// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_camel_case_types, non_snake_case)] //! Code that is useful in various trans modules. use session::Session; use llvm; use llvm::{ValueRef, BasicBlockRef, ContextRef, TypeKind}; use llvm::{True, False, Bool, OperandBundleDef}; use rustc::hir::def::Def; use rustc::hir::def_id::DefId; use rustc::hir::map::DefPathData; use rustc::util::common::MemoizationMap; use middle::lang_items::LangItem; use base; use builder::Builder; use consts; use declare; use machine; use monomorphize; use type_::Type; use value::Value; use rustc::ty::{self, Ty, TyCtxt}; use rustc::ty::layout::Layout; use rustc::traits::{self, SelectionContext, Reveal}; use rustc::hir; use libc::{c_uint, c_char}; use std::borrow::Cow; use std::iter; use std::ops::Deref; use std::ffi::CString; use syntax::ast; use syntax::symbol::{Symbol, InternedString}; use syntax_pos::Span; use rustc_i128::u128; pub use context::{CrateContext, SharedCrateContext}; pub fn type_is_fat_ptr<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool { match ty.sty { ty::TyRawPtr(ty::TypeAndMut{ty, ..}) | ty::TyRef(_, ty::TypeAndMut{ty, ..}) | ty::TyBox(ty) => { !ccx.shared().type_is_sized(ty) } _ => { false } } } pub fn type_is_immediate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool { use machine::llsize_of_alloc; use type_of::sizing_type_of; let simple = ty.is_scalar() || ty.is_unique() || ty.is_region_ptr() || ty.is_simd(); if simple && !type_is_fat_ptr(ccx, ty) { return true; } if !ccx.shared().type_is_sized(ty) { return false; } match ty.sty { ty::TyAdt(..) | ty::TyTuple(..) | ty::TyArray(..) | ty::TyClosure(..) => { let llty = sizing_type_of(ccx, ty); llsize_of_alloc(ccx, llty) <= llsize_of_alloc(ccx, ccx.int_type()) } _ => type_is_zero_size(ccx, ty) } } /// Returns Some([a, b]) if the type has a pair of fields with types a and b. pub fn type_pair_fields<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> Option<[Ty<'tcx>; 2]> { match ty.sty { ty::TyAdt(adt, substs) => { assert_eq!(adt.variants.len(), 1); let fields = &adt.variants[0].fields; if fields.len() != 2 { return None; } Some([monomorphize::field_ty(ccx.tcx(), substs, &fields[0]), monomorphize::field_ty(ccx.tcx(), substs, &fields[1])]) } ty::TyClosure(def_id, substs) => { let mut tys = substs.upvar_tys(def_id, ccx.tcx()); tys.next().and_then(|first_ty| tys.next().and_then(|second_ty| { if tys.next().is_some() { None } else { Some([first_ty, second_ty]) } })) } ty::TyTuple(tys) => { if tys.len() != 2 { return None; } Some([tys[0], tys[1]]) } _ => None } } /// Returns true if the type is represented as a pair of immediates. pub fn type_is_imm_pair<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool { match *ccx.layout_of(ty) { Layout::FatPointer { .. } => true, Layout::Univariant { ref variant, .. } => { // There must be only 2 fields. if variant.offsets.len() != 2 { return false; } match type_pair_fields(ccx, ty) { Some([a, b]) => { type_is_immediate(ccx, a) && type_is_immediate(ccx, b) } None => false } } _ => false } } /// Identify types which have size zero at runtime. pub fn type_is_zero_size<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool { use machine::llsize_of_alloc; use type_of::sizing_type_of; let llty = sizing_type_of(ccx, ty); llsize_of_alloc(ccx, llty) == 0 } /* * A note on nomenclature of linking: "extern", "foreign", and "upcall". * * An "extern" is an LLVM symbol we wind up emitting an undefined external * reference to. This means "we don't have the thing in this compilation unit, * please make sure