use driver::session::Session; use metadata::csearch::{each_path, get_method_names_if_trait}; use metadata::csearch::{get_static_methods_if_impl, get_type_name_if_impl}; use metadata::cstore::find_use_stmt_cnum; use metadata::decoder::{def_like, dl_def, dl_field, dl_impl}; use middle::lang_items::LanguageItems; use middle::lint::{deny, allow, forbid, level, unused_imports, warn}; use middle::pat_util::{pat_bindings}; use syntax::ast::{_mod, add, arm}; use syntax::ast::{bind_by_ref, bind_by_implicit_ref, bind_by_value}; use syntax::ast::{bitand, bitor, bitxor}; use syntax::ast::{binding_mode, blk, capture_clause, class_ctor, class_dtor}; use syntax::ast::{crate, crate_num, decl_item}; use syntax::ast::{def, def_arg, def_binding, def_class, def_const, def_fn}; use syntax::ast::{def_foreign_mod, def_id, def_label, def_local, def_mod}; use syntax::ast::{def_prim_ty, def_region, def_self, def_ty, def_ty_param}; use syntax::ast::{def_typaram_binder, def_static_method}; use syntax::ast::{def_upvar, def_use, def_variant, expr, expr_assign_op}; use syntax::ast::{expr_binary, expr_cast, expr_field, expr_fn}; use syntax::ast::{expr_fn_block, expr_index, expr_path}; use syntax::ast::{def_prim_ty, def_region, def_self, def_ty, def_ty_param}; use syntax::ast::{def_upvar, def_use, def_variant, div, eq}; use syntax::ast::{enum_variant_kind, expr, expr_again, expr_assign_op}; use syntax::ast::{expr_binary, expr_break, expr_cast, expr_field, expr_fn}; use syntax::ast::{expr_fn_block, expr_index, expr_loop}; use syntax::ast::{expr_path, expr_struct, expr_unary, fn_decl}; use syntax::ast::{foreign_item, foreign_item_const, foreign_item_fn, ge}; use syntax::ast::{gt, ident, impure_fn, inherited, item, item_class}; use syntax::ast::{item_const, item_enum, item_fn, item_foreign_mod}; use syntax::ast::{item_impl, item_mac, item_mod, item_trait, item_ty, le}; use syntax::ast::{local, local_crate, lt, method, mode, module_ns, mul, ne}; use syntax::ast::{neg, node_id, pat, pat_enum, pat_ident, path, prim_ty}; use syntax::ast::{pat_box, pat_lit, pat_range, pat_rec, pat_struct}; use syntax::ast::{pat_tup, pat_uniq, pat_wild, private, provided, public}; use syntax::ast::{required, rem, self_ty_, shl, shr, stmt_decl}; use syntax::ast::{struct_field, struct_variant_kind, sty_static, subtract}; use syntax::ast::{trait_ref, tuple_variant_kind, Ty, ty_bool, ty_char}; use syntax::ast::{ty_f, ty_f32, ty_f64, ty_float, ty_i, ty_i16, ty_i32}; use syntax::ast::{ty_i64, ty_i8, ty_int, ty_param, ty_path, ty_str, ty_u}; use syntax::ast::{ty_u16, ty_u32, ty_u64, ty_u8, ty_uint, type_value_ns}; use syntax::ast::{ty_param_bound, unnamed_field}; use syntax::ast::{variant, view_item, view_item_export, view_item_import}; use syntax::ast::{view_item_use, view_path_glob, view_path_list}; use syntax::ast::{view_path_simple, visibility, anonymous, named}; use syntax::ast_util::{def_id_of_def, dummy_sp, local_def}; use syntax::ast_util::{path_to_ident, walk_pat, trait_method_to_ty_method}; use syntax::attr::{attr_metas, contains_name}; use syntax::print::pprust::{pat_to_str, path_to_str}; use syntax::codemap::span; use syntax::visit::{default_visitor, fk_method, mk_vt, visit_block}; use syntax::visit::{visit_crate, visit_expr, visit_expr_opt, visit_fn}; use syntax::visit::{visit_foreign_item, visit_item, visit_method_helper}; use syntax::visit::{visit_mod, visit_ty, vt}; use box::ptr_eq; use dvec::DVec; use option::{get, is_some}; use str::{connect, split_str}; use vec::pop; use syntax::parse::token::ident_interner; use std::list::{Cons, List, Nil}; use std::map::HashMap; use str_eq = str::eq; // Definition mapping type DefMap = HashMap; struct binding_info { span: span, binding_mode: binding_mode, } // Map from the name in a pattern to its binding mode. type BindingMap = HashMap; // Implementation resolution // // XXX: This kind of duplicates information kept in ty::method. Maybe it // should go away. type MethodInfo = { did: def_id, n_tps: uint, ident: ident, self_type: self_ty_ }; type Impl = { did: def_id, ident: ident, methods: ~[@MethodInfo] }; // Trait method resolution type TraitMap = @HashMap>; // This is the replacement export map. It maps a module to all of the exports // within. type ExportMap2 = HashMap; struct Export2 { name: ~str, // The name of the target. def_id: def_id, // The definition of the target. reexport: bool, // Whether this is a reexport. } enum PatternBindingMode { RefutableMode, LocalIrrefutableMode, ArgumentIrrefutableMode(mode) } impl PatternBindingMode : cmp::Eq { pure fn eq(other: &PatternBindingMode) -> bool { match self { RefutableMode => { match *other { RefutableMode => true, _ => false } } LocalIrrefutableMode => { match *other { LocalIrrefutableMode => true, _ => false } } ArgumentIrrefutableMode(mode_a) => { match *other { ArgumentIrrefutableMode(mode_b) => mode_a == mode_b, _ => false } } } } pure fn ne(other: &PatternBindingMode) -> bool { !self.eq(other) } } enum Namespace { TypeNS, ValueNS } enum NamespaceResult { UnknownResult, UnboundResult, BoundResult(@Module, @NameBindings) } impl NamespaceResult { pure fn is_unknown() -> bool { match self { UnknownResult => true, _ => false } } } enum NameDefinition { NoNameDefinition, //< The name was unbound. ChildNameDefinition(def), //< The name identifies an immediate child. ImportNameDefinition(def) //< The name identifies an import. } enum Mutability { Mutable, Immutable } impl Mutability : cmp::Eq { pure fn eq(other: &Mutability) -> bool { (self as uint) == ((*other) as uint) } pure fn ne(other: &Mutability) -> bool { !self.eq(other) } } enum SelfBinding { NoSelfBinding, HasSelfBinding(node_id) } enum CaptureClause { NoCaptureClause, HasCaptureClause(capture_clause) } type ResolveVisitor = vt<()>; enum ImportDirectiveNS { TypeNSOnly, AnyNS } impl ImportDirectiveNS : cmp::Eq { pure fn eq(other: &ImportDirectiveNS) -> bool { (self as uint) == ((*other) as uint) } pure fn ne(other: &ImportDirectiveNS) -> bool { !self.eq(other) } } /// Contains data for specific types of import directives. enum ImportDirectiveSubclass { SingleImport(ident /* target */, ident /* source */, ImportDirectiveNS), GlobImport } /// The context that we thread through while building the reduced graph. enum ReducedGraphParent { ModuleReducedGraphParent(@Module) } enum ResolveResult { Failed, // Failed to resolve the name. Indeterminate, // Couldn't determine due to unresolved globs. Success(T) // Successfully resolved the import. } impl ResolveResult { fn failed() -> bool { match self { Failed => true, _ => false } } fn indeterminate() -> bool { match self { Indeterminate => true, _ => false } } } enum TypeParameters/& { NoTypeParameters, //< No type parameters. HasTypeParameters(&~[ty_param], //< Type parameters. node_id, //< ID of the enclosing item // The index to start numbering the type parameters at. // This is zero if this is the outermost set of type // parameters, or equal to the number of outer type // parameters. For example, if we have: // // impl I { // fn method() { ... } // } // // The index at the method site will be 1, because the // outer T had index 0. uint, // The kind of the rib used for type parameters. RibKind) } // The rib kind controls the translation of argument or local definitions // (`def_arg` or `def_local`) to upvars (`def_upvar`). enum RibKind { // No translation needs to be applied. NormalRibKind, // We passed through a function scope at the given node ID. Translate // upvars as appropriate. FunctionRibKind(node_id /* func id */, node_id /* body id */), // We passed through a class, impl, or trait and are now in one of its // methods. Allow references to ty params that that class, impl or trait // binds. Disallow any other upvars (including other ty params that are // upvars). // parent; method itself MethodRibKind(node_id, MethodSort), // We passed through a function *item* scope. Disallow upvars. OpaqueFunctionRibKind, // We're in a constant item. Can't refer to dynamic stuff. ConstantItemRibKind } // Methods can be required or provided. Required methods only occur in traits. enum MethodSort { Required, Provided(node_id) } // The X-ray flag indicates that a context has the X-ray privilege, which // allows it to reference private names. Currently, this is used for the test // runner. // // XXX: The X-ray flag is kind of questionable in the first place. It might // be better to introduce an expr_xray_path instead. enum XrayFlag { NoXray, //< Private items cannot be accessed. Xray //< Private items can be accessed. } impl XrayFlag : cmp::Eq { pure fn eq(other: &XrayFlag) -> bool { (self as uint) == ((*other) as uint) } pure fn ne(other: &XrayFlag) -> bool { !self.eq(other) } } enum AllowCapturingSelfFlag { AllowCapturingSelf, //< The "self" definition can be captured. DontAllowCapturingSelf, //< The "self" definition cannot be captured. } impl AllowCapturingSelfFlag : cmp::Eq { pure fn eq(other: &AllowCapturingSelfFlag) -> bool { (self as uint) == ((*other) as uint) } pure fn ne(other: &AllowCapturingSelfFlag) -> bool { !self.eq(other) } } enum BareIdentifierPatternResolution { FoundStructOrEnumVariant(def), FoundConst(def), BareIdentifierPatternUnresolved } // Specifies how duplicates should be handled when adding a child item if // another item exists with the same name in some namespace. enum DuplicateCheckingMode { ForbidDuplicateModules, ForbidDuplicateTypes, ForbidDuplicateValues, ForbidDuplicateTypesAndValues, OverwriteDuplicates } impl DuplicateCheckingMode : cmp::Eq { pure fn eq(other: &DuplicateCheckingMode) -> bool { (self as uint) == (*other as uint) } pure fn ne(other: &DuplicateCheckingMode) -> bool { !self.eq(other) } } // Returns the namespace associated with the given duplicate checking mode, // or fails for OverwriteDuplicates. This is used for error messages. fn namespace_for_duplicate_checking_mode(mode: DuplicateCheckingMode) -> Namespace { match mode { ForbidDuplicateModules | ForbidDuplicateTypes | ForbidDuplicateTypesAndValues => TypeNS, ForbidDuplicateValues => ValueNS, OverwriteDuplicates => fail ~"OverwriteDuplicates has no namespace" } } /// One local scope. struct Rib { bindings: HashMap, kind: RibKind, } fn Rib(kind: RibKind) -> Rib { Rib { bindings: HashMap(), kind: kind } } /// One import directive. struct ImportDirective { privacy: Privacy, module_path: @DVec, subclass: @ImportDirectiveSubclass, span: span, } fn ImportDirective(privacy: Privacy, module_path: @DVec, subclass: @ImportDirectiveSubclass, span: span) -> ImportDirective { ImportDirective { privacy: privacy, module_path: module_path, subclass: subclass, span: span } } /// The item that an import resolves to. struct Target { target_module: @Module, bindings: @NameBindings, } fn Target(target_module: @Module, bindings: @NameBindings) -> Target { Target { target_module: target_module, bindings: bindings } } struct ImportResolution { privacy: Privacy, span: span, // The number of outstanding references to this name. When this reaches // zero, outside modules can count on the targets being correct. Before // then, all bets are off; future imports could override this name. mut outstanding_references: uint, mut value_target: Option, mut type_target: Option, mut used: bool, } fn ImportResolution(privacy: Privacy, span: span) -> ImportResolution { ImportResolution { privacy: privacy, span: span, outstanding_references: 0u, value_target: None, type_target: None, used: false } } impl ImportResolution { fn target_for_namespace(namespace: Namespace) -> Option { match namespace { TypeNS => return copy self.type_target, ValueNS => return copy self.value_target } } } /// The link from a module up to its nearest parent node. enum ParentLink { NoParentLink, ModuleParentLink(@Module, ident), BlockParentLink(@Module, node_id) } /// One node in the tree of modules. struct Module { parent_link: ParentLink, mut def_id: Option, children: HashMap, imports: DVec<@ImportDirective>, // The anonymous children of this node. Anonymous children are pseudo- // modules that are implicitly created around items contained within // blocks. // // For example, if we have this: // // fn f() { // fn g() { // ... // } // } // // There will be an anonymous module created around `g` with the ID of the // entry block for `f`. anonymous_children: HashMap, // XXX: This is about to be reworked so that exports are on individual // items, not names. // // The ident is the name of the exported item, while the node ID is the // ID of the export path. exported_names: HashMap, // XXX: This is a transition measure to let us switch export-evaluation // logic when compiling modules that have transitioned to listing their // pub/priv qualifications on items, explicitly, rather than using the // old export rule. legacy_exports: bool, // The status of resolving each import in this module. import_resolutions: HashMap, // The number of unresolved globs that this module exports. mut glob_count: uint, // The index of the import we're resolving. mut resolved_import_count: uint, } fn Module(parent_link: ParentLink, def_id: Option, legacy_exports: bool) -> Module { Module { parent_link: parent_link, def_id: def_id, children: HashMap(), imports: DVec(), anonymous_children: HashMap(), exported_names: HashMap(), legacy_exports: legacy_exports, import_resolutions: HashMap(), glob_count: 0u, resolved_import_count: 0u } } impl Module { fn all_imports_resolved() -> bool { return self.imports.len() == self.resolved_import_count; } } // XXX: This is a workaround due to is_none in the standard library mistakenly // requiring a T:copy. pure fn is_none(x: Option) -> bool { match x { None => return true, Some(_) => return false } } fn unused_import_lint_level(session: Session) -> level { for session.opts.lint_opts.each |lint_option_pair| { let (lint_type, lint_level) = *lint_option_pair; if lint_type == unused_imports { return lint_level; } } return allow; } enum Privacy { Private, Public } impl Privacy : cmp::Eq { pure fn eq(other: &Privacy) -> bool { (self as uint) == ((*other) as uint) } pure fn ne(other: &Privacy) -> bool { !self.eq(other) } } // Records a possibly-private type definition. struct TypeNsDef { mut privacy: Privacy, mut module_def: Option<@Module>, mut type_def: Option } // Records a possibly-private value definition. struct ValueNsDef { privacy: Privacy, def: def, } // Records the definitions (at most one for each namespace) that a name is // bound to. struct NameBindings { mut type_def: Option, //< Meaning in type namespace. mut value_def: Option, //< Meaning in value namespace. // For error reporting // FIXME (#3783): Merge me into TypeNsDef and ValueNsDef. mut type_span: Option, mut value_span: Option, } impl NameBindings { /// Creates a new module in this set of name bindings. fn define_module(privacy: Privacy, parent_link: ParentLink, def_id: Option, legacy_exports: bool, sp: span) { // Merges the module with the existing type def or creates a new one. let module_ = @Module(parent_link, def_id, legacy_exports); match self.type_def { None => { self.type_def = Some(TypeNsDef { privacy: privacy, module_def: Some(module_), type_def: None }); } Some(copy type_def) => { self.type_def = Some(TypeNsDef { privacy: privacy, module_def: Some(module_), .. type_def }); } } self.type_span = Some(sp); } /// Records a type definition. fn define_type(privacy: