// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_camel_case_types)] #![allow(unsigned_negation)] pub use self::const_val::*; use self::ErrKind::*; use metadata::csearch; use middle::{astencode, def}; use middle::pat_util::def_to_path; use middle::ty::{self, Ty}; use middle::astconv_util::ast_ty_to_prim_ty; use syntax::ast::{self, Expr}; use syntax::codemap::Span; use syntax::parse::token::InternedString; use syntax::ptr::P; use syntax::{ast_map, ast_util, codemap}; use std::borrow::{Cow, IntoCow}; use std::num::wrapping::OverflowingOps; use std::num::ToPrimitive; use std::cmp::Ordering; use std::collections::hash_map::Entry::Vacant; use std::{i8, i16, i32, i64}; use std::rc::Rc; fn lookup_const<'a>(tcx: &'a ty::ctxt, e: &Expr) -> Option<&'a Expr> { let opt_def = tcx.def_map.borrow().get(&e.id).map(|d| d.full_def()); match opt_def { Some(def::DefConst(def_id)) => { lookup_const_by_id(tcx, def_id) } Some(def::DefVariant(enum_def, variant_def, _)) => { lookup_variant_by_id(tcx, enum_def, variant_def) } _ => None } } fn lookup_variant_by_id<'a>(tcx: &'a ty::ctxt, enum_def: ast::DefId, variant_def: ast::DefId) -> Option<&'a Expr> { fn variant_expr<'a>(variants: &'a [P], id: ast::NodeId) -> Option<&'a Expr> { for variant in variants { if variant.node.id == id { return variant.node.disr_expr.as_ref().map(|e| &**e); } } None } if ast_util::is_local(enum_def) { match tcx.map.find(enum_def.node) { None => None, Some(ast_map::NodeItem(it)) => match it.node { ast::ItemEnum(ast::EnumDef { ref variants }, _) => { variant_expr(&variants[..], variant_def.node) } _ => None }, Some(_) => None } } else { match tcx.extern_const_variants.borrow().get(&variant_def) { Some(&ast::DUMMY_NODE_ID) => return None, Some(&expr_id) => { return Some(tcx.map.expect_expr(expr_id)); } None => {} } let expr_id = match csearch::maybe_get_item_ast(tcx, enum_def, Box::new(|a, b, c, d| astencode::decode_inlined_item(a, b, c, d))) { csearch::FoundAst::Found(&ast::IIItem(ref item)) => match item.node { ast::ItemEnum(ast::EnumDef { ref variants }, _) => { // NOTE this doesn't do the right thing, it compares inlined // NodeId's to the original variant_def's NodeId, but they // come from different crates, so they will likely never match. variant_expr(&variants[..], variant_def.node).map(|e| e.id) } _ => None }, _ => None }; tcx.extern_const_variants.borrow_mut().insert(variant_def, expr_id.unwrap_or(ast::DUMMY_NODE_ID)); expr_id.map(|id| tcx.map.expect_expr(id)) } } pub fn lookup_const_by_id<'a>(tcx: &'a ty::ctxt, def_id: ast::DefId) -> Option<&'a Expr> { if ast_util::is_local(def_id) { match tcx.map.find(def_id.node) { None => None, Some(ast_map::NodeItem(it)) => match it.node { ast::ItemConst(_, ref const_expr) => { Some(&**const_expr) } _ => None }, Some(_) => None } } else { match tcx.extern_const_statics.borrow().get(&def_id) { Some(&ast::DUMMY_NODE_ID) => return None, Some(&expr_id) => { return Some(tcx.map.expect_expr(expr_id)); } None => {} } let expr_id = match csearch::maybe_get_item_ast(tcx, def_id, Box::new(|a, b, c, d| astencode::decode_inlined_item(a, b, c, d))) { csearch::FoundAst::Found(&ast::IIItem(ref item)) => match item.node { ast::ItemConst(_, ref const_expr) => