// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utility mixins that apply to all Readers and Writers // XXX: Not sure how this should be structured // XXX: Iteration should probably be considered separately use uint; use int; use iter::Iterator; use vec; use rt::io::{Reader, Writer, Decorator}; use rt::io::{read_error, standard_error, EndOfFile, DEFAULT_BUF_SIZE}; use option::{Option, Some, None}; use unstable::finally::Finally; use cast; use io::{u64_to_le_bytes, u64_to_be_bytes}; pub trait ReaderUtil { /// Reads a single byte. Returns `None` on EOF. /// /// # Failure /// /// Raises the same conditions as the `read` method. Returns /// `None` if the condition is handled. fn read_byte(&mut self) -> Option; /// Reads `len` bytes and appends them to a vector. /// /// May push fewer than the requested number of bytes on error /// or EOF. Returns true on success, false on EOF or error. /// /// # Failure /// /// Raises the same conditions as `read`. Additionally raises `read_error` /// on EOF. If `read_error` is handled then `push_bytes` may push less /// than the requested number of bytes. fn push_bytes(&mut self, buf: &mut ~[u8], len: uint); /// Reads `len` bytes and gives you back a new vector of length `len` /// /// # Failure /// /// Raises the same conditions as `read`. Additionally raises `read_error` /// on EOF. If `read_error` is handled then the returned vector may /// contain less than the requested number of bytes. fn read_bytes(&mut self, len: uint) -> ~[u8]; /// Reads all remaining bytes from the stream. /// /// # Failure /// /// Raises the same conditions as the `read` method. fn read_to_end(&mut self) -> ~[u8]; /// Create an iterator that reads a single byte on /// each iteration, until EOF. /// /// # Failure /// /// Raises the same conditions as the `read` method, for /// each call to its `.next()` method. /// Ends the iteration if the condition is handled. fn bytes(self) -> ByteIterator; } pub trait ReaderByteConversions { /// Reads `n` little-endian unsigned integer bytes. /// /// `n` must be between 1 and 8, inclusive. fn read_le_uint_n_(&mut self, nbytes: uint) -> u64; /// Reads `n` little-endian signed integer bytes. /// /// `n` must be between 1 and 8, inclusive. fn read_le_int_n_(&mut self, nbytes: uint) -> i64; /// Reads `n` big-endian unsigned integer bytes. /// /// `n` must be between 1 and 8, inclusive. fn read_be_uint_n_(&mut self, nbytes: uint) -> u64; /// Reads `n` big-endian signed integer bytes. /// /// `n` must be between 1 and 8, inclusive. fn read_be_int_n_(&mut self, nbytes: uint) -> i64; /// Reads a little-endian unsigned integer. /// /// The number of bytes returned is system-dependant. fn read_le_uint_(&mut self) -> uint; /// Reads a little-endian integer. /// /// The number of bytes returned is system-dependant. fn read_le_int_(&mut self) -> int; /// Reads a big-endian unsigned integer. /// /// The number of bytes returned is system-dependant. fn read_be_uint_(&mut self) -> uint; /// Reads a big-endian integer. /// /// The number of bytes returned is system-dependant. fn read_be_int_(&mut self) -> int; /// Reads a big-endian `u64`. /// /// `u64`s are 8 bytes long. fn read_be_u64_(&mut self) -> u64; /// Reads a big-endian `u32`. /// /// `u32`s are 4 bytes long. fn read_be_u32_(&mut self) -> u32; /// Reads a big-endian `u16`. /// /// `u16`s are 2 bytes long. fn read_be_u16_(&mut