Privacy, def: def, sp: span) { // Merges the type with the existing type def or creates a new one. match self.type_def { None => { self.type_def = Some(TypeNsDef { privacy: privacy, module_def: None, type_def: Some(def) }); } Some(copy type_def) => { self.type_def = Some(TypeNsDef { privacy: privacy, type_def: Some(def), .. type_def }); } } self.type_span = Some(sp); } /// Records a value definition. fn define_value(privacy: Privacy, def: def, sp: span) { self.value_def = Some(ValueNsDef { privacy: privacy, def: def }); self.value_span = Some(sp); } /// Returns the module node if applicable. fn get_module_if_available() -> Option<@Module> { match self.type_def { Some(type_def) => type_def.module_def, None => None } } /** * Returns the module node. Fails if this node does not have a module * definition. */ fn get_module() -> @Module { match self.get_module_if_available() { None => { fail ~"get_module called on a node with no module \ definition!" } Some(module_def) => module_def } } fn defined_in_namespace(namespace: Namespace) -> bool { match namespace { TypeNS => return self.type_def.is_some(), ValueNS => return self.value_def.is_some() } } fn def_for_namespace(namespace: Namespace) -> Option { match namespace { TypeNS => { match self.type_def { None => None, Some(type_def) => { // FIXME (#3784): This is reallllly questionable. // Perhaps the right thing to do is to merge def_mod // and def_ty. match type_def.type_def { Some(type_def) => Some(type_def), None => { match type_def.module_def { Some(module_def) => { module_def.def_id.map(|def_id| def_mod(*def_id)) } None => None } } } } } } ValueNS => { match self.value_def { None => None, Some(value_def) => Some(value_def.def) } } } } fn privacy_for_namespace(namespace: Namespace) -> Option { match namespace { TypeNS => { match self.type_def { None => None, Some(type_def) => Some(type_def.privacy) } } ValueNS => { match self.value_def { None => None, Some(value_def) => Some(value_def.privacy) } } } } fn span_for_namespace(namespace: Namespace) -> Option { if self.defined_in_namespace(namespace) { match namespace { TypeNS => self.type_span, ValueNS => self.value_span, } } else { None } } } fn NameBindings() -> NameBindings { NameBindings { type_def: None, value_def: None, type_span: None, value_span: None } } /// Interns the names of the primitive types. struct PrimitiveTypeTable { primitive_types: HashMap, } impl PrimitiveTypeTable { fn intern(intr: @ident_interner, string: @~str, primitive_type: prim_ty) { let ident = intr.intern(string); self.primitive_types.insert(ident, primitive_type); } } fn PrimitiveTypeTable(intr: @ident_interner) -> PrimitiveTypeTable { let table = PrimitiveTypeTable { primitive_types: HashMap() }; table.intern(intr, @~"bool", ty_bool); table.intern(intr, @~"char", ty_int(ty_char)); table.intern(intr, @~"float", ty_float(ty_f)); table.intern(intr, @~"f32", ty_float(ty_f32)); table.intern(intr, @~"f64", ty_float(ty_f64)); table.intern(intr, @~"int", ty_int(ty_i)); table.intern(intr, @~"i8", ty_int(ty_i8)); table.intern(intr, @~"i16", ty_int(ty_i16)); table.intern(intr, @~"i32", ty_int(ty_i32)); table.intern(intr, @~"i64", ty_int(ty_i64)); table.intern(intr, @~"str", ty_str); table.intern(intr, @~"uint", ty_uint(ty_u)); table.intern(intr, @~"u8", ty_uint(ty_u8)); table.intern(intr, @~"u16", ty_uint(ty_u16)); table.intern(intr, @~"u32", ty_uint(ty_u32)); table.intern(intr, @~"u64", ty_uint(ty_u64)); return table; } fn namespace_to_str(ns: Namespace) -> ~str { match ns { TypeNS => ~"type", ValueNS => ~"value", } } fn has_legacy_export_attr(attrs: &[syntax::ast::attribute]) -> bool { for attrs.each |attribute| { match attribute.node.value.node { syntax::ast::meta_word(w) if w == ~"legacy_exports" => { return true; } _ => {} } } return false; } fn Resolver(session: Session, lang_items: LanguageItems, crate: @crate) -> Resolver { let graph_root = @NameBindings(); (*graph_root).define_module(Public, NoParentLink, Some({ crate: 0, node: 0 }), has_legacy_export_attr(crate.node.attrs), crate.span); let current_module = (*graph_root).get_module(); let self = Resolver { session: session, lang_items: copy lang_items, crate: crate, // The outermost module has def ID 0; this is not reflected in the // AST. graph_root: graph_root, unused_import_lint_level: unused_import_lint_level(session), trait_info: HashMap(), structs: HashMap(), unresolved_imports: 0u, current_module: current_module, value_ribs: @DVec(), type_ribs: @DVec(), label_ribs: @DVec(), xray_context: NoXray, current_trait_refs: None, self_ident: syntax::parse::token::special_idents::self_, primitive_type_table: @PrimitiveTypeTable(session. parse_sess.interner), namespaces: ~[ TypeNS, ValueNS ], def_map: HashMap(), export_map2: HashMap(), trait_map: @HashMap(), intr: session.intr() }; move self } /// The main resolver class. struct Resolver { session: Session, lang_items: LanguageItems, crate: @crate, intr: @ident_interner, graph_root: @NameBindings, unused_import_lint_level: level, trait_info: HashMap>, structs: HashMap, // The number of imports that are currently unresolved. mut unresolved_imports: uint, // The module that represents the current item scope. mut current_module: @Module, // The current set of local scopes, for values. // XXX: Reuse ribs to avoid allocation. value_ribs: @DVec<@Rib>, // The current set of local scopes, for types. type_ribs: @DVec<@Rib>, // The current set of local scopes, for labels. label_ribs: @DVec<@Rib>, // Whether the current context is an X-ray context. An X-ray context is // allowed to access private names of any module. mut xray_context: XrayFlag, // The trait that the current context can refer to. mut current_trait_refs: Option<@DVec>, // The ident for the keyword "self". self_ident: ident, // The idents for the primitive types. primitive_type_table: @PrimitiveTypeTable, // The four namespaces. namespaces: ~[Namespace], def_map: DefMap, export_map2: ExportMap2, trait_map: TraitMap, } impl Resolver { /// The main name resolution procedure. fn resolve(@self, this: @Resolver) { self.build_reduced_graph(this); self.session.abort_if_errors(); self.resolve_imports(); self.session.abort_if_errors(); self.record_exports(); self.session.abort_if_errors(); self.resolve_crate(); self.session.abort_if_errors(); self.check_for_unused_imports_if_necessary(); } // // Reduced graph building // // Here we build the "reduced graph": the graph of the module tree without // any imports resolved. // /// Constructs the reduced graph for the entire crate. fn build_reduced_graph(this: @Resolver) { let initial_parent = ModuleReducedGraphParent((*self.graph_root).get_module()); visit_crate(*self.crate, initial_parent, mk_vt(@{ visit_item: |item, context, visitor| (*this).build_reduced_graph_for_item(item, context, visitor), visit_foreign_item: |foreign_item, context, visitor| (*this).build_reduced_graph_for_foreign_item(foreign_item, context, visitor), visit_view_item: |view_item, context, visitor| (*this).build_reduced_graph_for_view_item(view_item, context, visitor), visit_block: |block, context, visitor| (*this).build_reduced_graph_for_block(block, context, visitor), .. *default_visitor() })); } fn visibility_to_privacy(visibility: visibility, legacy_exports: bool) -> Privacy { if legacy_exports { match visibility { inherited | public => Public, private => Private } } else { match visibility { public => Public, inherited | private => Private } } } /// Returns the current module tracked by the reduced graph parent. fn get_module_from_parent(reduced_graph_parent: ReducedGraphParent) -> @Module { match reduced_graph_parent { ModuleReducedGraphParent(module_) => { return module_; } } } /** * Adds a new child item to the module definition of the parent node and * returns its corresponding name bindings as well as the current parent. * Or, if we're inside a block, creates (or reuses) an anonymous module * corresponding to the innermost block ID and returns the name bindings * as well as the newly-created parent. * * If this node does not have a module definition and we are not inside * a block, fails. */ fn add_child(name: ident, reduced_graph_parent: ReducedGraphParent, duplicate_checking_mode: DuplicateCheckingMode, // For printing errors sp: span) -> (@NameBindings, ReducedGraphParent) { // If this is the immediate descendant of a module, then we add the // child name directly. Otherwise, we create or reuse an anonymous // module and add the child to that. let mut module_; match reduced_graph_parent { ModuleReducedGraphParent(parent_module) => { module_ = parent_module; } } // Add or reuse the child. let new_parent = ModuleReducedGraphParent(module_); match module_.children.find(name) { None => { let child = @NameBindings(); module_.children.insert(name, child); return (child, new_parent); } Some(child) => { // Enforce the duplicate checking mode. If we're requesting // duplicate module checking, check that there isn't a module // in the module with the same name. If we're requesting // duplicate type checking, check that there isn't a type in // the module with the same name. If we're requesting // duplicate value checking, check that there isn't a value in // the module with the same name. If we're requesting // duplicate type checking and duplicate value checking, check // that there isn't a duplicate type and a duplicate value // with the same name. If no duplicate checking was requested // at all, do nothing. let mut is_duplicate = false; match duplicate_checking_mode { ForbidDuplicateModules => { is_duplicate = child.get_module_if_available().is_some(); } ForbidDuplicateTypes => { match child.def_for_namespace(TypeNS) { Some(def_mod(_)) | None => {} Some(_) => is_duplicate = true } } ForbidDuplicateValues => { is_duplicate = child.defined_in_namespace(ValueNS); } ForbidDuplicateTypesAndValues => { match child.def_for_namespace(TypeNS) { Some(def_mod(_)) | None => {} Some(_) => is_duplicate = true }; if child.defined_in_namespace(ValueNS) { is_duplicate = true; } } OverwriteDuplicates => {} } if duplicate_checking_mode != OverwriteDuplicates && is_duplicate { // Return an error here by looking up the namespace that // had the duplicate. let ns = namespace_for_duplicate_checking_mode( duplicate_checking_mode); self.session.span_err(sp, fmt!("duplicate definition of %s %s", namespace_to_str(ns), self.session.str_of(name))); do child.span_for_namespace(ns).iter() |sp| { self.session.span_note(*sp, fmt!("first definition of %s %s here:", namespace_to_str(ns), self.session.str_of(name))); } } return (child, new_parent); } } } fn block_needs_anonymous_module(block: blk) -> bool { // If the block has view items, we need an anonymous module. if block.node.view_items.len() > 0u { return true; } // Check each statement. for block.node.stmts.each |statement| { match statement.node { stmt_decl(declaration, _) => { match declaration.node { decl_item(_) => { return true; } _ => { // Keep searching. } } } _ => { // Keep searching. } } } // If we found neither view items nor items, we don't need to create // an anonymous module. return false; } fn get_parent_link(parent: ReducedGraphParent, name: ident) -> ParentLink { match parent { ModuleReducedGraphParent(module_) => { return ModuleParentLink(module_, name); } } } /// Constructs the reduced graph for one item. fn build_reduced_graph_for_item(item: @item, parent: ReducedGraphParent, &&visitor: vt) { let ident = item.ident; let sp = item.span; let legacy = match parent { ModuleReducedGraphParent(m) => m.legacy_exports }; let privacy = self.visibility_to_privacy(item.vis, legacy); match item.node { item_mod(module_) => { let legacy = has_legacy_export_attr(item.attrs); let (name_bindings, new_parent) = self.add_child(ident, parent, ForbidDuplicateModules, sp); let parent_link = self.get_parent_link(new_parent, ident); let def_id = { crate: 0, node: item.id }; (*name_bindings).define_module(privacy, parent_link, Some(def_id), legacy, sp); let new_parent = ModuleReducedGraphParent((*name_bindings).get_module()); visit_mod(module_, sp, item.id, new_parent, visitor); } item_foreign_mod(fm) => { let legacy = has_legacy_export_attr(item.attrs); let new_parent = match fm.sort { named => { let (name_bindings, new_parent) = self.add_child(ident, parent, ForbidDuplicateModules, sp); let parent_link = self.get_parent_link(new_parent, ident); let def_id = { crate: 0, node: item.id }; (*name_bindings).define_module(privacy, parent_link, Some(def_id), legacy, sp); ModuleReducedGraphParent(name_bindings.get_module()) } // For anon foreign mods, the contents just go in the // current scope anonymous => parent }; visit_item(item, new_parent, visitor); } // These items live in the value namespace. item_const(*) => { let (name_bindings, _) = self.add_child(ident, parent, ForbidDuplicateValues, sp); (*name_bindings).define_value (privacy, def_const(local_def(item.id)), sp); } item_fn(_, purity, _, _) => { let (name_bindings, new_parent) = self.add_child(ident, parent, ForbidDuplicateValues, sp); let def = def_fn(local_def(item.id), purity); (*name_bindings).define_value(privacy, def, sp); visit_item(item, new_parent, visitor); } // These items live in the type namespace. item_ty(*) => { let (name_bindings, _) = self.add_child(ident, parent, ForbidDuplicateTypes, sp); (*name_bindings).define_type (privacy, def_ty(local_def(item.id)), sp); } item_enum(enum_definition, _) => { let (name_bindings, new_parent) = self.add_child(ident, parent, ForbidDuplicateTypes, sp); (*name_bindings).define_type (privacy, def_ty(local_def(item.id)), sp); for enum_definition.variants.each |variant| { self.build_reduced_graph_for_variant(*variant, local_def(item.id), privacy, new_parent, visitor); } } // These items live in both the type and value namespaces. item_class(struct_def, _) => { let (name_bindings, new_parent) = self.add_child(ident, parent, ForbidDuplicateTypes, sp); name_bindings.define_type( privacy, def_ty(local_def(item.id)), sp); // If this struct is tuple-like or enum-like, define a name // in the value namespace. match struct_def.ctor_id { None => {} Some(ctor_id) => { name_bindings.define_value( privacy, def_class(local_def(ctor_id)), sp); } } // Record the def ID of this struct. self.structs.insert(local_def(item.id), ()); visit_item(item, new_parent, visitor); } item_impl(_, trait_ref_opt, ty, methods) => { // If this implements an anonymous trait and it has static // methods, then add all the static methods within to a new // module, if the type was defined within this module. // // FIXME (#3785): This is quite unsatisfactory. Perhaps we // should modify anonymous traits to only be implementable in // the same module that declared the type. // Bail out early if there are no static methods. let mut has_static_methods = false; for methods.each |method| { match method.self_ty.node { sty_static => has_static_methods = true, _ => {} } } // If there are static methods, then create the module // and add them. match (trait_ref_opt, ty) { (None, @{ id: _, node: ty_path(path, _), span: _ }) if has_static_methods && path.idents.len() == 1 => { // Create the module. let name = path_to_ident(path); let (name_bindings, new_parent) = self.add_child(name, parent, ForbidDuplicateModules, sp); let parent_link = self.get_parent_link(new_parent, ident); let def_id = local_def(item.id); name_bindings.define_module(privacy, parent_link, Some(def_id), false, sp); let new_parent = ModuleReducedGraphParent( name_bindings.get_module()); // For each static method... for methods.each |method| { match method.self_ty.node { sty_static => { // Add the static method to the // module. let ident = method.ident; let (method_name_bindings, _) = self.add_child( ident, new_parent, ForbidDuplicateValues, method.span); let def = def_fn(local_def(method.id), method.purity); method_name_bindings.define_value( Public, def, method.span); } _ => {} } } } _ => {} } visit_item(item, parent, visitor); } item_trait(_, _, methods) => { let (name_bindings, new_parent) = self.add_child(ident, parent, ForbidDuplicateTypes, sp); // If the trait has static methods, then add all the static // methods within to a new module. // // We only need to create the module if the trait has static // methods, so check that first. let mut has_static_methods = false; for methods.each |method| { let ty_m = trait_method_to_ty_method(*method); match ty_m.self_ty.node { sty_static => { has_static_methods = true; break; } _ => {} } } // Create the module if necessary. let module_parent_opt; if has_static_methods { let parent_link = self.get_parent_link(parent, ident); name_bindings.define_module(privacy, parent_link, Some(local_def(item.id)), false, sp); module_parent_opt = Some(ModuleReducedGraphParent( name_bindings.get_module())); } else { module_parent_opt = None; } // Add the names of all the methods to the trait info. let method_names = @HashMap(); for methods.each |method| { let ty_m = trait_method_to_ty_method(*method); let ident = ty_m.ident; // Add it to the trait info if not static, // add it as a name in the trait module otherwise. match ty_m.self_ty.node { sty_static => { let def = def_static_method( local_def(ty_m.id), Some(local_def(item.id)), ty_m.purity); // For now, add to both the trait module and the // enclosing module, for backwards compatibility. let (method_name_bindings, _) = self.add_child(ident, new_parent, ForbidDuplicateValues, ty_m.span); method_name_bindings.define_value(Public, def, ty_m.span); let (method_name_bindings, _) = self.add_child(ident, module_parent_opt.get(), ForbidDuplicateValues, ty_m.span); method_name_bindings.define_value(Public, def, ty_m.span); } _ => { method_names.insert(ident, ()); } } } let def_id = local_def(item.id); self.trait_info.insert(def_id, method_names); (*name_bindings).define_type (privacy, def_ty(def_id), sp); visit_item(item, new_parent, visitor); } item_mac(*) => { fail ~"item macros unimplemented" } } } // Constructs the reduced graph for one variant. Variants exist in the // type and/or value namespaces. fn build_reduced_graph_for_variant(variant: variant, item_id: def_id, +parent_privacy: Privacy, parent: ReducedGraphParent, &&visitor: vt) { let ident = variant.node.name; let (child, _) = self.add_child(ident, parent, ForbidDuplicateValues, variant.span); let privacy; match variant.node.vis { public => privacy = Public, private => privacy = Private, inherited => privacy = parent_privacy } match variant.node.kind { tuple_variant_kind(_) => { (*child).define_value(privacy, def_variant(item_id, local_def(variant.node.id)), variant.span); } struct_variant_kind(_) => { (*child).define_type(privacy, def_variant(item_id, local_def(variant.node.id)), variant.span); self.structs.insert(local_def(variant.node.id), ()); } enum_variant_kind(enum_definition) => { (*child).define_type(privacy, def_ty(local_def(variant.node.id)), variant.span); for enum_definition.variants.each |variant| { self.build_reduced_graph_for_variant(*variant, item_id, parent_privacy, parent, visitor); } } } } /** * Constructs the reduced graph for one 'view item'. View items consist * of imports and use directives. */ fn build_reduced_graph_for_view_item(view_item: @view_item, parent: ReducedGraphParent, &&_visitor: vt) { let legacy = match parent { ModuleReducedGraphParent(m) => m.legacy_exports }; let privacy = self.visibility_to_privacy(view_item.vis, legacy); match view_item.node { view_item_import(view_paths) => { for view_paths.each |view_path| { // Extract and intern the module part of the path. For // globs and lists, the path is found directly in the AST; // for simple paths we have to munge the path a little. let module_path = @DVec(); match view_path.node { view_path_simple(_, full_path, _, _) => { let path_len = full_path.idents.len(); assert path_len != 0u; for full_path.idents.eachi |i, ident| { if i != path_len - 1u { (*module_path).push(*ident); } } } view_path_glob(module_ident_path, _) | view_path_list(module_ident_path, _, _) => { for module_ident_path.idents.each |ident| { (*module_path).push(*ident); } } } // Build up the import directives. let module_ = self.get_module_from_parent(parent); match view_path.node { view_path_simple(binding, full_path, ns, _) => { let ns = match ns { module_ns => TypeNSOnly, type_value_ns => AnyNS }; let source_ident = full_path.idents.last(); let subclass = @SingleImport(binding, source_ident, ns); self.build_import_directive(privacy, module_, module_path, subclass, view_path.span); } view_path_list(_, source_idents, _) => { for source_idents.each |source_ident| { let name = source_ident.node.name; let subclass = @SingleImport(name, name, AnyNS); self.build_import_directive(privacy, module_, module_path, subclass, view_path.span); } } view_path_glob(_, _) => { self.build_import_directive(privacy, module_, module_path, @GlobImport, view_path.span); } } } } view_item_export(view_paths) => { let module_ = self.get_module_from_parent(parent); for view_paths.each |view_path| { match view_path.node { view_path_simple(ident, full_path, _, ident_id) => { let last_ident = full_path.idents.last(); if last_ident != ident { self.session.span_err(view_item.span, ~"cannot export under \ a new name"); } if full_path.idents.len() != 1u { self.session.span_err( view_item.span, ~"cannot export an item \ that is not in this \ module"); } module_.exported_names.insert(ident, ident_id); } view_path_glob(*) => { self.session.span_err(view_item.span, ~"export globs are \ unsupported"); } view_path_list(path, path_list_idents, _) => { if path.idents.len() == 1u && path_list_idents.len() == 0u { self.session.span_warn(view_item.span, ~"this syntax for \ exporting no \ variants is \ unsupported; export \ variants \ individually"); } else { if path.idents.len() != 0u { self.session.span_err(view_item.span, ~"cannot export an \ item that is not \ in this module"); } for path_list_idents.each |path_list_ident| { let ident = path_list_ident.node.name; let id = path_list_ident.node.id; module_.exported_names.insert(ident, id); } } } } } } view_item_use(name, _, node_id) => { match find_use_stmt_cnum(self.session.cstore, node_id) { Some(crate_id) => { let (child_name_bindings, new_parent) = self.add_child(name, parent, ForbidDuplicateTypes, view_item.span); let def_id = { crate: crate_id, node: 0 }; let parent_link = ModuleParentLink (self.get_module_from_parent(new_parent), name); (*child_name_bindings).define_module(privacy, parent_link, Some(def_id), false, view_item.span); self.build_reduced_graph_for_external_crate ((*child_name_bindings).get_module()); } None => { /* Ignore. */ } } } } } /// Constructs the reduced graph for one foreign item. fn build_reduced_graph_for_foreign_item(foreign_item: @foreign_item, parent: ReducedGraphParent, &&visitor: vt) { let name = foreign_item.ident; let (name_bindings, new_parent) = self.add_child(name, parent, ForbidDuplicateValues, foreign_item.span); match foreign_item.node { foreign_item_fn(_, purity, type_parameters) => { let def = def_fn(local_def(foreign_item.id), purity); (*name_bindings).define_value(Public, def, foreign_item.span); do self.with_type_parameter_rib (HasTypeParameters(&type_parameters, foreign_item.id, 0u, NormalRibKind)) { visit_foreign_item(foreign_item, new_parent, visitor); } } foreign_item_const(*) => { let def = def_const(local_def(foreign_item.id)); (*name_bindings).define_value(Public, def, foreign_item.span); visit_foreign_item(foreign_item, new_parent, visitor); } } } fn build_reduced_graph_for_block(block: blk, parent: ReducedGraphParent, &&visitor: vt) { let mut new_parent; if self.block_needs_anonymous_module(block) { let block_id = block.node.id; debug!("(building reduced graph for block) creating a new \ anonymous module for block %d", block_id); let parent_module = self.get_module_from_parent(parent); let new_module = @Module(BlockParentLink(parent_module, block_id), None, false); parent_module.anonymous_children.insert(block_id, new_module); new_parent = ModuleReducedGraphParent(new_module); } else { new_parent = parent; } visit_block(block, new_parent, visitor); } fn handle_external_def(def: def, modules: HashMap, child_name_bindings: @NameBindings, final_ident: ~str, ident: ident, new_parent: ReducedGraphParent) { match def { def_mod(def_id) | def_foreign_mod(def_id) => { match copy child_name_bindings.type_def { Some(TypeNsDef { module_def: Some(copy module_def), _ }) => { debug!("(building reduced graph for external crate) \ already created module"); module_def.def_id = Some(def_id); modules.insert(def_id, module_def); } Some(_) | None => { debug!("(building reduced graph for \ external crate) building module \ %s", final_ident); let parent_link = self.get_parent_link(new_parent, ident); match modules.find(def_id) { None => { child_name_bindings.define_module(Public, parent_link, Some(def_id), false, dummy_sp()); modules.insert(def_id, child_name_bindings.get_module()); } Some(existing_module) => { // Create an import resolution to // avoid creating cycles in the // module graph. let resolution = @ImportResolution(Private, dummy_sp()); resolution.outstanding_references = 0; match existing_module.parent_link { NoParentLink | BlockParentLink(*) => { fail ~"can't happen"; } ModuleParentLink(parent_module, ident) => { let name_bindings = parent_module.children.get(ident); resolution.type_target = Some(Target(parent_module, name_bindings)); } } debug!("(building reduced graph for external crate) \ ... creating import resolution"); new_parent.import_resolutions.insert(ident, resolution); } } } } } def_fn(*) | def_static_method(*) | def_const(*) | def_variant(*) => { debug!("(building reduced graph for external \ crate) building value %s", final_ident); (*child_name_bindings).define_value(Public, def, dummy_sp()); } def_ty(def_id) => { debug!("(building reduced graph for external \ crate) building type %s", final_ident); // If this is a trait, add all the method names // to the trait info. match get_method_names_if_trait(self.session.cstore, def_id) { None => { // Nothing to do. } Some(method_names) => { let interned_method_names = @HashMap(); for method_names.each |method_data| { let (method_name, self_ty) = *method_data; debug!("(building reduced graph for \ external crate) ... adding \ trait method '%s'", self.session.str_of(method_name)); // Add it to the trait info if not static. if self_ty != sty_static { interned_method_names.insert(method_name, ()); } } self.trait_info.insert(def_id, interned_method_names); } } child_name_bindings.define_type(Public, def, dummy_sp()); } def_class(def_id) => { debug!("(building reduced graph for external \ crate) building type %s", final_ident); child_name_bindings.define_type(Public, def, dummy_sp()); self.structs.insert(def_id, ()); } def_self(*) | def_arg(*) | def_local(*) | def_prim_ty(*) | def_ty_param(*) | def_binding(*) | def_use(*) | def_upvar(*) | def_region(*) | def_typaram_binder(*) | def_label(*) => { fail fmt!("didn't expect `%?`", def); } } } /** * Builds the reduced graph rooted at the 'use' directive for an external * crate. */ fn build_reduced_graph_for_external_crate(root: @Module) { let modules = HashMap(); // Create all the items reachable by paths. for each_path(self.session.cstore, root.def_id.get().crate) |path_entry| { debug!("(building reduced graph for external crate) found path \ entry: %s (%?)", path_entry.path_string, path_entry.def_like); let mut pieces = split_str(path_entry.path_string, ~"::"); let final_ident_str = pieces.pop(); let final_ident = self.session.ident_of(final_ident_str); // Find the module we need, creating modules along the way if we // need to. let mut current_module = root; for pieces.each |ident_str| { let ident = self.session.ident_of(*ident_str); // Create or reuse a graph node for the child. let (child_name_bindings, new_parent) = self.add_child(ident, ModuleReducedGraphParent(current_module), OverwriteDuplicates, dummy_sp()); // Define or reuse the module node. match child_name_bindings.type_def { None => { debug!("(building reduced graph for external crate) \ autovivifying missing type def %s", *ident_str); let parent_link = self.get_parent_link(new_parent, ident); (*child_name_bindings).define_module(Public, parent_link, None, false, dummy_sp()); } Some(copy type_ns_def) if type_ns_def.module_def.is_none() => { debug!("(building reduced graph for external crate) \ autovivifying missing module def %s", *ident_str); let parent_link = self.get_parent_link(new_parent, ident); (*child_name_bindings).define_module(Public, parent_link, None, false, dummy_sp()); } _ => {} // Fall through. } current_module = (*child_name_bindings).get_module(); } match path_entry.def_like { dl_def(def) => { // Add the new child item. let (child_name_bindings, new_parent) = self.add_child(final_ident, ModuleReducedGraphParent( current_module), OverwriteDuplicates, dummy_sp()); self.handle_external_def(def, modules, child_name_bindings, self.session.str_of(final_ident), final_ident, new_parent); } dl_impl(def) => { // We only process static methods of impls here. debug!("(building reduced graph for external crate) \ processing impl %s", final_ident_str); match get_type_name_if_impl(self.session.cstore, def) { None => {} Some(final_ident) => { let static_methods_opt = get_static_methods_if_impl( self.session.cstore, def); match static_methods_opt { Some(static_methods) if static_methods.len() >= 1 => { debug!("(building reduced graph for \ external crate) processing \ static methods for type name %s", self.session.str_of(final_ident)); let (child_name_bindings, new_parent) = self.add_child(final_ident, ModuleReducedGraphParent( current_module), OverwriteDuplicates, dummy_sp()); // Process the static methods. First, // create the module. let type_module; match copy child_name_bindings.type_def { Some(TypeNsDef { module_def: Some(copy module_def), _ }) => { // We already have a module. This // is OK. type_module = module_def; } Some(_) | None => { let parent_link = self.get_parent_link( new_parent, final_ident); child_name_bindings.define_module( Public, parent_link, Some(def), false, dummy_sp()); type_module = child_name_bindings. get_module(); } } // Add each static method to the module. let new_parent = ModuleReducedGraphParent( type_module); for static_methods.each |static_method_info| { let ident = static_method_info.ident; debug!("(building reduced graph for \ external crate) creating \ static method '%s'", self.session.str_of(ident)); let (method_name_bindings, _) = self.add_child( ident, new_parent, OverwriteDuplicates, dummy_sp()); let def = def_fn( static_method_info.def_id, static_method_info.purity); method_name_bindings.define_value( Public, def, dummy_sp()); } } // Otherwise, do nothing. Some(_) | None => {} } } } } dl_field => { debug!