you link it in at runtime". This could be a reference to * C code found in a C library, or rust code found in a rust crate. * * Most "externs" are implicitly declared (automatically) as a result of a * user declaring an extern _module_ dependency; this causes the rust driver * to locate an extern crate, scan its compilation metadata, and emit extern * declarations for any symbols used by the declaring crate. * * A "foreign" is an extern that references C (or other non-rust ABI) code. * There is no metadata to scan for extern references so in these cases either * a header-digester like bindgen, or manual function prototypes, have to * serve as declarators. So these are usually given explicitly as prototype * declarations, in rust code, with ABI attributes on them noting which ABI to * link via. * * An "upcall" is a foreign call generated by the compiler (not corresponding * to any user-written call in the code) into the runtime library, to perform * some helper task such as bringing a task to life, allocating memory, etc. * */ use Disr; /// The concrete version of ty::FieldDef. The name is the field index if /// the field is numeric. pub struct Field<'tcx>(pub ast::Name, pub Ty<'tcx>); /// The concrete version of ty::VariantDef pub struct VariantInfo<'tcx> { pub discr: Disr, pub fields: Vec> } impl<'a, 'tcx> VariantInfo<'tcx> { pub fn from_ty(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>, opt_def: Option) -> Self { match ty.sty { ty::TyAdt(adt, substs) => { let variant = match opt_def { None => adt.struct_variant(), Some(def) => adt.variant_of_def(def) }; VariantInfo { discr: Disr::from(variant.disr_val), fields: variant.fields.iter().map(|f| { Field(f.name, monomorphize::field_ty(tcx, substs, f)) }).collect() } } ty::TyTuple(ref v) => { VariantInfo { discr: Disr(0), fields: v.iter().enumerate().map(|(i, &t)| { Field(Symbol::intern(&i.to_string()), t) }).collect() } } _ => { bug!("cannot get field types from the type {:?}", ty); } } } } // Function context. Every LLVM function we create will have one of these. pub struct FunctionContext<'a, 'tcx: 'a> { // The ValueRef returned from a call to llvm::LLVMAddFunction; the // address of the first instruction in the sequence of // instructions for this function that will go in the .text // section of the executable we're generating. pub llfn: ValueRef, // A marker for the place where we want to insert the function's static // allocas, so that LLVM will coalesce them into a single alloca call. alloca_insert_pt: Option, // This function's enclosing crate context. pub ccx: &'a CrateContext<'a, 'tcx>, alloca_builder: Builder<'a, 'tcx>, } impl<'a, 'tcx> FunctionContext<'a, 'tcx> { /// Create a function context for the given function. /// Call FunctionContext::get_entry_block for the first entry block. pub fn new(ccx: &'a CrateContext<'a, 'tcx>, llfndecl: ValueRef) -> FunctionContext<'a, 'tcx> { let mut fcx = FunctionContext { llfn: llfndecl, alloca_insert_pt: None, ccx: ccx, alloca_builder: Builder::with_ccx(ccx), }; let val = { let entry_bcx = fcx.build_new_block("entry-block"); let val = entry_bcx.load(C_null(Type::i8p(ccx))); fcx.alloca_builder.position_at_start(entry_bcx.llbb()); val }; // Use a dummy instruction as the insertion point for all allocas. // This is later removed in the drop of FunctionContext. fcx.alloca_insert_pt = Some(val); fcx } pub fn get_entry_block(&'a self) -> BlockAndBuilder<'a, 'tcx> { BlockAndBuilder::new(unsafe { llvm::LLVMGetFirstBasicBlock(self.llfn) }, self) } pub fn new_block(&'a self, name: &str) -> BasicBlockRef { unsafe { let name = CString::new(name).unwrap(); llvm::LLVMAppendBasicBlockInContext( self.ccx.llcx(), self.llfn, name.as_ptr() ) } } pub fn build_new_block(&'a self, name: &str) -> BlockAndBuilder<'a, 'tcx> { BlockAndBuilder::new(self.new_block(name), self) } pub fn alloca(&self, ty: Type, name: &str) -> ValueRef { self.alloca_builder.dynamic_alloca(ty, name) } } impl<'a, 'tcx> Drop for FunctionContext<'a, 'tcx> { fn drop(&mut self) { unsafe { llvm::LLVMInstructionEraseFromParent(self.alloca_insert_pt.unwrap()); } } } #[must_use] pub struct BlockAndBuilder<'a, 'tcx: 'a> { // The BasicBlockRef returned from a call to // llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic // block to the function pointed to by llfn. We insert // instructions into that block by way of this block context. // The block pointing to this one in the function's digraph. llbb: BasicBlockRef, // The function context for the function to which this block is // attached. fcx: &'a FunctionContext<'a, 'tcx>, builder: Builder<'a, 'tcx>, } impl<'a, 'tcx> BlockAndBuilder<'a, 'tcx> { pub fn new(llbb: BasicBlockRef, fcx: &'a FunctionContext<'a, 'tcx>) -> Self { let builder = Builder::with_ccx(fcx.ccx); // Set the builder's position to this block's end. builder.position_at_end(llbb); BlockAndBuilder { llbb: llbb, fcx: fcx, builder: builder, } } pub fn at_start(&self, f: F) -> R where F: FnOnce(&BlockAndBuilder<'a, 'tcx>) -> R { self.position_at_start(self.llbb); let r = f(self); self.position_at_end(self.llbb); r } pub fn fcx(&self) -> &'a FunctionContext<'a, 'tcx> { self.fcx } pub fn tcx(&self) -> TyCtxt<'a, 'tcx, 'tcx> { self.ccx.tcx() } pub fn sess(&self) -> &'a Session { self.ccx.sess() } pub fn llbb(&self) -> BasicBlockRef { self.llbb } } impl<'a, 'tcx> Deref for BlockAndBuilder<'a, 'tcx> { type Target = Builder<'a, 'tcx>; fn deref(&self) -> &Self::Target { &self.builder } } /// A structure representing an active landing pad for the duration of a basic /// block. /// /// Each `Block` may contain an instance of this, indicating whether the block /// is part of a landing pad or not. This is used to make decision about whether /// to emit `invoke` instructions (e.g. in a landing pad we don't continue to /// use `invoke`) and also about various function call metadata. /// /// For GNU exceptions (`landingpad` + `resume` instructions) this structure is /// just a bunch of `None` instances (not too interesting), but for MSVC /// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data. /// When inside of a landing pad, each function call in LLVM IR needs to be /// annotated with which landing pad it's a part of. This is accomplished via /// the `OperandBundleDef` value created for MSVC landing pads. pub struct Funclet { cleanuppad: ValueRef, operand: OperandBundleDef, } impl Funclet { pub fn new(cleanuppad: ValueRef) -> Funclet { Funclet { cleanuppad: cleanuppad, operand: OperandBundleDef::new("funclet", &[cleanuppad]), } } pub fn cleanuppad(&self) -> ValueRef { self.cleanuppad } pub fn bundle(&self) -> &OperandBundleDef { &self.operand } } impl Clone for Funclet { fn clone(&self) -> Funclet { Funclet { cleanuppad: self.cleanuppad, operand: OperandBundleDef::new("funclet", &[self.cleanuppad]), } } } pub fn val_ty(v: ValueRef) -> Type { unsafe { Type::from_ref(llvm::LLVMTypeOf(v)) } } // LLVM constant constructors. pub fn C_null(t: Type) -> ValueRef { unsafe { llvm::LLVMConstNull(t.to_ref()) } } pub fn C_undef(t: Type) -> ValueRef { unsafe { llvm::LLVMGetUndef(t.to_ref()) } } pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef { unsafe { llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool) } } pub fn C_big_integral(t: Type, u: u128) -> ValueRef { if ::std::mem::size_of::() == 16 { unsafe { llvm::LLVMConstIntOfArbitraryPrecision(t.to_ref(), 2, &u as *const u128 as *const u64) } } else { C_integral(t, u as u64, false) } } pub fn C_floating_f64(f: f64, t: Type) -> ValueRef { unsafe { llvm::LLVMConstReal(t.to_ref(), f) } } pub fn C_nil(ccx: &CrateContext) -> ValueRef { C_struct(ccx, &[], false) } pub fn C_bool(ccx: &CrateContext, val: bool) -> ValueRef { C_integral(Type::i1(ccx), val as u64, false) } pub fn C_i32(ccx: &CrateContext, i: i32) -> ValueRef { C_integral(Type::i32(ccx), i as u64, true) } pub fn C_u32(ccx: &CrateContext, i: u32) -> ValueRef { C_integral(Type::i32(ccx), i as u64, false) } pub fn C_u64(ccx: &CrateContext, i: u64) -> ValueRef { C_integral(Type::i64(ccx), i, false) } pub fn C_uint(ccx: &CrateContext, i: I) -> ValueRef { let v = i.as_u64(); let bit_size = machine::llbitsize_of_real(ccx, ccx.int_type()); if bit_size < 64 { // make sure it doesn't overflow assert!(v < (1< i64; } pub trait AsU64 { fn as_u64(self) -> u64; } // FIXME: remove the intptr conversions, because they // are host-architecture-dependent impl AsI64 for i64 { fn as_i64(self) -> i64 { self as i64 }} impl AsI64 for i32 { fn as_i64(self) -> i64 { self as i64 }} impl AsI64 for isize { fn as_i64(self) -> i64 { self as i64 }} impl AsU64 for u64 { fn as_u64(self) -> u64 { self as u64 }} impl AsU64 for u32 { fn as_u64(self) -> u64 { self as u64 }} impl AsU64 for usize { fn as_u64(self) -> u64 { self as u64 }} pub fn C_u8(ccx: &CrateContext, i: u8) -> ValueRef { C_integral(Type::i8(ccx), i as u64, false) } // This is a 'c-like' raw string, which differs from // our boxed-and-length-annotated strings. pub fn C_cstr(cx: &CrateContext, s: InternedString, null_terminated: bool) -> ValueRef { unsafe { if let Some(&llval) = cx.const_cstr_cache().borrow().get(&s) { return llval; } let sc = llvm::LLVMConstStringInContext(cx.llcx(), s.as_ptr() as *const c_char, s.len() as c_uint, !null_terminated as Bool); let sym = cx.generate_local_symbol_name("str"); let g = declare::define_global(cx, &sym[..], val_ty(sc)).unwrap_or_else(||{ bug!("symbol `{}` is already defined", sym); }); llvm::LLVMSetInitializer(g, sc); llvm::LLVMSetGlobalConstant(g, True); llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage); cx.const_cstr_cache().borrow_mut().insert(s, g); g } } // NB: Do not use `do_spill_noroot` to make this into a constant string, or // you will be kicked off fast isel. See issue #4352 for an example of this. pub fn C_str_slice(cx: &CrateContext, s: InternedString) -> ValueRef { let len = s.len(); let cs = consts::ptrcast(C_cstr(cx, s, false), Type::i8p(cx)); C_named_struct(cx.str_slice_type(), &[cs, C_uint(cx, len)]) } pub fn C_struct(cx: &CrateContext, elts: &[ValueRef], packed: bool) -> ValueRef { C_struct_in_context(cx.llcx(), elts, packed) } pub fn C_struct_in_context(llcx: ContextRef, elts: &[ValueRef], packed: bool) -> ValueRef { unsafe { llvm::LLVMConstStructInContext(llcx, elts.as_ptr(), elts.len() as c_uint, packed as Bool) } } pub fn C_named_struct(t: Type, elts: &[ValueRef]) -> ValueRef { unsafe { llvm::LLVMConstNamedStruct(t.to_ref(), elts.as_ptr(), elts.len() as c_uint) } } pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef { unsafe { return llvm::LLVMConstArray(ty.to_ref(), elts.as_ptr(), elts.len() as c_uint); } } pub fn C_vector(elts: &[ValueRef]) -> ValueRef { unsafe { return llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint); } } pub fn C_bytes(cx: &CrateContext, bytes: &[u8]) -> ValueRef { C_bytes_in_context(cx.llcx(), bytes) } pub fn C_bytes_in_context(llcx: ContextRef, bytes: &[u8]) -> ValueRef { unsafe { let ptr = bytes.as_ptr() as *const c_char; return llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True); } } pub fn const_get_elt(v: ValueRef, us: &[c_uint]) -> ValueRef { unsafe { let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint); debug!