self) -> u16; /// Reads a big-endian `i64`. /// /// `i64`s are 8 bytes long. fn read_be_i64_(&mut self) -> i64; /// Reads a big-endian `i32`. /// /// `i32`s are 4 bytes long. fn read_be_i32_(&mut self) -> i32; /// Reads a big-endian `i16`. /// /// `i16`s are 2 bytes long. fn read_be_i16_(&mut self) -> i16; /// Reads a big-endian `f64`. /// /// `f64`s are 8 byte, IEEE754 double-precision floating point numbers. fn read_be_f64_(&mut self) -> f64; /// Reads a big-endian `f32`. /// /// `f32`s are 4 byte, IEEE754 single-precision floating point numbers. fn read_be_f32_(&mut self) -> f32; /// Reads a little-endian `u64`. /// /// `u64`s are 8 bytes long. fn read_le_u64_(&mut self) -> u64; /// Reads a little-endian `u32`. /// /// `u32`s are 4 bytes long. fn read_le_u32_(&mut self) -> u32; /// Reads a little-endian `u16`. /// /// `u16`s are 2 bytes long. fn read_le_u16_(&mut self) -> u16; /// Reads a little-endian `i64`. /// /// `i64`s are 8 bytes long. fn read_le_i64_(&mut self) -> i64; /// Reads a little-endian `i32`. /// /// `i32`s are 4 bytes long. fn read_le_i32_(&mut self) -> i32; /// Reads a little-endian `i16`. /// /// `i16`s are 2 bytes long. fn read_le_i16_(&mut self) -> i16; /// Reads a little-endian `f64`. /// /// `f64`s are 8 byte, IEEE754 double-precision floating point numbers. fn read_le_f64_(&mut self) -> f64; /// Reads a little-endian `f32`. /// /// `f32`s are 4 byte, IEEE754 single-precision floating point numbers. fn read_le_f32_(&mut self) -> f32; /// Read a u8. /// /// `u8`s are 1 byte. fn read_u8_(&mut self) -> u8; /// Read an i8. /// /// `i8`s are 1 byte. fn read_i8_(&mut self) -> i8; } pub trait WriterByteConversions { /// Write the result of passing n through `int::to_str_bytes`. fn write_int_(&mut self, n: int); /// Write the result of passing n through `uint::to_str_bytes`. fn write_uint_(&mut self, n: uint); /// Write a little-endian uint (number of bytes depends on system). fn write_le_uint_(&mut self, n: uint); /// Write a little-endian int (number of bytes depends on system). fn write_le_int_(&mut self, n: int); /// Write a big-endian uint (number of bytes depends on system). fn write_be_uint_(&mut self, n: uint); /// Write a big-endian int (number of bytes depends on system). fn write_be_int_(&mut self, n: int); /// Write a big-endian u64 (8 bytes). fn write_be_u64_(&mut self, n: u64); /// Write a big-endian u32 (4 bytes). fn write_be_u32_(&mut self, n: u32); /// Write a big-endian u16 (2 bytes). fn write_be_u16_(&mut self, n: u16); /// Write a big-endian i64 (8 bytes). fn write_be_i64_(&mut self, n: i64); /// Write a big-endian i32 (4 bytes). fn write_be_i32_(&mut self, n: i32); /// Write a big-endian i16 (2 bytes). fn write_be_i16_(&mut self, n: i16); /// Write a big-endian IEEE754 double-precision floating-point (8 bytes). fn write_be_f64_(&mut self, f: f64); /// Write a big-endian IEEE754 single-precision floating-point (4 bytes). fn write_be_f32_(&mut self, f: f32); /// Write a little-endian u64 (8 bytes). fn write_le_u64_(&mut self, n: u64); /// Write a little-endian u32 (4 bytes). fn write_le_u32_(&mut self, n: u32); /// Write a little-endian u16 (2 bytes). fn write_le_u16_(&mut self, n: u16); /// Write a little-endian i64 (8 bytes). fn write_le_i64_(&mut self, n: i64); /// Write a little-endian i32 (4 bytes). fn write_le_i32_(&mut self, n: i32); /// Write a little-endian i16 (2 bytes). fn write_le_i16_(&mut self, n: i16); /// Write a little-endian IEEE754 double-precision floating-point /// (8 bytes). fn write_le_f64_(&mut self, f: f64); /// Write a little-endian IEEE754 single-precision floating-point /// (4 bytes). fn write_le_f32_(&mut self, f: f32); /// Write a u8 (1 byte). fn write_u8_(&mut self, n: u8); /// Write a i8 (1 byte). fn write_i8_(&mut self, n: i8); } impl ReaderUtil for T { fn read_byte(&mut self) -> Option { let mut buf = [0]; match self.read(buf) { Some(0) => { debug!("read 0 bytes. trying again"); self.read_byte() } Some(1) => Some(buf[0]), Some(_) => unreachable!(), None => None } } fn push_bytes(&mut self, buf: &mut ~[u8], len: uint) { unsafe { let start_len = buf.len(); let mut total_read = 0; buf.reserve_additional(len); vec::raw::set_len(buf, start_len + len); do (|| { while total_read < len { let len = buf.len(); let slice = buf.mut_slice(start_len + total_read, len); match self.read(slice) { Some(nread) => { total_read += nread; } None => { read_error::cond.raise(standard_error(EndOfFile)); break; } } } }).finally { vec::raw::set_len(buf, start_len + total_read); } } } fn read_bytes(&mut self, len: uint) -> ~[u8] { let mut buf = vec::with_capacity(len); self.push_bytes(&mut buf, len); return buf; } fn read_to_end(&mut self) -> ~[u8] { let mut buf = vec::with_capacity(DEFAULT_BUF_SIZE); let mut keep_reading = true; do read_error::cond.trap(|e| { if e.kind == EndOfFile { keep_reading = false; } else { read_error::cond.raise(e) } }).inside { while keep_reading { self.push_bytes(&mut buf, DEFAULT_BUF_SIZE) } } return buf; } fn bytes(self) -> ByteIterator { ByteIterator{reader: self} } } /// An iterator that reads a single byte on each iteration, /// until `.read_byte()` returns `None`. /// /// # Notes about the Iteration Protocol /// /// The `ByteIterator` may yield `None` and thus terminate /// an iteration, but continue to yield elements if iteration /// is attempted again. /// /// # Failure /// /// Raises the same conditions as the `read` method, for /// each call to its `.next()` method. /// Yields `None` if the condition is handled. pub struct ByteIterator { priv reader: T, } impl Decorator for ByteIterator { fn inner(self) -> R { self.reader } fn inner_ref<'a>(&'a self) -> &'a R { &self.reader } fn inner_mut_ref<'a>(&'a mut self) -> &'a mut R { &mut self.reader } } impl<'self, R: Reader> Iterator for ByteIterator { #[inline] fn next(&mut self) -> Option { self.reader.read_byte() } } impl ReaderByteConversions for T { fn read_le_uint_n_(&mut self, nbytes: uint) -> u64 { assert!(nbytes > 0 && nbytes <= 8); let mut val = 0u64; let mut pos = 0; let mut i = nbytes; while i > 0 { val += (self.read_u8_() as u64) << pos; pos += 8; i -= 1; } val } fn read_le_int_n_(&mut self, nbytes: uint) -> i64 { extend_sign(self.read_le_uint_n_(nbytes), nbytes) } fn read_be_uint_n_(&mut self, nbytes: uint) -> u64 { assert!