("(building reduced graph for external crate) \ ignoring field %s", final_ident_str); } } } } /// Creates and adds an import directive to the given module. fn build_import_directive(privacy: Privacy, module_: @Module, module_path: @DVec, subclass: @ImportDirectiveSubclass, span: span) { let directive = @ImportDirective(privacy, module_path, subclass, span); module_.imports.push(directive); // Bump the reference count on the name. Or, if this is a glob, set // the appropriate flag. match *subclass { SingleImport(target, _, _) => { debug!("(building import directive) building import \ directive: privacy %? %s::%s", privacy, self.idents_to_str(module_path.get()), self.session.str_of(target)); match module_.import_resolutions.find(target) { Some(resolution) => { debug!("(building import directive) bumping \ reference"); resolution.outstanding_references += 1u; } None => { debug!("(building import directive) creating new"); let resolution = @ImportResolution(privacy, span); resolution.outstanding_references = 1u; module_.import_resolutions.insert(target, resolution); } } } GlobImport => { // Set the glob flag. This tells us that we don't know the // module's exports ahead of time. module_.glob_count += 1u; } } self.unresolved_imports += 1u; } // Import resolution // // This is a fixed-point algorithm. We resolve imports until our efforts // are stymied by an unresolved import; then we bail out of the current // module and continue. We terminate successfully once no more imports // remain or unsuccessfully when no forward progress in resolving imports // is made. /** * Resolves all imports for the crate. This method performs the fixed- * point iteration. */ fn resolve_imports() { let mut i = 0u; let mut prev_unresolved_imports = 0u; loop { debug!("(resolving imports) iteration %u, %u imports left", i, self.unresolved_imports); let module_root = (*self.graph_root).get_module(); self.resolve_imports_for_module_subtree(module_root); if self.unresolved_imports == 0u { debug!("(resolving imports) success"); break; } if self.unresolved_imports == prev_unresolved_imports { self.session.err(~"failed to resolve imports"); self.report_unresolved_imports(module_root); break; } i += 1u; prev_unresolved_imports = self.unresolved_imports; } } /** * Attempts to resolve imports for the given module and all of its * submodules. */ fn resolve_imports_for_module_subtree(module_: @Module) { debug!("(resolving imports for module subtree) resolving %s", self.module_to_str(module_)); self.resolve_imports_for_module(module_); for module_.children.each |_name, child_node| { match child_node.get_module_if_available() { None => { // Nothing to do. } Some(child_module) => { self.resolve_imports_for_module_subtree(child_module); } } } for module_.anonymous_children.each |_block_id, child_module| { self.resolve_imports_for_module_subtree(child_module); } } /// Attempts to resolve imports for the given module only. fn resolve_imports_for_module(module_: @Module) { if (*module_).all_imports_resolved() { debug!("(resolving imports for module) all imports resolved for \ %s", self.module_to_str(module_)); return; } let import_count = module_.imports.len(); while module_.resolved_import_count < import_count { let import_index = module_.resolved_import_count; let import_directive = module_.imports.get_elt(import_index); match self.resolve_import_for_module(module_, import_directive) { Failed => { // We presumably emitted an error. Continue. self.session.span_err(import_directive.span, ~"failed to resolve import"); } Indeterminate => { // Bail out. We'll come around next time. break; } Success(()) => { // Good. Continue. } } module_.resolved_import_count += 1u; } } fn idents_to_str(idents: ~[ident]) -> ~str { // XXX: str::connect should do this. let mut result = ~""; let mut first = true; for idents.each() |ident| { if first { first = false; } else { result += ~"::"; } result += self.session.str_of(*ident); } // XXX: Shouldn't copy here. We need string builder functionality. return result; } /** * Attempts to resolve the given import. The return value indicates * failure if we're certain the name does not exist, indeterminate if we * don't know whether the name exists at the moment due to other * currently-unresolved imports, or success if we know the name exists. * If successful, the resolved bindings are written into the module. */ fn resolve_import_for_module(module_: @Module, import_directive: @ImportDirective) -> ResolveResult<()> { let mut resolution_result; let module_path = import_directive.module_path; debug!("(resolving import for module) resolving import `%s::...` in \ `%s`", self.idents_to_str((*module_path).get()), self.module_to_str(module_)); // One-level renaming imports of the form `import foo = bar;` are // handled specially. if (*module_path).len() == 0u { resolution_result = self.resolve_one_level_renaming_import(module_, import_directive); } else { // First, resolve the module path for the directive, if necessary. match self.resolve_module_path_for_import(module_, module_path, NoXray, import_directive.span) { Failed => { resolution_result = Failed; } Indeterminate => { resolution_result = Indeterminate; } Success(containing_module) => { // We found the module that the target is contained // within. Attempt to resolve the import within it. match *import_directive.subclass { SingleImport(target, source, AnyNS) => { resolution_result = self.resolve_single_import(module_, containing_module, target, source); } SingleImport(target, source, TypeNSOnly) => { resolution_result = self.resolve_single_module_import (module_, containing_module, target, source); } GlobImport => { let span = import_directive.span; let p = import_directive.privacy; resolution_result = self.resolve_glob_import(p, module_, containing_module, span); } } } } } // Decrement the count of unresolved imports. match resolution_result { Success(()) => { assert self.unresolved_imports >= 1u; self.unresolved_imports -= 1u; } _ => { // Nothing to do here; just return the error. } } // Decrement the count of unresolved globs if necessary. But only if // the resolution result is indeterminate -- otherwise we'll stop // processing imports here. (See the loop in // resolve_imports_for_module.) if !resolution_result.indeterminate() { match *import_directive.subclass { GlobImport => { assert module_.glob_count >= 1u; module_.glob_count -= 1u; } SingleImport(*) => { // Ignore. } } } return resolution_result; } fn resolve_single_import(module_: @Module, containing_module: @Module, target: ident, source: ident) -> ResolveResult<()> { debug!("(resolving single import) resolving `%s` = `%s::%s` from \ `%s`", self.session.str_of(target), self.module_to_str(containing_module), self.session.str_of(source), self.module_to_str(module_)); if !self.name_is_exported(containing_module, source) { debug!("(resolving single import) name `%s` is unexported", self.session.str_of(source)); return Failed; } // We need to resolve both namespaces for this to succeed. // // XXX: See if there's some way of handling namespaces in a more // generic way. We have two of them; it seems worth doing... let mut value_result = UnknownResult; let mut type_result = UnknownResult; // Search for direct children of the containing module. match containing_module.children.find(source) { None => { // Continue. } Some(child_name_bindings) => { if (*child_name_bindings).defined_in_namespace(ValueNS) { value_result = BoundResult(containing_module, child_name_bindings); } if (*child_name_bindings).defined_in_namespace(TypeNS) { type_result = BoundResult(containing_module, child_name_bindings); } } } // Unless we managed to find a result in both namespaces (unlikely), // search imports as well. match (value_result, type_result) { (BoundResult(*), BoundResult(*)) => { // Continue. } _ => { // If there is an unresolved glob at this point in the // containing module, bail out. We don't know enough to be // able to resolve this import. if containing_module.glob_count > 0u { debug!("(resolving single import) unresolved glob; \ bailing out"); return Indeterminate; } // Now search the exported imports within the containing // module. match containing_module.import_resolutions.find(source) { None => { // The containing module definitely doesn't have an // exported import with the name in question. We can // therefore accurately report that the names are // unbound. if value_result.is_unknown() { value_result = UnboundResult; } if type_result.is_unknown() { type_result = UnboundResult; } } Some(import_resolution) if import_resolution.outstanding_references == 0u => { fn get_binding(import_resolution: @ImportResolution, namespace: Namespace) -> NamespaceResult { // Import resolutions must be declared with "pub" // in order to be exported. if import_resolution.privacy == Private { return UnboundResult; } match (*import_resolution). target_for_namespace(namespace) { None => { return UnboundResult; } Some(target) => { import_resolution.used = true; return BoundResult(target.target_module, target.bindings); } } } // The name is an import which has been fully // resolved. We can, therefore, just follow it. if value_result.is_unknown() { value_result = get_binding(import_resolution, ValueNS); } if type_result.is_unknown() { type_result = get_binding(import_resolution, TypeNS); } } Some(_) => { // The import is unresolved. Bail out. debug!("(resolving single import) unresolved import; \ bailing out"); return Indeterminate; } } } } // We've successfully resolved the import. Write the results in. assert module_.import_resolutions.contains_key(target); let import_resolution = module_.import_resolutions.get(target); match value_result { BoundResult(target_module, name_bindings) => { import_resolution.value_target = Some(Target(target_module, name_bindings)); } UnboundResult => { /* Continue. */ } UnknownResult => { fail ~"value result should be known at this point"; } } match type_result { BoundResult(target_module, name_bindings) => { import_resolution.type_target = Some(Target(target_module, name_bindings)); } UnboundResult => { /* Continue. */ } UnknownResult => { fail ~"type result should be known at this point"; } } let i = import_resolution; match (i.value_target, i.type_target) { // If this name wasn't found in either namespace, it's definitely // unresolved. (None, None) => { return Failed; } _ => {} } assert import_resolution.outstanding_references >= 1u; import_resolution.outstanding_references -= 1u; debug!("(resolving single import) successfully resolved import"); return Success(()); } fn resolve_single_module_import(module_: @Module, containing_module: @Module, target: ident, source: ident) -> ResolveResult<()> { debug!("(resolving single module import) resolving `%s` = `%s::%s` \ from `%s`", self.session.str_of(target), self.module_to_str(containing_module), self.session.str_of(source), self.module_to_str(module_)); if !self.name_is_exported(containing_module, source) { debug!("(resolving single import) name `%s` is unexported", self.session.str_of(source)); return Failed; } // We need to resolve the module namespace for this to succeed. let mut module_result = UnknownResult; // Search for direct children of the containing module. match containing_module.children.find(source) { None => { // Continue. } Some(child_name_bindings) => { if (*child_name_bindings).defined_in_namespace(TypeNS) { module_result = BoundResult(containing_module, child_name_bindings); } } } // Unless we managed to find a result, search imports as well. match module_result { BoundResult(*) => { // Continue. } _ => { // If there is an unresolved glob at this point in the // containing module, bail out. We don't know enough to be // able to resolve this import. if containing_module.glob_count > 0u { debug!("(resolving single module import) unresolved \ glob; bailing out"); return Indeterminate; } // Now search the exported imports within the containing // module. match containing_module.import_resolutions.find(source) { None => { // The containing module definitely doesn't have an // exported import with the name in question. We can // therefore accurately report that the names are // unbound. if module_result.is_unknown() { module_result = UnboundResult; } } Some(import_resolution) if import_resolution.outstanding_references == 0u => { // The name is an import which has been fully // resolved. We can, therefore, just follow it. if module_result.is_unknown() { match (*import_resolution).target_for_namespace( TypeNS) { None => { module_result = UnboundResult; } Some(target) => { import_resolution.used = true; module_result = BoundResult (target.target_module, target.bindings); } } } } Some(_) => { // The import is unresolved. Bail out. debug!("(resolving single module import) unresolved \ import; bailing out"); return Indeterminate; } } } } // We've successfully resolved the import. Write the results in. assert module_.import_resolutions.contains_key(target); let import_resolution = module_.import_resolutions.get(target); match module_result { BoundResult(target_module, name_bindings) => { debug!("(resolving single import) found module binding"); import_resolution.type_target = Some(Target(target_module, name_bindings)); } UnboundResult => { debug!("(resolving single import) didn't find module \ binding"); } UnknownResult => { fail ~"module result should be known at this point"; } } let i = import_resolution; if i.type_target.is_none() { // If this name wasn't found in the type namespace, it's // definitely unresolved. return Failed; } assert import_resolution.outstanding_references >= 1u; import_resolution.outstanding_references -= 1u; debug!("(resolving single module import) successfully resolved \ import"); return Success(()); } /** * Resolves a glob import. Note that this function cannot fail; it either * succeeds or bails out (as importing * from an empty module or a module * that exports nothing is valid). */ fn resolve_glob_import(privacy: Privacy, module_: @Module, containing_module: @Module, span: span) -> ResolveResult<()> { // This function works in a highly imperative manner; it eagerly adds // everything it can to the list of import resolutions of the module // node. debug!("(resolving glob import) resolving %? glob import", privacy); // We must bail out if the node has unresolved imports of any kind // (including globs). if !(*containing_module).all_imports_resolved() { debug!("(resolving glob import) target module has unresolved \ imports; bailing out"); return Indeterminate; } assert containing_module.glob_count == 0u; // Add all resolved imports from the containing module. for containing_module.import_resolutions.each |ident, target_import_resolution| { if !self.name_is_exported(containing_module, ident) { debug!("(resolving glob import) name `%s` is unexported", self.session.str_of(ident)); loop; } debug!