, this rarely needs /// to be called directly, prefer `r.gen()` to `r.next_u64()`. fn next_u64(&mut self) -> u64 { (self.next_u32() as u64 << 32) | (self.next_u32() as u64) } /// Fill `dest` with random data. /// /// This has a default implementation in terms of `next_u64` and /// `next_u32`, but should be overridden by implementations that /// offer a more efficient solution than just calling those /// methods repeatedly. /// /// This method does *not* have a requirement to bear any fixed /// relationship to the other methods, for example, it does *not* /// have to result in the same output as progressively filling /// `dest` with `self.gen::()`, and any such behaviour should /// not be relied upon. /// /// This method should guarantee that `dest` is entirely filled /// with new data, and may panic if this is impossible /// (e.g. reading past the end of a file that is being used as the /// source of randomness). /// /// # Example /// /// ```rust /// use std::rand::{task_rng, Rng}; /// /// let mut v = [0u8, .. 13579]; /// task_rng().fill_bytes(v); /// println!("{}", v.as_slice()); /// ``` fn fill_bytes(&mut self, dest: &mut [u8]) { // this could, in theory, be done by transmuting dest to a // [u64], but this is (1) likely to be undefined behaviour for // LLVM, (2) has to be very careful about alignment concerns, // (3) adds more `unsafe` that needs to be checked, (4) // probably doesn't give much performance gain if // optimisations are on. let mut count = 0i; let mut num = 0; for byte in dest.iter_mut() { if count == 0 { // we could micro-optimise here by generating a u32 if // we only need a few more bytes to fill the vector // (i.e. at most 4). num = self.next_u64(); count = 8; } *byte = (num & 0xff) as u8; num >>= 8; count -= 1; } } /// Return a random value of a `Rand` type. /// /// # Example /// /// ```rust /// use std::rand::{task_rng, Rng}; /// /// let mut rng = task_rng(); /// let x: uint = rng.gen(); /// println!("{}", x); /// println!("{}", rng.gen::<(f64, bool)>()); /// ``` #[inline(always)] fn gen(&mut self) -> T { Rand::rand(self) } /// Return an iterator which will yield an infinite number of randomly /// generated items. /// /// # Example /// /// ``` /// use std::rand::{task_rng, Rng}; /// /// let mut rng = task_rng(); /// let x = rng.gen_iter::().take(10).collect::>(); /// println!("{}", x); /// println!("{}", rng.gen_iter::<(f64, bool)>().take(5) /// .collect::>()); /// ``` fn gen_iter<'a, T: Rand>(&'a mut self) -> Generator<'a, T, Self> { Generator { rng: self } } /// Generate a random value in the range [`low`, `high`). Fails if /// `low >= high`. /// /// This is a convenience wrapper around /// `distributions::Range`. If this function will be called /// repeatedly with the same arguments, one should use `Range`, as /// that will amortize the computations that allow for perfect /// uniformity, as they only happen on initialization. /// /// # Example /// /// ```rust /// use std::rand::{task_rng, Rng}; /// /// let mut rng = task_rng(); /// let n: uint = rng.gen_range(0u, 10); /// println!("{}", n); /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64); /// println!("{}", m); /// ``` fn gen_range(&mut self, low: T, high: T) -> T { assert!(low < high, "Rng.gen_range called with low >= high"); Range::new(low, high).ind_sample(self) } /// Return a bool with a 1 in n chance of true /// /// # Example /// /// ```rust /// use std::rand::{task_rng, Rng}; /// /// let mut rng = task_rng(); /// println!("{:b}", rng.gen_weighted_bool(3)); /// ``` fn gen_weighted_bool(&mut self, n: uint) -> bool { n == 0 || self.gen_range(0, n) == 0 } /// Return an iterator of random characters from the set A-Z,a-z,0-9. /// /// # Example /// /// ```rust /// use std::rand::{task_rng, Rng}; /// /// let s: String = task_rng().gen_ascii_chars().take(10).collect(); /// println!("{}", s); /// ``` fn gen_ascii_chars<'a>(&'a mut self) -> AsciiGenerator<'a, Self> { AsciiGenerator { rng: self } } /// Return a random element from `values`. /// /// Return `None` if `values` is empty. /// /// # Example /// /// ``` /// use std::rand::{task_rng, Rng}; /// /// let choices = [1i, 2, 4, 8, 16, 32]; /// let mut rng = task_rng(); /// println!("{}", rng.choose(choices)); /// assert_eq!(rng.choose(choices[..0]), None); /// ``` fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> { if values.is_empty() { None } else { Some(&values[self.gen_range(0u, values.len())]) } } /// Shuffle a mutable slice in place. /// /// # Example /// /// ```rust /// use std::rand::{task_rng, Rng}; /// /// let mut rng = task_rng(); /// let mut y = [1i, 2, 3]; /// rng.shuffle(y); /// println!("{}", y.as_slice()); /// rng.shuffle(y); /// println!