(nbytes > 0 && nbytes <= 8); let mut val = 0u64; let mut i = nbytes; while i > 0 { i -= 1; val += (self.read_u8_() as u64) << i * 8; } val } fn read_be_int_n_(&mut self, nbytes: uint) -> i64 { extend_sign(self.read_be_uint_n_(nbytes), nbytes) } fn read_le_uint_(&mut self) -> uint { self.read_le_uint_n_(uint::bytes) as uint } fn read_le_int_(&mut self) -> int { self.read_le_int_n_(int::bytes) as int } fn read_be_uint_(&mut self) -> uint { self.read_be_uint_n_(uint::bytes) as uint } fn read_be_int_(&mut self) -> int { self.read_be_int_n_(int::bytes) as int } fn read_be_u64_(&mut self) -> u64 { self.read_be_uint_n_(8) as u64 } fn read_be_u32_(&mut self) -> u32 { self.read_be_uint_n_(4) as u32 } fn read_be_u16_(&mut self) -> u16 { self.read_be_uint_n_(2) as u16 } fn read_be_i64_(&mut self) -> i64 { self.read_be_int_n_(8) as i64 } fn read_be_i32_(&mut self) -> i32 { self.read_be_int_n_(4) as i32 } fn read_be_i16_(&mut self) -> i16 { self.read_be_int_n_(2) as i16 } fn read_be_f64_(&mut self) -> f64 { unsafe { cast::transmute::(self.read_be_u64_()) } } fn read_be_f32_(&mut self) -> f32 { unsafe { cast::transmute::(self.read_be_u32_()) } } fn read_le_u64_(&mut self) -> u64 { self.read_le_uint_n_(8) as u64 } fn read_le_u32_(&mut self) -> u32 { self.read_le_uint_n_(4) as u32 } fn read_le_u16_(&mut self) -> u16 { self.read_le_uint_n_(2) as u16 } fn read_le_i64_(&mut self) -> i64 { self.read_le_int_n_(8) as i64 } fn read_le_i32_(&mut self) -> i32 { self.read_le_int_n_(4) as i32 } fn read_le_i16_(&mut self) -> i16 { self.read_le_int_n_(2) as i16 } fn read_le_f64_(&mut self) -> f64 { unsafe { cast::transmute::(self.read_le_u64_()) } } fn read_le_f32_(&mut self) -> f32 { unsafe { cast::transmute::(self.read_le_u32_()) } } fn read_u8_(&mut self) -> u8 { match self.read_byte() { Some(b) => b as u8, None => 0 } } fn read_i8_(&mut self) -> i8 { match self.read_byte() { Some(b) => b as i8, None => 0 } } } impl WriterByteConversions for T { fn write_int_(&mut self, n: int) { int::to_str_bytes(n, 10u, |bytes| self.write(bytes)) } fn write_uint_(&mut self, n: uint) { uint::to_str_bytes(n, 10u, |bytes| self.write(bytes)) } fn write_le_uint_(&mut self, n: uint) { u64_to_le_bytes(n as u64, uint::bytes, |v| self.write(v)) } fn write_le_int_(&mut self, n: int) { u64_to_le_bytes(n as u64, int::bytes, |v| self.write(v)) } fn write_be_uint_(&mut self, n: uint) { u64_to_be_bytes(n as u64, uint::bytes, |v| self.write(v)) } fn write_be_int_(&mut self, n: int) { u64_to_be_bytes(n as u64, int::bytes, |v| self.write(v)) } fn write_be_u64_(&mut self, n: u64) { u64_to_be_bytes(n, 8u, |v| self.write(v)) } fn write_be_u32_(&mut self, n: u32) { u64_to_be_bytes(n as u64, 4u, |v| self.write(v)) } fn write_be_u16_(&mut self, n: u16) { u64_to_be_bytes(n as u64, 2u, |v| self.write(v)) } fn write_be_i64_(&mut self, n: i64) { u64_to_be_bytes(n as u64, 8u, |v| self.write(v)) } fn write_be_i32_(&mut self, n: i32) { u64_to_be_bytes(n as u64, 4u, |v| self.write(v)) } fn write_be_i16_(&mut self, n: i16) { u64_to_be_bytes(n as u64, 2u, |v| self.write(v)) } fn write_be_f64_(&mut self, f: f64) { unsafe { self.write_be_u64_(cast::transmute(f)) } } fn write_be_f32_(&mut self, f: f32) { unsafe { self.write_be_u32_(cast::transmute(f)) } } fn write_le_u64_(&mut self, n: u64) { u64_to_le_bytes(n, 8u, |v| self.write(v)) } fn write_le_u32_(&mut self, n: u32) { u64_to_le_bytes(n as u64, 4u, |v| self.write(v)) } fn write_le_u16_(&mut self, n: u16) { u64_to_le_bytes(n as u64, 2u, |v| self.write(v)) } fn write_le_i64_(&mut self, n: i64) { u64_to_le_bytes(n as u64, 8u, |v| self.write(v)) } fn write_le_i32_(&mut self, n: i32) { u64_to_le_bytes(n as u64, 4u, |v| self.write(v)) } fn write_le_i16_(&mut self, n: i16) { u64_to_le_bytes(n as u64, 2u, |v| self.write(v)) } fn write_le_f64_(&mut self, f: f64) { unsafe { self.write_le_u64_(cast::transmute(f)) } } fn