("(resolving glob import) writing module resolution \ %? into `%s`", is_none(target_import_resolution.type_target), self.module_to_str(module_)); // Here we merge two import resolutions. match module_.import_resolutions.find(ident) { None => { // Simple: just copy the old import resolution. let new_import_resolution = @ImportResolution(privacy, target_import_resolution.span); new_import_resolution.value_target = copy target_import_resolution.value_target; new_import_resolution.type_target = copy target_import_resolution.type_target; module_.import_resolutions.insert (ident, new_import_resolution); } Some(dest_import_resolution) => { // Merge the two import resolutions at a finer-grained // level. match copy target_import_resolution.value_target { None => { // Continue. } Some(value_target) => { dest_import_resolution.value_target = Some(copy value_target); } } match copy target_import_resolution.type_target { None => { // Continue. } Some(type_target) => { dest_import_resolution.type_target = Some(copy type_target); } } } } } // Add all children from the containing module. for containing_module.children.each |ident, name_bindings| { if !self.name_is_exported(containing_module, ident) { debug!("(resolving glob import) name `%s` is unexported", self.session.str_of(ident)); loop; } let mut dest_import_resolution; match module_.import_resolutions.find(ident) { None => { // Create a new import resolution from this child. dest_import_resolution = @ImportResolution(privacy, span); module_.import_resolutions.insert (ident, dest_import_resolution); } Some(existing_import_resolution) => { dest_import_resolution = existing_import_resolution; } } debug!("(resolving glob import) writing resolution `%s` in `%s` \ to `%s`, privacy=%?", self.session.str_of(ident), self.module_to_str(containing_module), self.module_to_str(module_), dest_import_resolution.privacy); // Merge the child item into the import resolution. if (*name_bindings).defined_in_namespace(ValueNS) { debug!("(resolving glob import) ... for value target"); dest_import_resolution.value_target = Some(Target(containing_module, name_bindings)); } if (*name_bindings).defined_in_namespace(TypeNS) { debug!("(resolving glob import) ... for type target"); dest_import_resolution.type_target = Some(Target(containing_module, name_bindings)); } } debug!("(resolving glob import) successfully resolved import"); return Success(()); } fn resolve_module_path_from_root(module_: @Module, module_path: @DVec, index: uint, xray: XrayFlag, span: span) -> ResolveResult<@Module> { let mut search_module = module_; let mut index = index; let module_path_len = (*module_path).len(); // Resolve the module part of the path. This does not involve looking // upward though scope chains; we simply resolve names directly in // modules as we go. while index < module_path_len { let name = (*module_path).get_elt(index); match self.resolve_name_in_module(search_module, name, TypeNS, xray) { Failed => { self.session.span_err(span, ~"unresolved name"); return Failed; } Indeterminate => { debug!("(resolving module path for import) module \ resolution is indeterminate: %s", self.session.str_of(name)); return Indeterminate; } Success(target) => { // Check to see whether there are type bindings, and, if // so, whether there is a module within. match target.bindings.type_def { Some(copy type_def) => { match type_def.module_def { None => { // Not a module. self.session.span_err(span, fmt!("not a \ module: %s", self.session. str_of( name))); return Failed; } Some(copy module_def) => { search_module = module_def; } } } None => { // There are no type bindings at all. self.session.span_err(span, fmt!("not a module: %s", self.session.str_of( name))); return Failed; } } } } index += 1u; } return Success(search_module); } /** * Attempts to resolve the module part of an import directive rooted at * the given module. */ fn resolve_module_path_for_import(module_: @Module, module_path: @DVec, xray: XrayFlag, span: span) -> ResolveResult<@Module> { let module_path_len = (*module_path).len(); assert module_path_len > 0u; debug!("(resolving module path for import) processing `%s` rooted at \ `%s`", self.idents_to_str((*module_path).get()), self.module_to_str(module_)); // The first element of the module path must be in the current scope // chain. let first_element = (*module_path).get_elt(0u); let mut search_module; match self.resolve_module_in_lexical_scope(module_, first_element) { Failed => { self.session.span_err(span, ~"unresolved name"); return Failed; } Indeterminate => { debug!("(resolving module path for import) indeterminate; \ bailing"); return Indeterminate; } Success(resulting_module) => { search_module = resulting_module; } } return self.resolve_module_path_from_root(search_module, module_path, 1u, xray, span); } fn resolve_item_in_lexical_scope(module_: @Module, name: ident, namespace: Namespace) -> ResolveResult { debug!("(resolving item in lexical scope) resolving `%s` in \ namespace %? in `%s`", self.session.str_of(name), namespace, self.module_to_str(module_)); // The current module node is handled specially. First, check for // its immediate children. match module_.children.find(name) { Some(name_bindings) if (*name_bindings).defined_in_namespace(namespace) => { return Success(Target(module_, name_bindings)); } Some(_) | None => { /* Not found; continue. */ } } // Now check for its import directives. We don't have to have resolved // all its imports in the usual way; this is because chains of // adjacent import statements are processed as though they mutated the // current scope. match module_.import_resolutions.find(name) { None => { // Not found; continue. } Some(import_resolution) => { match (*import_resolution).target_for_namespace(namespace) { None => { // Not found; continue. debug!("(resolving item in lexical scope) found \ import resolution, but not in namespace %?", namespace); } Some(target) => { import_resolution.used = true; return Success(copy target); } } } } // Finally, proceed up the scope chain looking for parent modules. let mut search_module = module_; loop { // Go to the next parent. match search_module.parent_link { NoParentLink => { // No more parents. This module was unresolved. debug!("(resolving item in lexical scope) unresolved \ module"); return Failed; } ModuleParentLink(parent_module_node, _) | BlockParentLink(parent_module_node, _) => { search_module = parent_module_node; } } // Resolve the name in the parent module. match self.resolve_name_in_module(search_module, name, namespace, Xray) { Failed => { // Continue up the search chain. } Indeterminate => { // We couldn't see through the higher scope because of an // unresolved import higher up. Bail. debug!("(resolving item in lexical scope) indeterminate \ higher scope; bailing"); return Indeterminate; } Success(target) => { // We found the module. return Success(copy target); } } } } fn resolve_module_in_lexical_scope(module_: @Module, name: ident) -> ResolveResult<@Module> { match self.resolve_item_in_lexical_scope(module_, name, TypeNS) { Success(target) => { match target.bindings.type_def { Some(type_def) => { match type_def.module_def { None => { error!("!!! (resolving module in lexical \ scope) module wasn't actually a \ module!"); return Failed; } Some(module_def) => { return Success(module_def); } } } None => { error!("!!! (resolving module in lexical scope) module wasn't actually a module!"); return Failed; } } } Indeterminate => { debug!("(resolving module in lexical scope) indeterminate; \ bailing"); return Indeterminate; } Failed => { debug!("(resolving module in lexical scope) failed to \ resolve"); return Failed; } } } fn name_is_exported(module_: @Module, name: ident) -> bool { return !module_.legacy_exports || module_.exported_names.size() == 0u || module_.exported_names.contains_key(name); } /** * Attempts to resolve the supplied name in the given module for the * given namespace. If successful, returns the target corresponding to * the name. */ fn resolve_name_in_module(module_: @Module, name: ident, namespace: Namespace, xray: XrayFlag) -> ResolveResult { debug!("(resolving name in module) resolving `%s` in `%s`", self.session.str_of(name), self.module_to_str(module_)); if xray == NoXray && !self.name_is_exported(module_, name) { debug!("(resolving name in module) name `%s` is unexported", self.session.str_of(name)); return Failed; } // First, check the direct children of the module. match module_.children.find(name) { Some(name_bindings) if (*name_bindings).defined_in_namespace(namespace) => { debug!("(resolving name in module) found node as child"); return Success(Target(module_, name_bindings)); } Some(_) | None => { // Continue. } } // Next, check the module's imports. If the module has a glob, then // we bail out; we don't know its imports yet. if module_.glob_count > 0u { debug!("(resolving name in module) module has glob; bailing out"); return Indeterminate; } // Otherwise, we check the list of resolved imports. match module_.import_resolutions.find(name) { Some(import_resolution) => { if import_resolution.outstanding_references != 0u { debug!("(resolving name in module) import unresolved; \ bailing out"); return Indeterminate; } match (*import_resolution).target_for_namespace(namespace) { None => { debug!("(resolving name in module) name found, but \ not in namespace %?", namespace); } Some(target) => { debug!("(resolving name in module) resolved to \ import"); import_resolution.used = true; return Success(copy target); } } } None => { // Continue. } } // We're out of luck. debug!("(resolving name in module) failed to resolve %s", self.session.str_of(name)); return Failed; } /** * Resolves a one-level renaming import of the kind `import foo = bar;` * This needs special handling, as, unlike all of the other imports, it * needs to look in the scope chain for modules and non-modules alike. */ fn resolve_one_level_renaming_import(module_: @Module, import_directive: @ImportDirective) -> ResolveResult<()> { let mut target_name; let mut source_name; let allowable_namespaces; match *import_directive.subclass { SingleImport(target, source, namespaces) => { target_name = target; source_name = source; allowable_namespaces = namespaces; } GlobImport => { fail ~"found `import *`, which is invalid"; } } debug!("(resolving one-level naming result) resolving import `%s` = \ `%s` in `%s`", self.session.str_of(target_name), self.session.str_of(source_name), self.module_to_str(module_)); // Find the matching items in the lexical scope chain for every // namespace. If any of them come back indeterminate, this entire // import is indeterminate. let mut module_result; debug!("(resolving one-level naming result) searching for module"); match self.resolve_item_in_lexical_scope(module_, source_name, TypeNS) { Failed => { debug!("(resolving one-level renaming import) didn't find \ module result"); module_result = None; } Indeterminate => { debug!("(resolving one-level renaming import) module result \ is indeterminate; bailing"); return Indeterminate; } Success(name_bindings) => { debug!("(resolving one-level renaming import) module result \ found"); module_result = Some(copy name_bindings); } } let mut value_result; let mut type_result; if allowable_namespaces == TypeNSOnly { value_result = None; type_result = None; } else { debug!("(resolving one-level naming result) searching for value"); match self.resolve_item_in_lexical_scope(module_, source_name, ValueNS) { Failed => { debug!("(resolving one-level renaming import) didn't \ find value result"); value_result = None; } Indeterminate => { debug!("(resolving one-level renaming import) value \ result is indeterminate; bailing"); return Indeterminate; } Success(name_bindings) => { debug!("(resolving one-level renaming import) value \ result found"); value_result = Some(copy name_bindings); } } debug!("(resolving one-level naming result) searching for type"); match self.resolve_item_in_lexical_scope(module_, source_name, TypeNS) { Failed => { debug!("(resolving one-level renaming import) didn't \ find type result"); type_result = None; } Indeterminate => { debug!("(resolving one-level renaming import) type \ result is indeterminate; bailing"); return Indeterminate; } Success(name_bindings) => { debug!("(resolving one-level renaming import) type \ result found"); type_result = Some(copy name_bindings); } } } // // NB: This one results in effects that may be somewhat surprising. It // means that this: // // mod A { // impl foo for ... { ... } // mod B { // impl foo for ... { ... } // import bar = foo; // ... // } // } // // results in only A::B::foo being aliased to A::B::bar, not A::foo // *and* A::B::foo being aliased to A::B::bar. // // If nothing at all was found, that's an error. if is_none(module_result) && is_none(value_result) && is_none(type_result) { self.session.span_err(import_directive.span, ~"unresolved import"); return Failed; } // Otherwise, proceed and write in the bindings. match module_.import_resolutions.find(target_name) { None => { fail ~"(resolving one-level renaming import) reduced graph \ construction or glob importing should have created the \ import resolution name by now"; } Some(import_resolution) => { debug!("(resolving one-level renaming import) writing module \ result %? for `%s` into `%s`", is_none(module_result), self.session.str_of(target_name), self.module_to_str(module_)); import_resolution.value_target = value_result; import_resolution.type_target = type_result; assert import_resolution.outstanding_references >= 1u; import_resolution.outstanding_references -= 1u; } } debug!("(resolving one-level renaming import) successfully resolved"); return Success(()); } fn report_unresolved_imports(module_: @Module) { let index = module_.resolved_import_count; let import_count = module_.imports.len(); if index != import_count { self.session.span_err(module_.imports.get_elt(index).span, ~"unresolved import"); } // Descend into children and anonymous children. for module_.children.each |_name, child_node| { match child_node.get_module_if_available() { None => { // Continue. } Some(child_module) => { self.report_unresolved_imports(child_module); } } } for module_.anonymous_children.each |_name, module_| { self.report_unresolved_imports(module_); } } // Export recording // // This pass simply determines what all "export" keywords refer to and // writes the results into the export map. // // XXX: This pass will be removed once exports change to per-item. Then // this operation can simply be performed as part of item (or import) // processing. fn record_exports() { let root_module = (*self.graph_root).get_module(); self.record_exports_for_module_subtree(root_module); } fn record_exports_for_module_subtree(module_: @Module) { // If this isn't a local crate, then bail out. We don't need to record // exports for nonlocal crates. match module_.def_id { Some(def_id) if def_id.crate == local_crate => { // OK. Continue. debug!("(recording exports for module subtree) recording \ exports for local module"); } None => { // Record exports for the root module. debug!("(recording exports for module subtree) recording \ exports for root module"); } Some(_) => { // Bail out. debug!("(recording exports for module subtree) not recording \ exports for `%s`", self.module_to_str(module_)); return; } } self.record_exports_for_module(module_); for module_.children.each |_ident, child_name_bindings| { match child_name_bindings.get_module_if_available() { None => { // Nothing to do. } Some(child_module) => { self.record_exports_for_module_subtree(child_module); } } } for module_.anonymous_children.each |_node_id, child_module| { self.record_exports_for_module_subtree(child_module); } } fn record_exports_for_module(module_: @Module) { let mut exports2 = ~[]; if module_.legacy_exports { self.add_exports_for_legacy_module(&mut exports2, module_); } else { self.add_exports_for_module(&mut exports2, module_); } match copy module_.def_id { Some(def_id) => { self.export_map2.insert(def_id.node, move exports2); debug!