("{}", y.as_slice()); /// ``` fn shuffle(&mut self, values: &mut [T]) { let mut i = values.len(); while i >= 2u { // invariant: elements with index >= i have been locked in place. i -= 1u; // lock element i in place. values.swap(i, self.gen_range(0u, i + 1u)); } } } /// Iterator which will generate a stream of random items. /// /// This iterator is created via the `gen_iter` method on `Rng`. pub struct Generator<'a, T, R:'a> { rng: &'a mut R, } impl<'a, T: Rand, R: Rng> Iterator for Generator<'a, T, R> { fn next(&mut self) -> Option { Some(self.rng.gen()) } } /// Iterator which will continuously generate random ascii characters. /// /// This iterator is created via the `gen_ascii_chars` method on `Rng`. pub struct AsciiGenerator<'a, R:'a> { rng: &'a mut R, } impl<'a, R: Rng> Iterator for AsciiGenerator<'a, R> { fn next(&mut self) -> Option { static GEN_ASCII_STR_CHARSET: &'static [u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\ abcdefghijklmnopqrstuvwxyz\ 0123456789"; Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char) } } /// A random number generator that can be explicitly seeded to produce /// the same stream of randomness multiple times. pub trait SeedableRng: Rng { /// Reseed an RNG with the given seed. /// /// # Example /// /// ```rust /// use std::rand::{Rng, SeedableRng, StdRng}; /// /// let seed: &[_] = &[1, 2, 3, 4]; /// let mut rng: StdRng = SeedableRng::from_seed(seed); /// println!("{}", rng.gen::()); /// rng.reseed([5, 6, 7, 8]); /// println!("{}", rng.gen::()); /// ``` fn reseed(&mut self, Seed); /// Create a new RNG with the given seed. /// /// # Example /// /// ```rust /// use std::rand::{Rng, SeedableRng, StdRng}; /// /// let seed: &[_] = &[1, 2, 3, 4]; /// let mut rng: StdRng = SeedableRng::from_seed(seed); /// println!("{}", rng.gen::()); /// ``` fn from_seed(seed: Seed) -> Self; } /// An Xorshift[1] random number /// generator. /// /// The Xorshift algorithm is not suitable for cryptographic purposes /// but is very fast. If you do not know for sure that it fits your /// requirements, use a more secure one such as `IsaacRng` or `OsRng`. /// /// [1]: Marsaglia, George (July 2003). ["Xorshift /// RNGs"](http://www.jstatsoft.org/v08/i14/paper). *Journal of /// Statistical Software*. Vol. 8 (Issue 14). pub struct XorShiftRng { x: u32, y: u32, z: u32, w: u32, } impl XorShiftRng { /// Creates a new XorShiftRng instance which is not seeded. /// /// The initial values of this RNG are constants, so all generators created /// by this function will yield the same stream of random numbers. It is /// highly recommended that this is created through `SeedableRng` instead of /// this function pub fn new_unseeded() -> XorShiftRng { XorShiftRng { x: 0x193a6754, y: 0xa8a7d469, z: 0x97830e05, w: 0x113ba7bb, } } } impl Rng for XorShiftRng { #[inline] fn next_u32(&mut self) -> u32 { let x = self.x; let t = x ^ (x << 11); self.x = self.y; self.y = self.z; self.z = self.w; let w = self.w; self.w = w ^ (w >> 19) ^ (t ^ (t >> 8)); self.w } } impl SeedableRng<[u32, .. 4]> for XorShiftRng { /// Reseed an XorShiftRng. This will panic if `seed` is entirely 0. fn reseed(&mut self, seed: [u32, .. 4]) { assert!(!seed.iter().all(|&x| x == 0), "XorShiftRng.reseed called with an all zero seed."); self.x = seed[0]; self.y = seed[1]; self.z = seed[2]; self.w = seed[3]; } /// Create a new XorShiftRng. This will panic if `seed` is entirely 0. fn from_seed(seed: [u32, .. 4]) -> XorShiftRng { assert!(!seed.iter().all(|&x| x == 0), "XorShiftRng::from_seed called with an all zero seed."); XorShiftRng { x: seed[0], y: seed[1], z: seed[2], w: seed[3] } } } impl Rand for XorShiftRng { fn rand(rng: &mut R) -> XorShiftRng { let mut tuple: (u32, u32, u32, u32) = rng.gen(); while tuple == (0, 0, 0, 0) { tuple = rng.gen(); } let (x, y, z, w) = tuple; XorShiftRng { x: x, y: y, z: z, w: w } } } /// A wrapper for generating floating point numbers uniformly in the /// open interval `(0,1)` (not including either endpoint). /// /// Use `Closed01` for the closed interval `[0,1]`, and the default /// `Rand` implementation for `f32` and `f64` for the half-open /// `[0,1)`. /// /// # Example /// ```rust /// use std::rand::{random, Open01}; /// /// let Open01(val) = random::>(); /// println!("f32 from (0,1): {}", val); /// ``` pub struct Open01(pub F); /// A wrapper for generating floating point numbers uniformly in the /// closed interval `[0,1]` (including both endpoints). /// /// Use `Open01` for the closed interval `(0,1)`, and the default /// `Rand` implementation of `f32` and `f64` for the half-open /// `[0,1)`. /// /// # Example /// /// ```rust /// use std::rand::{random, Closed01}; /// /// let Closed01(val) = random::>(); /// println!("f32 from [0,1]: {}", val); /// ``` pub struct Closed01(pub F); #[cfg(not(test))] mod std { pub use core::{option, fmt}; // panic!() } #[cfg(test)] mod test { use std::rand; pub struct MyRng { inner: R } impl ::Rng for MyRng { fn next_u32(&mut self) -> u32 { fn next(t: &mut T) -> u32 { use std::rand::Rng; t.next_u32() } next(&mut self.inner) } } pub fn rng() -> MyRng { MyRng { inner: rand::task_rng() } } pub fn weak_rng() -> MyRng { MyRng { inner: rand::weak_rng() } } }