("const_get_elt(v={:?}, us={:?}, r={:?})", Value(v), us, Value(r)); r } } pub fn const_to_uint(v: ValueRef) -> u64 { unsafe { llvm::LLVMConstIntGetZExtValue(v) } } fn is_const_integral(v: ValueRef) -> bool { unsafe { !llvm::LLVMIsAConstantInt(v).is_null() } } #[cfg(stage0)] pub fn const_to_opt_u128(v: ValueRef, sign_ext: bool) -> Option { unsafe { if is_const_integral(v) { if !sign_ext { Some(llvm::LLVMConstIntGetZExtValue(v)) } else { Some(llvm::LLVMConstIntGetSExtValue(v) as u64) } } else { None } } } #[cfg(not(stage0))] pub fn const_to_opt_u128(v: ValueRef, sign_ext: bool) -> Option { unsafe { if is_const_integral(v) { let (mut lo, mut hi) = (0u64, 0u64); let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi as *mut u64, &mut lo as *mut u64); if success { Some(((hi as u128) << 64) | (lo as u128)) } else { None } } else { None } } } pub fn is_undef(val: ValueRef) -> bool { unsafe { llvm::LLVMIsUndef(val) != False } } #[allow(dead_code)] // potentially useful pub fn is_null(val: ValueRef) -> bool { unsafe { llvm::LLVMIsNull(val) != False } } /// Attempts to resolve an obligation. The result is a shallow vtable resolution -- meaning that we /// do not (necessarily) resolve all nested obligations on the impl. Note that type check should /// guarantee to us that all nested obligations *could be* resolved if we wanted to. pub fn fulfill_obligation<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>, span: Span, trait_ref: ty::PolyTraitRef<'tcx>) -> traits::Vtable<'tcx, ()> { let tcx = scx.tcx(); // Remove any references to regions; this helps improve caching. let trait_ref = tcx.erase_regions(&trait_ref); scx.trait_cache().memoize(trait_ref, || { debug!("trans::fulfill_obligation(trait_ref={:?}, def_id={:?})", trait_ref, trait_ref.def_id()); // Do the initial selection for the obligation. This yields the // shallow result we are looking for -- that is, what specific impl. tcx.infer_ctxt(None, None, Reveal::All).enter(|infcx| { let mut selcx = SelectionContext::new(&infcx); let obligation_cause = traits::ObligationCause::misc(span, ast::DUMMY_NODE_ID); let obligation = traits::Obligation::new(obligation_cause, trait_ref.to_poly_trait_predicate()); let selection = match selcx.select(&obligation) { Ok(Some(selection)) => selection, Ok(None) => { // Ambiguity can happen when monomorphizing during trans // expands to some humongo type that never occurred // statically -- this humongo type can then overflow, // leading to an ambiguous result. So report this as an // overflow bug, since I believe this is the only case // where ambiguity can result. debug!("Encountered ambiguity selecting `{:?}` during trans, \ presuming due to overflow", trait_ref); tcx.sess.span_fatal(span, "reached the recursion limit during monomorphization \ (selection ambiguity)"); } Err(e) => { span_bug!(span, "Encountered error `{:?}` selecting `{:?}` during trans", e, trait_ref) } }; debug!("fulfill_obligation: selection={:?