("(computing exports) writing exports for %d (some)", def_id.node); } None => {} } } fn add_exports_of_namebindings(exports2: &mut ~[Export2], ident: ident, namebindings: @NameBindings, reexport: bool) { for [ TypeNS, ValueNS ].each |ns| { match (namebindings.def_for_namespace(*ns), namebindings.privacy_for_namespace(*ns)) { (Some(d), Some(Public)) => { debug!("(computing exports) YES: %s '%s' \ => %?", if reexport { ~"reexport" } else { ~"export"}, self.session.str_of(ident), def_id_of_def(d)); exports2.push(Export2 { reexport: reexport, name: self.session.str_of(ident), def_id: def_id_of_def(d) }); } _ => () } } } fn add_exports_for_module(exports2: &mut ~[Export2], module_: @Module) { for module_.children.each_ref |ident, namebindings| { debug!("(computing exports) maybe export '%s'", self.session.str_of(*ident)); self.add_exports_of_namebindings(exports2, *ident, *namebindings, false) } for module_.import_resolutions.each_ref |ident, importresolution| { if importresolution.privacy != Public { debug!("(computing exports) not reexporting private `%s`", self.session.str_of(*ident)); loop; } for [ TypeNS, ValueNS ].each |ns| { match importresolution.target_for_namespace(*ns) { Some(target) => { debug!("(computing exports) maybe reexport '%s'", self.session.str_of(*ident)); self.add_exports_of_namebindings(exports2, *ident, target.bindings, true) } _ => () } } } } fn add_exports_for_legacy_module(exports2: &mut ~[Export2], module_: @Module) { for module_.exported_names.each |name, _exp_node_id| { for self.namespaces.each |namespace| { match self.resolve_definition_of_name_in_module(module_, name, *namespace, Xray) { NoNameDefinition => { // Nothing to do. } ChildNameDefinition(target_def) => { debug!("(computing exports) legacy export '%s' \ for %?", self.session.str_of(name), module_.def_id); exports2.push(Export2 { reexport: false, name: self.session.str_of(name), def_id: def_id_of_def(target_def) }); } ImportNameDefinition(target_def) => { debug!("(computing exports) legacy reexport '%s' for \ %?", self.session.str_of(name), module_.def_id); exports2.push(Export2 { reexport: true, name: self.session.str_of(name), def_id: def_id_of_def(target_def) }); } } } } } // AST resolution // // We maintain a list of value ribs and type ribs. // // Simultaneously, we keep track of the current position in the module // graph in the `current_module` pointer. When we go to resolve a name in // the value or type namespaces, we first look through all the ribs and // then query the module graph. When we resolve a name in the module // namespace, we can skip all the ribs (since nested modules are not // allowed within blocks in Rust) and jump straight to the current module // graph node. // // Named implementations are handled separately. When we find a method // call, we consult the module node to find all of the implementations in // scope. This information is lazily cached in the module node. We then // generate a fake "implementation scope" containing all the // implementations thus found, for compatibility with old resolve pass. fn with_scope(name: Option, f: fn()) { let orig_module = self.current_module; // Move down in the graph. match name { None => { // Nothing to do. } Some(name) => { match orig_module.children.find(name) { None => { debug!("!!! (with scope) didn't find `%s` in `%s`", self.session.str_of(name), self.module_to_str(orig_module)); } Some(name_bindings) => { match (*name_bindings).get_module_if_available() { None => { debug!("!!! (with scope) didn't find module \ for `%s` in `%s`", self.session.str_of(name), self.module_to_str(orig_module)); } Some(module_) => { self.current_module = module_; } } } } } } f(); self.current_module = orig_module; } // Wraps the given definition in the appropriate number of `def_upvar` // wrappers. fn upvarify(ribs: @DVec<@Rib>, rib_index: uint, def_like: def_like, span: span, allow_capturing_self: AllowCapturingSelfFlag) -> Option { let mut def; let mut is_ty_param; match def_like { dl_def(d @ def_local(*)) | dl_def(d @ def_upvar(*)) | dl_def(d @ def_arg(*)) | dl_def(d @ def_binding(*)) => { def = d; is_ty_param = false; } dl_def(d @ def_ty_param(*)) => { def = d; is_ty_param = true; } dl_def(d @ def_self(*)) if allow_capturing_self == DontAllowCapturingSelf => { def = d; is_ty_param = false; } _ => { return Some(def_like); } } let mut rib_index = rib_index + 1u; while rib_index < (*ribs).len() { let rib = (*ribs).get_elt(rib_index); match rib.kind { NormalRibKind => { // Nothing to do. Continue. } FunctionRibKind(function_id, body_id) => { if !is_ty_param { def = def_upvar(def_id_of_def(def).node, @def, function_id, body_id); } } MethodRibKind(item_id, _) => { // If the def is a ty param, and came from the parent // item, it's ok match def { def_ty_param(did, _) if self.def_map.find(copy(did.node)) == Some(def_typaram_binder(item_id)) => { // ok } _ => { if !is_ty_param { // This was an attempt to access an upvar inside a // named function item. This is not allowed, so we // report an error. self.session.span_err( span, ~"attempted dynamic environment-capture"); } else { // This was an attempt to use a type parameter outside // its scope. self.session.span_err(span, ~"attempt to use a type \ argument out of scope"); } return None; } } } OpaqueFunctionRibKind => { if !is_ty_param { // This was an attempt to access an upvar inside a // named function item. This is not allowed, so we // report an error. self.session.span_err( span, ~"attempted dynamic environment-capture"); } else { // This was an attempt to use a type parameter outside // its scope. self.session.span_err(span, ~"attempt to use a type \ argument out of scope"); } return None; } ConstantItemRibKind => { // Still doesn't deal with upvars self.session.span_err(span, ~"attempt to use a non-constant \ value in a constant"); } } rib_index += 1; } return Some(dl_def(def)); } fn search_ribs(ribs: @DVec<@Rib>, name: ident, span: span, allow_capturing_self: AllowCapturingSelfFlag) -> Option { // XXX: This should not use a while loop. // XXX: Try caching? let mut i = (*ribs).len(); while i != 0 { i -= 1; let rib = (*ribs).get_elt(i); match rib.bindings.find(name) { Some(def_like) => { return self.upvarify(ribs, i, def_like, span, allow_capturing_self); } None => { // Continue. } } } return None; } fn resolve_crate(@self) { debug!("(resolving crate) starting"); visit_crate(*self.crate, (), mk_vt(@{ visit_item: |item, _context, visitor| self.resolve_item(item, visitor), visit_arm: |arm, _context, visitor| self.resolve_arm(arm, visitor), visit_block: |block, _context, visitor| self.resolve_block(block, visitor), visit_expr: |expr, _context, visitor| self.resolve_expr(expr, visitor), visit_local: |local, _context, visitor| self.resolve_local(local, visitor), visit_ty: |ty, _context, visitor| self.resolve_type(ty, visitor), .. *default_visitor() })); } fn resolve_item(item: @item, visitor: ResolveVisitor) { debug!("(resolving item) resolving %s", self.session.str_of(item.ident)); // Items with the !resolve_unexported attribute are X-ray contexts. // This is used to allow the test runner to run unexported tests. let orig_xray_flag = self.xray_context; if contains_name(attr_metas(item.attrs), ~"!resolve_unexported") { self.xray_context = Xray; } match item.node { // enum item: resolve all the variants' discrs, // then resolve the ty params item_enum(enum_def, type_parameters) => { for enum_def.variants.each() |variant| { do variant.node.disr_expr.iter() |dis_expr| { // resolve the discriminator expr // as a constant self.with_constant_rib(|| { self.resolve_expr(*dis_expr, visitor); }); } } // n.b. the discr expr gets visted twice. // but maybe it's okay since the first time will signal an // error if there is one? -- tjc do self.with_type_parameter_rib (HasTypeParameters(&type_parameters, item.id, 0, NormalRibKind)) || { visit_item(item, (), visitor); } } item_ty(_, type_parameters) => { do self.with_type_parameter_rib (HasTypeParameters(&type_parameters, item.id, 0u, NormalRibKind)) || { visit_item(item, (), visitor); } } item_impl(type_parameters, implemented_traits, self_type, methods) => { self.resolve_implementation(item.id, item.span, type_parameters, implemented_traits, self_type, methods, visitor); } item_trait(type_parameters, traits, methods) => { // Create a new rib for the self type. let self_type_rib = @Rib(NormalRibKind); (*self.type_ribs).push(self_type_rib); self_type_rib.bindings.insert(self.self_ident, dl_def(def_self(item.id))); // Create a new rib for the trait-wide type parameters. do self.with_type_parameter_rib (HasTypeParameters(&type_parameters, item.id, 0u, NormalRibKind)) { self.resolve_type_parameters(type_parameters, visitor); // Resolve derived traits. for traits.each |trt| { match self.resolve_path(trt.path, TypeNS, true, visitor) { None => self.session.span_err(trt.path.span, ~"attempt to derive a \ nonexistent trait"), Some(def) => { // Write a mapping from the trait ID to the // definition of the trait into the definition // map. debug!("(resolving trait) found trait def: \ %?", def); self.record_def(trt.ref_id, def); } } } for methods.each |method| { // Create a new rib for the method-specific type // parameters. // // XXX: Do we need a node ID here? match *method { required(ty_m) => { do self.with_type_parameter_rib (HasTypeParameters(&ty_m.tps, item.id, type_parameters.len(), MethodRibKind(item.id, Required))) { // Resolve the method-specific type // parameters. self.resolve_type_parameters(ty_m.tps, visitor); for ty_m.decl.inputs.each |argument| { self.resolve_type(argument.ty, visitor); } self.resolve_type(ty_m.decl.output, visitor); } } provided(m) => { self.resolve_method(MethodRibKind(item.id, Provided(m.id)), m, type_parameters.len(), visitor) } } } } (*self.type_ribs).pop(); } item_class(struct_def, ty_params) => { self.resolve_class(item.id, @copy ty_params, struct_def.traits, struct_def.fields, struct_def.methods, struct_def.dtor, visitor); } item_mod(module_) => { do self.with_scope(Some(item.ident)) { self.resolve_module(module_, item.span, item.ident, item.id, visitor); } } item_foreign_mod(foreign_module) => { do self.with_scope(Some(item.ident)) { for foreign_module.items.each |foreign_item| { match foreign_item.node { foreign_item_fn(_, _, type_parameters) => { do self.with_type_parameter_rib (HasTypeParameters(&type_parameters, foreign_item.id, 0u, OpaqueFunctionRibKind)) || { visit_foreign_item(*foreign_item, (), visitor); } } foreign_item_const(_) => { visit_foreign_item(*foreign_item, (), visitor); } } } } } item_fn(fn_decl, _, ty_params, block) => { // If this is the main function, we must record it in the // session. // // For speed, we put the string comparison last in this chain // of conditionals. if !self.session.building_library && is_none(self.session.main_fn) && item.ident == syntax::parse::token::special_idents::main { self.session.main_fn = Some((item.id, item.span)); } self.resolve_function(OpaqueFunctionRibKind, Some(@fn_decl), HasTypeParameters (&ty_params, item.id, 0u, OpaqueFunctionRibKind), block, NoSelfBinding, NoCaptureClause, visitor); } item_const(*) => { self.with_constant_rib(|| { visit_item(item, (), visitor); }); } item_mac(*) => { fail ~"item macros unimplemented" } } self.xray_context = orig_xray_flag; } fn with_type_parameter_rib(type_parameters: TypeParameters, f: fn()) { match type_parameters { HasTypeParameters(type_parameters, node_id, initial_index, rib_kind) => { let function_type_rib = @Rib(rib_kind); (*self.type_ribs).push(function_type_rib); for (*type_parameters).eachi |index, type_parameter| { let name = type_parameter.ident; debug!("with_type_parameter_rib: %d %d", node_id, type_parameter.id); let def_like = dl_def(def_ty_param (local_def(type_parameter.id), index + initial_index)); // Associate this type parameter with // the item that bound it self.record_def(type_parameter.id, def_typaram_binder(node_id)); (*function_type_rib).bindings.insert(name, def_like); } } NoTypeParameters => { // Nothing to do. } } f(); match type_parameters { HasTypeParameters(*) => { (*self.type_ribs).pop(); } NoTypeParameters => { // Nothing to do. } } } fn with_label_rib(f: fn()) { (*self.label_ribs).push(@Rib(NormalRibKind)); f(); (*self.label_ribs).pop(); } fn with_constant_rib(f: fn()) { (*self.value_ribs).push(@Rib(ConstantItemRibKind)); f(); (*self.value_ribs).pop(); } fn resolve_function(rib_kind: RibKind, optional_declaration: Option<@fn_decl>, type_parameters: TypeParameters, block: blk, self_binding: SelfBinding, capture_clause: CaptureClause, visitor: ResolveVisitor) { // Check each element of the capture clause. match capture_clause { NoCaptureClause => { // Nothing to do. } HasCaptureClause(capture_clause) => { // Resolve each captured item. for (*capture_clause).each |capture_item| { match self.resolve_identifier(capture_item.name, ValueNS, true, capture_item.span) { None => { self.session.span_err(capture_item.span, ~"unresolved name in \ capture clause"); } Some(def) => { self.record_def(capture_item.id, def); } } } } } // Create a value rib for the function. let function_value_rib = @Rib(rib_kind); (*self.value_ribs).push(function_value_rib); // Create a label rib for the function. let function_label_rib = @Rib(rib_kind); (*self.label_ribs).push(function_label_rib); // If this function has type parameters, add them now. do self.with_type_parameter_rib(type_parameters) { // Resolve the type parameters. match type_parameters { NoTypeParameters => { // Continue. } HasTypeParameters(type_parameters, _, _, _) => { self.resolve_type_parameters(*type_parameters, visitor); } } // Add self to the rib, if necessary. match self_binding { NoSelfBinding => { // Nothing to do. } HasSelfBinding(self_node_id) => { let def_like = dl_def(def_self(self_node_id)); (*function_value_rib).bindings.insert(self.self_ident, def_like); } } // Add each argument to the rib. match optional_declaration { None => { // Nothing to do. } Some(declaration) => { for declaration.inputs.each |argument| { let binding_mode = ArgumentIrrefutableMode(argument.mode); self.resolve_pattern(argument.pat, binding_mode, Immutable, None, visitor); self.resolve_type(argument.ty, visitor); debug!("(resolving function) recorded argument"); } self.resolve_type(declaration.output, visitor); } } // Resolve the function body. self.resolve_block(block, visitor); debug!