write_le_f32_(&mut self, f: f32) { unsafe { self.write_le_u32_(cast::transmute(f)) } } fn write_u8_(&mut self, n: u8) { self.write([n]) } fn write_i8_(&mut self, n: i8) { self.write([n as u8]) } } fn extend_sign(val: u64, nbytes: uint) -> i64 { let shift = (8 - nbytes) * 8; (val << shift) as i64 >> shift } #[cfg(test)] mod test { use super::ReaderUtil; use option::{Some, None}; use cell::Cell; use rt::io::mem::{MemReader, MemWriter}; use rt::io::mock::MockReader; use rt::io::{read_error, placeholder_error}; #[test] fn read_byte() { let mut reader = MemReader::new(~[10]); let byte = reader.read_byte(); assert!(byte == Some(10)); } #[test] fn read_byte_0_bytes() { let mut reader = MockReader::new(); let count = Cell::new(0); reader.read = |buf| { do count.with_mut_ref |count| { if *count == 0 { *count = 1; Some(0) } else { buf[0] = 10; Some(1) } } }; let byte = reader.read_byte(); assert!(byte == Some(10)); } #[test] fn read_byte_eof() { let mut reader = MockReader::new(); reader.read = |_| None; let byte = reader.read_byte(); assert!(byte == None); } #[test] fn read_byte_error() { let mut reader = MockReader::new(); reader.read = |_| { read_error::cond.raise(placeholder_error()); None }; do read_error::cond.trap(|_| { }).inside { let byte = reader.read_byte(); assert!(byte == None); } } #[test] fn bytes_0_bytes() { let mut reader = MockReader::new(); let count = Cell::new(0); reader.read = |buf| { do count.with_mut_ref |count| { if *count == 0 { *count = 1; Some(0) } else { buf[0] = 10; Some(1) } } }; let byte = reader.bytes().next(); assert!(byte == Some(10)); } #[test] fn bytes_eof() { let mut reader = MockReader::new(); reader.read = |_| None; let byte = reader.bytes().next(); assert!(byte == None); } #[test] fn bytes_error() { let mut reader = MockReader::new(); reader.read = |_| { read_error::cond.raise(placeholder_error()); None }; let mut it = reader.bytes(); do read_error::cond.trap(|_| ()).inside { let byte = it.next(); assert!(byte == None); } } #[test] fn read_bytes() { let mut reader = MemReader::new(~[10, 11, 12, 13]); let bytes = reader.read_bytes(4); assert!(bytes == ~[10, 11, 12, 13]); } #[test] fn read_bytes_partial() { let mut reader = MockReader::new(); let count = Cell::new(0); reader.read = |buf| { do count.with_mut_ref |count| { if *count == 0 { *count = 1; buf[0] = 10; buf[1] = 11; Some(2) } else { buf[0] = 12; buf[1] = 13; Some(2) } } }; let bytes = reader.read_bytes(4); assert!(bytes == ~[10, 11, 12, 13]); } #[test] fn read_bytes_eof() { let mut reader = MemReader::new(~[10, 11]); do read_error::cond.trap(|_| { }).inside { assert!(reader.read_bytes(4) == ~[10, 11]); } } #[test] fn push_bytes() { let mut reader = MemReader::new(~[10, 11, 12, 13]); let mut buf = ~[8, 9]; reader.push_bytes(&mut buf, 4); assert!(buf == ~[8, 9, 10, 11, 12, 13]); } #[test] fn push_bytes_partial() { let mut reader = MockReader::new(); let count = Cell::new(0); reader.read = |buf| { do count.with_mut_ref |count| { if *count == 0 { *count = 1; buf[0] = 10; buf[1] = 11; Some(2) } else { buf[0] = 12; buf[1] = 13; Some(2) } } }; let mut buf = ~[8, 9]; reader.push_bytes(&mut buf, 4); assert!(buf == ~[8, 9, 10, 11, 12, 13]); } #[test] fn push_bytes_eof() { let mut reader = MemReader::new(~[10, 11]); let mut buf = ~[8, 9]; do read_error::cond.trap(|_| { }).inside { reader.push_bytes(&mut buf, 4); assert!(buf == ~[8, 9, 10, 11]); } } #[test] fn push_bytes_error() { let mut reader = MockReader::new(); let count = Cell::new(0); reader.read = |buf| { do count.with_mut_ref |count| { if *count == 0 { *count = 1; buf[0] = 10; Some(1) } else { read_error::cond.raise(placeholder_error()); None } } }; let mut buf = ~[8, 9]; do read_error::cond.trap(|_| { } ).inside { reader.push_bytes(&mut buf, 4); } assert!(buf == ~[8, 9, 10]); } #[test] #[should_fail] fn push_bytes_fail_reset_len() { // push_bytes unsafely sets the vector length. This is testing that // upon failure the length is reset correctly. let mut reader = MockReader::new(); let count = Cell::new(0); reader.read = |buf| { do count.with_mut_ref |count| { if *count == 0 { *count = 1; buf[0] = 10; Some(1) } else { read_error::cond.raise(placeholder_error()); None } } }; let buf = @mut ~[8, 9]; do (|| { reader.push_bytes(&mut *buf, 4); }).finally { // NB: Using rtassert here to trigger abort on failure since this is a should_fail test // FIXME: #7049 This fails because buf is still borrowed //rtassert!(*buf == ~[8, 9, 10]); } } #[test] fn read_to_end() { let mut reader = MockReader::new(); let count = Cell::new(0); reader.read = |buf| { do count.with_mut_ref |count| { if *count == 0 { *count = 1; buf[0] = 10; buf[1] = 11; Some(2) } else if *count == 1 { *count = 2; buf[0] = 12; buf[1] = 13; Some(2) } else { None } } }; let buf = reader.read_to_end(); assert!(buf == ~[10, 11, 12, 13]); } #[test] #[should_fail] fn read_to_end_error() { let mut reader = MockReader::new(); let count = Cell::new(0); reader.read = |buf| { do count.with_mut_ref |count| { if *count == 0 { *count = 1; buf[0] = 10; buf[1] = 11; Some(2) } else { read_error::cond.raise(placeholder_error()); None } } }; let buf = reader.read_to_end(); assert!(buf == ~[10, 11]); } #[test] fn test_read_write_le_mem() { let uints = [0, 1, 2, 42, 10_123, 100_123_456, ::u64::max_value]; let mut writer = MemWriter::new(); for i in uints.iter() { writer.write_le_u64_(*i); } let mut reader = MemReader::new(writer.inner()); for i in uints.iter() { assert!(reader.read_le_u64_() == *i); } } #[test] fn test_read_write_be() { let uints = [0, 1, 2, 42, 10_123, 100_123_456, ::u64::max_value]; let mut writer = MemWriter::new(); for i in uints.iter() { writer.write_be_u64_(*i); } let mut reader = MemReader::new(writer.inner()); for i in uints.iter() { assert!(reader.read_be_u64_() == *i); } } #[test] fn test_read_be_int_n() { let ints = [::i32::min_value, -123456, -42, -5, 0, 1, ::i32::max_value]; let mut writer = MemWriter::new(); for i in ints.iter() { writer.write_be_i32_(*i); } let mut reader = MemReader::new(writer.inner()); for i in ints.iter() { // this tests that the sign extension is working // (comparing the values as i32 would not test this) assert!(reader.read_be_int_n_(4) == *i as i64); } } #[test] fn test_read_f32() { //big-endian floating-point 8.1250 let buf = ~[0x41, 0x02, 0x00, 0x00]; let mut writer = MemWriter::new(); writer.write(buf); let mut reader = MemReader::new(writer.inner()); let f = reader.read_be_f32_(); assert!(f == 8.1250); } #[test] fn test_read_write_f32() { let f:f32 = 8.1250; let mut writer = MemWriter::new(); writer.write_be_f32_(f); writer.write_le_f32_(f); let mut reader = MemReader::new(writer.inner()); assert!(reader.read_be_f32_() == 8.1250); assert!(reader.read_le_f32_() == 8.1250); } }