}", selection); // Currently, we use a fulfillment context to completely resolve // all nested obligations. This is because they can inform the // inference of the impl's type parameters. let mut fulfill_cx = traits::FulfillmentContext::new(); let vtable = selection.map(|predicate| { debug!("fulfill_obligation: register_predicate_obligation {:?}", predicate); fulfill_cx.register_predicate_obligation(&infcx, predicate); }); let vtable = infcx.drain_fulfillment_cx_or_panic(span, &mut fulfill_cx, &vtable); info!("Cache miss: {:?} => {:?}", trait_ref, vtable); vtable }) }) } pub fn langcall(tcx: TyCtxt, span: Option, msg: &str, li: LangItem) -> DefId { match tcx.lang_items.require(li) { Ok(id) => id, Err(s) => { let msg = format!("{} {}", msg, s); match span { Some(span) => tcx.sess.span_fatal(span, &msg[..]), None => tcx.sess.fatal(&msg[..]), } } } } // To avoid UB from LLVM, these two functions mask RHS with an // appropriate mask unconditionally (i.e. the fallback behavior for // all shifts). For 32- and 64-bit types, this matches the semantics // of Java. (See related discussion on #1877 and #10183.) pub fn build_unchecked_lshift<'a, 'tcx>( bcx: &BlockAndBuilder<'a, 'tcx>, lhs: ValueRef, rhs: ValueRef ) -> ValueRef { let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShl, lhs, rhs); // #1877, #10183: Ensure that input is always valid let rhs = shift_mask_rhs(bcx, rhs); bcx.shl(lhs, rhs) } pub fn build_unchecked_rshift<'a, 'tcx>( bcx: &BlockAndBuilder<'a, 'tcx>, lhs_t: Ty<'tcx>, lhs: ValueRef, rhs: ValueRef ) -> ValueRef { let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShr, lhs, rhs); // #1877, #10183: Ensure that input is always valid let rhs = shift_mask_rhs(bcx, rhs); let is_signed = lhs_t.is_signed(); if is_signed { bcx.ashr(lhs, rhs) } else { bcx.lshr(lhs, rhs) } } fn shift_mask_rhs<'a, 'tcx>(bcx: &BlockAndBuilder<'a, 'tcx>, rhs: ValueRef) -> ValueRef { let rhs_llty = val_ty(rhs); bcx.and(rhs, shift_mask_val(bcx, rhs_llty, rhs_llty, false)) } pub fn shift_mask_val<'a, 'tcx>( bcx: &BlockAndBuilder<'a, 'tcx>, llty: Type, mask_llty: Type, invert: bool ) -> ValueRef { let kind = llty.kind(); match kind { TypeKind::Integer => { // i8/u8 can shift by at most 7, i16/u16 by at most 15, etc. let val = llty.int_width() - 1; if invert { C_integral(mask_llty, !val, true) } else { C_integral(mask_llty, val, false) } }, TypeKind::Vector => { let mask = shift_mask_val(bcx, llty.element_type(), mask_llty.element_type(), invert); bcx.vector_splat(mask_llty.vector_length(), mask) }, _ => bug!("shift_mask_val: expected Integer or Vector, found {:?}", kind), } } pub fn ty_fn_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> Cow<'tcx, ty::BareFnTy<'tcx>> { match ty.sty { ty::TyFnDef(_, _, fty) => Cow::Borrowed(fty), // Shims currently have type TyFnPtr. Not sure this should remain. ty::TyFnPtr(fty) => Cow::Borrowed(fty), ty::TyClosure(def_id, substs) => { let tcx = ccx.tcx(); let ty::ClosureTy { unsafety, abi, sig } = tcx.closure_type(def_id, substs); let env_region = ty::ReLateBound(ty::DebruijnIndex::new(1), ty::BrEnv); let env_ty = match tcx.closure_kind(def_id) { ty::ClosureKind::Fn => tcx.mk_imm_ref(tcx.mk_region(env_region), ty), ty::ClosureKind::FnMut => tcx.mk_mut_ref(tcx.mk_region(env_region), ty), ty::ClosureKind::FnOnce => ty, }; let sig = sig.map_bound(|sig| tcx.mk_fn_sig( iter::once(env_ty).chain(sig.inputs().iter().cloned()), sig.output(), sig.variadic )); Cow::Owned(ty::BareFnTy { unsafety: unsafety, abi: abi, sig: sig }) } _ => bug!("unexpected type {:?} to ty_fn_sig", ty) } } pub fn is_closure(tcx: TyCtxt, def_id: DefId) -> bool { tcx.def_key(def_id).disambiguated_data.data == DefPathData::ClosureExpr }