("(resolving function) leaving function"); } (*self.label_ribs).pop(); (*self.value_ribs).pop(); } fn resolve_type_parameters(type_parameters: ~[ty_param], visitor: ResolveVisitor) { for type_parameters.each |type_parameter| { for type_parameter.bounds.each |bound| { self.resolve_type(**bound, visitor); } } } fn resolve_class(id: node_id, type_parameters: @~[ty_param], traits: ~[@trait_ref], fields: ~[@struct_field], methods: ~[@method], optional_destructor: Option, visitor: ResolveVisitor) { // If applicable, create a rib for the type parameters. let outer_type_parameter_count = (*type_parameters).len(); let borrowed_type_parameters: &~[ty_param] = &*type_parameters; do self.with_type_parameter_rib(HasTypeParameters (borrowed_type_parameters, id, 0, OpaqueFunctionRibKind)) { // Resolve the type parameters. self.resolve_type_parameters(*type_parameters, visitor); // Resolve implemented traits. for traits.each |trt| { match self.resolve_path(trt.path, TypeNS, true, visitor) { None => { self.session.span_err(trt.path.span, ~"attempt to implement a \ nonexistent trait"); } Some(def) => { // Write a mapping from the trait ID to the // definition of the trait into the definition // map. debug!("(resolving class) found trait def: %?", def); self.record_def(trt.ref_id, def); // XXX: This is wrong but is needed for tests to // pass. self.record_def(id, def); } } } // Resolve methods. for methods.each |method| { self.resolve_method(MethodRibKind(id, Provided(method.id)), *method, outer_type_parameter_count, visitor); } // Resolve fields. for fields.each |field| { self.resolve_type(field.node.ty, visitor); } // Resolve the destructor, if applicable. match optional_destructor { None => { // Nothing to do. } Some(destructor) => { self.resolve_function(NormalRibKind, None, NoTypeParameters, destructor.node.body, HasSelfBinding (destructor.node.self_id), NoCaptureClause, visitor); } } } } // Does this really need to take a RibKind or is it always going // to be NormalRibKind? fn resolve_method(rib_kind: RibKind, method: @method, outer_type_parameter_count: uint, visitor: ResolveVisitor) { let borrowed_method_type_parameters = &method.tps; let type_parameters = HasTypeParameters(borrowed_method_type_parameters, method.id, outer_type_parameter_count, rib_kind); // we only have self ty if it is a non static method let self_binding = match method.self_ty.node { sty_static => { NoSelfBinding } _ => { HasSelfBinding(method.self_id) } }; self.resolve_function(rib_kind, Some(@method.decl), type_parameters, method.body, self_binding, NoCaptureClause, visitor); } fn resolve_implementation(id: node_id, span: span, type_parameters: ~[ty_param], opt_trait_reference: Option<@trait_ref>, self_type: @Ty, methods: ~[@method], visitor: ResolveVisitor) { // If applicable, create a rib for the type parameters. let outer_type_parameter_count = type_parameters.len(); let borrowed_type_parameters: &~[ty_param] = &type_parameters; do self.with_type_parameter_rib(HasTypeParameters (borrowed_type_parameters, id, 0u, NormalRibKind)) { // Resolve the type parameters. self.resolve_type_parameters(type_parameters, visitor); // Resolve the trait reference, if necessary. let original_trait_refs = self.current_trait_refs; match opt_trait_reference { Some(trait_reference) => { let new_trait_refs = @DVec(); match self.resolve_path( trait_reference.path, TypeNS, true, visitor) { None => { self.session.span_err(span, ~"attempt to implement an \ unknown trait"); } Some(def) => { self.record_def(trait_reference.ref_id, def); // Record the current trait reference. (*new_trait_refs).push(def_id_of_def(def)); } } // Record the current set of trait references. self.current_trait_refs = Some(new_trait_refs); } None => () } // Resolve the self type. self.resolve_type(self_type, visitor); for methods.each |method| { // We also need a new scope for the method-specific // type parameters. self.resolve_method(MethodRibKind( id, Provided(method.id)), *method, outer_type_parameter_count, visitor); /* let borrowed_type_parameters = &method.tps; self.resolve_function(MethodRibKind( id, Provided(method.id)), Some(@method.decl), HasTypeParameters (borrowed_type_parameters, method.id, outer_type_parameter_count, NormalRibKind), method.body, HasSelfBinding(method.self_id), NoCaptureClause, visitor); */ } // Restore the original trait references. self.current_trait_refs = original_trait_refs; } } fn resolve_module(module_: _mod, span: span, _name: ident, id: node_id, visitor: ResolveVisitor) { // Write the implementations in scope into the module metadata. debug!("(resolving module) resolving module ID %d", id); visit_mod(module_, span, id, (), visitor); } fn resolve_local(local: @local, visitor: ResolveVisitor) { let mut mutability; if local.node.is_mutbl { mutability = Mutable; } else { mutability = Immutable; } // Resolve the type. self.resolve_type(local.node.ty, visitor); // Resolve the initializer, if necessary. match local.node.init { None => { // Nothing to do. } Some(initializer) => { self.resolve_expr(initializer, visitor); } } // Resolve the pattern. self.resolve_pattern(local.node.pat, LocalIrrefutableMode, mutability, None, visitor); } fn binding_mode_map(pat: @pat) -> BindingMap { let result = HashMap(); do pat_bindings(self.def_map, pat) |binding_mode, _id, sp, path| { let ident = path_to_ident(path); result.insert(ident, binding_info {span: sp, binding_mode: binding_mode}); } return result; } fn check_consistent_bindings(arm: arm) { if arm.pats.len() == 0 { return; } let map_0 = self.binding_mode_map(arm.pats[0]); for arm.pats.eachi() |i, p| { let map_i = self.binding_mode_map(*p); for map_0.each |key, binding_0| { match map_i.find(key) { None => { self.session.span_err( p.span, fmt!("variable `%s` from pattern #1 is \ not bound in pattern #%u", self.session.str_of(key), i + 1)); } Some(binding_i) => { if binding_0.binding_mode != binding_i.binding_mode { self.session.span_err( binding_i.span, fmt!("variable `%s` is bound with different \ mode in pattern #%u than in pattern #1", self.session.str_of(key), i + 1)); } } } } for map_i.each |key, binding| { if !map_0.contains_key(key) { self.session.span_err( binding.span, fmt!("variable `%s` from pattern #%u is \ not bound in pattern #1", self.session.str_of(key), i + 1)); } } } } fn resolve_arm(arm: arm, visitor: ResolveVisitor) { (*self.value_ribs).push(@Rib(NormalRibKind)); let bindings_list = HashMap(); for arm.pats.each |pattern| { self.resolve_pattern(*pattern, RefutableMode, Immutable, Some(bindings_list), visitor); } // This has to happen *after* we determine which // pat_idents are variants self.check_consistent_bindings(arm); visit_expr_opt(arm.guard, (), visitor); self.resolve_block(arm.body, visitor); (*self.value_ribs).pop(); } fn resolve_block(block: blk, visitor: ResolveVisitor) { debug!("(resolving block) entering block"); (*self.value_ribs).push(@Rib(NormalRibKind)); // Move down in the graph, if there's an anonymous module rooted here. let orig_module = self.current_module; match self.current_module.anonymous_children.find(block.node.id) { None => { /* Nothing to do. */ } Some(anonymous_module) => { debug!("(resolving block) found anonymous module, moving \ down"); self.current_module = anonymous_module; } } // Descend into the block. visit_block(block, (), visitor); // Move back up. self.current_module = orig_module; (*self.value_ribs).pop(); debug!("(resolving block) leaving block"); } fn resolve_type(ty: @Ty, visitor: ResolveVisitor) { match ty.node { // Like path expressions, the interpretation of path types depends // on whether the path has multiple elements in it or not. ty_path(path, path_id) => { // This is a path in the type namespace. Walk through scopes // scopes looking for it. let mut result_def = None; // First, check to see whether the name is a primitive type. if path.idents.len() == 1 { let name = path.idents.last(); match self.primitive_type_table .primitive_types .find(name) { Some(primitive_type) => { result_def = Some(def_prim_ty(primitive_type)); } None => { // Continue. } } } match result_def { None => { match self.resolve_path(path, TypeNS, true, visitor) { Some(def) => { debug!("(resolving type) resolved `%s` to \ type %?", self.session.str_of( path.idents.last()), def); result_def = Some(def); } None => { result_def = None; } } } Some(_) => { // Continue. } } match copy result_def { Some(def) => { // Write the result into the def map. debug!("(resolving type) writing resolution for `%s` \ (id %d)", connect(path.idents.map( |x| self.session.str_of(*x)), ~"::"), path_id); self.record_def(path_id, def); } None => { self.session.span_err (ty.span, fmt!("use of undeclared type name `%s`", connect(path.idents.map( |x| self.session.str_of(*x)), ~"::"))); } } } _ => { // Just resolve embedded types. visit_ty(ty, (), visitor); } } } fn resolve_pattern(pattern: @pat, mode: PatternBindingMode, mutability: Mutability, // Maps idents to the node ID for the (outermost) // pattern that binds them bindings_list: Option>, visitor: ResolveVisitor) { let pat_id = pattern.id; do walk_pat(pattern) |pattern| { match pattern.node { pat_ident(binding_mode, path, _) if !path.global && path.idents.len() == 1u => { // The meaning of pat_ident with no type parameters // depends on whether an enum variant or unit-like struct // with that name is in scope. The probing lookup has to // be careful not to emit spurious errors. Only matching // patterns (match) can match nullary variants or // unit-like structs. For binding patterns (let), matching // such a value is simply disallowed (since it's rarely // what you want). let ident = path.idents[0]; match self.resolve_bare_identifier_pattern(ident) { FoundStructOrEnumVariant(def) if mode == RefutableMode => { debug!("(resolving pattern) resolving `%s` to \ struct or enum variant", self.session.str_of(ident)); self.record_def(pattern.id, def); } FoundStructOrEnumVariant(_) => { self.session.span_err(pattern.span, fmt!("declaration of `%s` \ shadows an enum \ variant or unit-like \ struct in scope", self.session .str_of(ident))); } FoundConst(def) if mode == RefutableMode => { debug!("(resolving pattern) resolving `%s` to \ constant", self.session.str_of(ident)); self.record_def(pattern.id, def); } FoundConst(_) => { self.session.span_err(pattern.span, ~"only refutable patterns \ allowed here"); } BareIdentifierPatternUnresolved => { debug!("(resolving pattern) binding `%s`", self.session.str_of(ident)); let is_mutable = mutability == Mutable; let def = match mode { RefutableMode => { // For pattern arms, we must use // `def_binding` definitions. def_binding(pattern.id, binding_mode) } LocalIrrefutableMode => { // But for locals, we use `def_local`. def_local(pattern.id, is_mutable) } ArgumentIrrefutableMode(argument_mode) => { // And for function arguments, `def_arg`. def_arg(pattern.id, argument_mode) } }; // Record the definition so that later passes // will be able to distinguish variants from // locals in patterns. self.record_def(pattern.id, def); // Add the binding to the local ribs, if it // doesn't already exist in the bindings list. (We // must not add it if it's in the bindings list // because that breaks the assumptions later // passes make about or-patterns.) match bindings_list { Some(bindings_list) if !bindings_list.contains_key(ident) => { let last_rib = (*self.value_ribs).last(); last_rib.bindings.insert(ident, dl_def(def)); bindings_list.insert(ident, pat_id); } Some(b) => { if b.find(ident) == Some(pat_id) { // Then this is a duplicate variable // in the same disjunct, which is an // error self.session.span_err(pattern.span, fmt!("Identifier %s is bound more \ than once in the same pattern", path_to_str(path, self.session .intr()))); } // Not bound in the same pattern: do nothing } None => { let last_rib = (*self.value_ribs).last(); last_rib.bindings.insert(ident, dl_def(def)); } } } } // Check the types in the path pattern. for path.types.each |ty| { self.resolve_type(*ty, visitor); } } pat_ident(_, path, _) | pat_enum(path, _) => { // These two must be enum variants or structs. match self.resolve_path(path, ValueNS, false, visitor) { Some(def @ def_variant(*)) | Some(def @ def_class(*)) => { self.record_def(pattern.id, def); } Some(_) => { self.session.span_err( path.span, fmt!("not an enum variant: %s", self.session.str_of( path.idents.last()))); } None => { self.session.span_err(path.span, ~"unresolved enum variant"); } } // Check the types in the path pattern. for path.types.each |ty| { self.resolve_type(*ty, visitor); } } pat_lit(expr) => { self.resolve_expr(expr, visitor); } pat_range(first_expr, last_expr) => { self.resolve_expr(first_expr, visitor); self.resolve_expr(last_expr, visitor); } pat_struct(path, _, _) => { match self.resolve_path(path, TypeNS, false, visitor) { Some(def_ty(class_id)) if self.structs.contains_key(class_id) => { let class_def = def_class(class_id); self.record_def(pattern.id, class_def); } Some(definition @ def_variant(_, variant_id)) if self.structs.contains_key(variant_id) => { self.record_def(pattern.id, definition); } _ => { self.session.span_err( path.span, fmt!("`%s` does not name a structure", connect(path.idents.map( |x| self.session.str_of(*x)), ~"::"))); } } } _ => { // Nothing to do. } } } } fn resolve_bare_identifier_pattern(name: ident) -> BareIdentifierPatternResolution { match self.resolve_item_in_lexical_scope(self.current_module, name, ValueNS) { Success(target) => { match target.bindings.value_def { None => { fail ~"resolved name in the value namespace to a set \ of name bindings with no def?!"; } Some(def) => { match def.def { def @ def_variant(*) | def @ def_class(*) => { return FoundStructOrEnumVariant(def); } def @ def_const(*) => { return FoundConst(def); } _ => { return BareIdentifierPatternUnresolved; } } } } } Indeterminate => { fail ~"unexpected indeterminate result"; } Failed => { return BareIdentifierPatternUnresolved; } } } /** * If `check_ribs` is true, checks the local definitions first; i.e. * doesn't skip straight to the containing module. */ fn resolve_path(path: @path, namespace: Namespace, check_ribs: bool, visitor: ResolveVisitor) -> Option { // First, resolve the types. for path.types.each |ty| { self.resolve_type(*ty, visitor); } if path.global { return self.resolve_crate_relative_path(path, self.xray_context, namespace); } if path.idents.len() > 1 { return self.resolve_module_relative_path(path, self.xray_context, namespace); } return self.resolve_identifier(path.idents.last(), namespace, check_ribs, path.span); } fn resolve_identifier(identifier: ident, namespace: Namespace, check_ribs: bool, span: span) -> Option { if check_ribs { match self.resolve_identifier_in_local_ribs(identifier, namespace, span) { Some(def) => { return Some(def); } None => { // Continue. } } } return self.resolve_item_by_identifier_in_lexical_scope(identifier, namespace); } // XXX: Merge me with resolve_name_in_module? fn resolve_definition_of_name_in_module(containing_module: @Module, name: ident, namespace: Namespace, xray: XrayFlag) -> NameDefinition { if xray == NoXray && !self.name_is_exported(containing_module, name) { debug!("(resolving definition of name in module) name `%s` is \ unexported", self.session.str_of(name)); return NoNameDefinition; } // First, search children. match containing_module.children.find(name) { Some(child_name_bindings) => { match (child_name_bindings.def_for_namespace(namespace), child_name_bindings.privacy_for_namespace(namespace)) { (Some(def), Some(Public)) => { // Found it. Stop the search here. return ChildNameDefinition(def); } (Some(def), _) if xray == Xray => { // Found it. Stop the search here. return ChildNameDefinition(def); } (Some(_), _) | (None, _) => { // Continue. } } } None => { // Continue. } } // Next, search import resolutions. match containing_module.import_resolutions.find(name) { Some(import_resolution) if import_resolution.privacy == Public || xray == Xray => { match (*import_resolution).target_for_namespace(namespace) { Some(target) => { match (target.bindings.def_for_namespace(namespace), target.bindings.privacy_for_namespace( namespace)) { (Some(def), Some(Public)) => { // Found it. import_resolution.used = true; return ImportNameDefinition(def); } (Some(_), _) | (None, _) => { // This can happen with external impls, due to // the imperfect way we read the metadata. return NoNameDefinition; } } } None => { return NoNameDefinition; } } } Some(_) | None => { return NoNameDefinition; } } } fn intern_module_part_of_path(path: @path) -> @DVec { let module_path_idents = @DVec(); for path.idents.eachi |index, ident| { if index == path.idents.len() - 1u { break; } (*module_path_idents).push(*ident); } return module_path_idents; } fn resolve_module_relative_path(path: @path, +xray: XrayFlag, namespace: Namespace) -> Option { let module_path_idents = self.intern_module_part_of_path(path); let mut containing_module; match self.resolve_module_path_for_import(self.current_module, module_path_idents, xray, path.span) { Failed => { self.session.span_err(path.span, fmt!("use of undeclared module `%s`", self.idents_to_str( (*module_path_idents).get()))); return None; } Indeterminate => { fail ~"indeterminate unexpected"; } Success(resulting_module) => { containing_module = resulting_module; } } let name = path.idents.last(); match self.resolve_definition_of_name_in_module(containing_module, name, namespace, xray) { NoNameDefinition => { // We failed to resolve the name. Report an error. return None; } ChildNameDefinition(def) | ImportNameDefinition(def) => { return Some(def); } } } fn resolve_crate_relative_path(path: @path, +xray: XrayFlag, namespace: Namespace) -> Option { let module_path_idents = self.intern_module_part_of_path(path); let root_module = (*self.graph_root).get_module(); let mut containing_module; match self.resolve_module_path_from_root(root_module, module_path_idents, 0u, xray, path.span) { Failed => { self.session.span_err(path.span, fmt!("use of undeclared module `::%s`", self.idents_to_str ((*module_path_idents).get()))); return None; } Indeterminate => { fail ~"indeterminate unexpected"; } Success(resulting_module) => { containing_module = resulting_module; } } let name = path.idents.last(); match self.resolve_definition_of_name_in_module(containing_module, name, namespace, xray) { NoNameDefinition => { // We failed to resolve the name. Report an error. return None; } ChildNameDefinition(def) | ImportNameDefinition(def) => { return Some(def); } } } fn resolve_identifier_in_local_ribs(ident: ident, namespace: Namespace, span: span) -> Option { // Check the local set of ribs. let mut search_result; match namespace { ValueNS => { search_result = self.search_ribs(self.value_ribs, ident, span, DontAllowCapturingSelf); } TypeNS => { search_result = self.search_ribs(self.type_ribs, ident, span, AllowCapturingSelf); } } match copy search_result { Some(dl_def(def)) => { debug!("(resolving path in local ribs) resolved `%s` to \ local: %?", self.session.str_of(ident), def); return Some(def); } Some(dl_field) | Some(dl_impl(_)) | None => { return None; } } } fn resolve_item_by_identifier_in_lexical_scope(ident: ident, namespace: Namespace) -> Option { // Check the items. match self.resolve_item_in_lexical_scope(self.current_module, ident, namespace) { Success(target) => { match (*target.bindings).def_for_namespace(namespace) { None => { // This can happen if we were looking for a type and // found a module instead. Modules don't have defs. return None; } Some(def) => { debug!("(resolving item path in lexical scope) \ resolved `%s` to item", self.session.str_of(ident)); return Some(def); } } } Indeterminate => { fail ~"unexpected indeterminate result"; } Failed => { return None; } } } fn name_exists_in_scope_class(name: &str) -> bool { let mut i = self.type_ribs.len(); while i != 0 { i -= 1; let rib = self.type_ribs.get_elt(i); match rib.kind { MethodRibKind(node_id, _) => for vec::each(self.crate.node.module.items) |item| { if item.id == node_id { match item.node { item_class(class_def, _) => { for vec::each(class_def.fields) |field| { match field.node.kind { syntax::ast::unnamed_field => {}, syntax::ast::named_field(ident, _, _) => { if str::eq_slice(self.session.str_of(ident), name) { return true } } } } for vec::each(class_def.methods) |method| { if str::eq_slice(self.session.str_of(method.ident), name) { return true } } } _ => {} } } }, _ => {} } } return false; } fn resolve_expr(expr: @expr, visitor: ResolveVisitor) { // First, record candidate traits for this expression if it could // result in the invocation of a method call. self.record_candidate_traits_for_expr_if_necessary(expr); // Next, resolve the node. match expr.node { // The interpretation of paths depends on whether the path has // multiple elements in it or not. expr_path(path) => { // This is a local path in the value namespace. Walk through // scopes looking for it. match self.resolve_path(path, ValueNS, true, visitor) { Some(def) => { // Write the result into the def map. debug!("(resolving expr) resolved `%s`", connect(path.idents.map( |x| self.session.str_of(*x)), ~"::")); self.record_def(expr.id, def); } None => { let wrong_name = connect(path.idents.map( |x| self.session.str_of(*x)), ~"::") ; if self.name_exists_in_scope_class(wrong_name) { self.session.span_err(expr.span, fmt!("unresolved name: `%s`. \ Did you mean: `self.%s`?", wrong_name, wrong_name)); } else { self.session.span_err(expr.span, fmt!("unresolved name: %s", wrong_name)); } } } visit_expr(expr, (), visitor); } expr_fn(_, fn_decl, block, capture_clause) | expr_fn_block(fn_decl, block, capture_clause) => { self.resolve_function(FunctionRibKind(expr.id, block.node.id), Some(@fn_decl), NoTypeParameters, block, NoSelfBinding, HasCaptureClause(capture_clause), visitor); } expr_struct(path, _, _) => { // Resolve the path to the structure it goes to. // // XXX: We might want to support explicit type parameters in // the path, in which case this gets a little more // complicated: // // 1. Should we go through the ast_path_to_ty() path, which // handles typedefs and the like? // // 2. If so, should programmers be able to write this? // // class Foo { ... } // type Bar = Foo; // let bar = Bar { ... } // no type parameters match self.resolve_path(path, TypeNS, false, visitor) { Some(def_ty(class_id)) | Some(def_class(class_id)) if self.structs.contains_key(class_id) => { let class_def = def_class(class_id); self.record_def(expr.id, class_def); } Some(definition @ def_variant(_, class_id)) if self.structs.contains_key(class_id) => { self.record_def(expr.id, definition); } _ => { self.session.span_err( path.span, fmt!("`%s` does not name a structure", connect(path.idents.map( |x| self.session.str_of(*x)), ~"::"))); } } visit_expr(expr, (), visitor); } expr_loop(_, Some(label)) => { do self.with_label_rib { let def_like = dl_def(def_label(expr.id)); self.label_ribs.last().bindings.insert(label, def_like); visit_expr(expr, (), visitor); } } expr_break(Some(label)) | expr_again(Some(label)) => { match self.search_ribs(self.label_ribs, label, expr.span, DontAllowCapturingSelf) { None => self.session.span_err(expr.span, fmt!("use of undeclared label \ `%s`", self.session.str_of( label))), Some(dl_def(def @ def_label(_))) => self.record_def(expr.id, def), Some(_) => self.session.span_bug(expr.span, ~"label wasn't mapped to a \ label def!") } } _ => { visit_expr(expr, (), visitor); } } } fn record_candidate_traits_for_expr_if_necessary(expr: @expr) { match expr.node { expr_field(_, ident, _) => { let traits = self.search_for_traits_containing_method(ident); self.trait_map.insert(expr.id, traits); } expr_binary(add, _, _) | expr_assign_op(add, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.add_trait); } expr_binary(subtract, _, _) | expr_assign_op(subtract, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.sub_trait); } expr_binary(mul, _, _) | expr_assign_op(mul, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.mul_trait); } expr_binary(div, _, _) | expr_assign_op(div, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.div_trait); } expr_binary(rem, _, _) | expr_assign_op(rem, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.modulo_trait); } expr_binary(bitxor, _, _) | expr_assign_op(bitxor, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.bitxor_trait); } expr_binary(bitand, _, _) | expr_assign_op(bitand, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.bitand_trait); } expr_binary(bitor, _, _) | expr_assign_op(bitor, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.bitor_trait); } expr_binary(shl, _, _) | expr_assign_op(shl, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.shl_trait); } expr_binary(shr, _, _) | expr_assign_op(shr, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.shr_trait); } expr_binary(lt, _, _) | expr_binary(le, _, _) | expr_binary(ge, _, _) | expr_binary(gt, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.ord_trait); } expr_binary(eq, _, _) | expr_binary(ne, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.eq_trait); } expr_unary(neg, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.neg_trait); } expr_index(*) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.index_trait); } _ => { // Nothing to do. } } } fn search_for_traits_containing_method(name: ident) -> @DVec { debug!("(searching for traits containing method) looking for '%s'", self.session.str_of(name)); let found_traits = @DVec(); let mut search_module = self.current_module; loop { // Look for the current trait. match copy self.current_trait_refs { Some(trait_def_ids) => { for trait_def_ids.each |trait_def_id| { self.add_trait_info_if_containing_method( found_traits, *trait_def_id, name); } } None => { // Nothing to do. } } // Look for trait children. for search_module.children.each |_name, child_name_bindings| { match child_name_bindings.def_for_namespace(TypeNS) { Some(def) => { match def { def_ty(trait_def_id) => { self.add_trait_info_if_containing_method( found_traits, trait_def_id, name); } _ => { // Continue. } } } None => { // Continue. } } } // Look for imports. for search_module.import_resolutions.each |_ident, import_resolution| { match import_resolution.target_for_namespace(TypeNS) { None => { // Continue. } Some(target) => { match target.bindings.def_for_namespace(TypeNS) { Some(def) => { match def { def_ty(trait_def_id) => { self. add_trait_info_if_containing_method( found_traits, trait_def_id, name); } _ => { // Continue. } } } None => { // Continue. } } } } } // Move to the next parent. match search_module.parent_link { NoParentLink => { // Done. break; } ModuleParentLink(parent_module, _) | BlockParentLink(parent_module, _) => { search_module = parent_module; } } } return found_traits; } fn add_trait_info_if_containing_method(found_traits: @DVec, trait_def_id: def_id, name: ident) { debug!("(adding trait info if containing method) trying trait %d:%d \ for method '%s'", trait_def_id.crate, trait_def_id.node, self.session.str_of(name)); match self.trait_info.find(trait_def_id) { Some(trait_info) if trait_info.contains_key(name) => { debug!("(adding trait info if containing method) found trait \ %d:%d for method '%s'", trait_def_id.crate, trait_def_id.node, self.session.str_of(name)); (*found_traits).push(trait_def_id); } Some(_) | None => { // Continue. } } } fn add_fixed_trait_for_expr(expr_id: node_id, +trait_id: Option) { let traits = @DVec(); traits.push(trait_id.get()); self.trait_map.insert(expr_id, traits); } fn record_def(node_id: node_id, def: def) { debug!("(recording def) recording %? for %?", def, node_id); self.def_map.insert(node_id, def); } // // Unused import checking // // Although this is a lint pass, it lives in here because it depends on // resolve data structures. // fn check_for_unused_imports_if_necessary() { if self.unused_import_lint_level == allow { return; } let root_module = (*self.graph_root).get_module(); self.check_for_unused_imports_in_module_subtree(root_module); } fn check_for_unused_imports_in_module_subtree(module_: @Module) { // If this isn't a local crate, then bail out. We don't need to check // for unused imports in external crates. match module_.def_id { Some(def_id) if def_id.crate == local_crate => { // OK. Continue. } None => { // Check for unused imports in the root module. } Some(_) => { // Bail out. debug!("(checking for unused imports in module subtree) not \ checking for unused imports for `%s`", self.module_to_str(module_)); return; } } self.check_for_unused_imports_in_module(module_); for module_.children.each |_ident, child_name_bindings| { match (*child_name_bindings).get_module_if_available() { None => { // Nothing to do. } Some(child_module) => { self.check_for_unused_imports_in_module_subtree (child_module); } } } for module_.anonymous_children.each |_node_id, child_module| { self.check_for_unused_imports_in_module_subtree(child_module); } } fn check_for_unused_imports_in_module(module_: @Module) { for module_.import_resolutions.each |_name, import_resolution| { if !import_resolution.used { match self.unused_import_lint_level { warn => { self.session.span_warn(import_resolution.span, ~"unused import"); } deny | forbid => { self.session.span_err(import_resolution.span, ~"unused import"); } allow => { self.session.span_bug(import_resolution.span, ~"shouldn't be here if lint \ is allowed"); } } } } } // // Diagnostics // // Diagnostics are not particularly efficient, because they're rarely // hit. // /// A somewhat inefficient routine to print out the name of a module. fn module_to_str(module_: @Module) -> ~str { let idents = DVec(); let mut current_module = module_; loop { match current_module.parent_link { NoParentLink => { break; } ModuleParentLink(module_, name) => { idents.push(name); current_module = module_; } BlockParentLink(module_, _) => { idents.push(syntax::parse::token::special_idents::opaque); current_module = module_; } } } if idents.len() == 0u { return ~"???"; } let mut string = ~""; let mut i = idents.len() - 1u; loop { if i < idents.len() - 1u { string += ~"::"; } string += self.session.str_of(idents.get_elt(i)); if i == 0u { break; } i -= 1u; } return string; } fn dump_module(module_: @Module) { debug!("Dump of module `%s`:", self.module_to_str(module_)); debug!("Children:"); for module_.children.each |name, _child| { debug!("* %s", self.session.str_of(name)); } debug!("Import resolutions:"); for module_.import_resolutions.each |name, import_resolution| { let mut value_repr; match (*import_resolution).target_for_namespace(ValueNS) { None => { value_repr = ~""; } Some(_) => { value_repr = ~" value:?"; // XXX } } let mut type_repr; match (*import_resolution).target_for_namespace(TypeNS) { None => { type_repr = ~""; } Some(_) => { type_repr = ~" type:?"; // XXX } } debug!("* %s:%s%s", self.session.str_of(name), value_repr, type_repr); } } } /// Entry point to crate resolution. fn resolve_crate(session: Session, lang_items: LanguageItems, crate: @crate) -> { def_map: DefMap, exp_map2: ExportMap2, trait_map: TraitMap } { let resolver = @Resolver(session, lang_items, crate); resolver.resolve(resolver); return { def_map: resolver.def_map, exp_map2: resolver.export_map2, trait_map: resolver.trait_map }; }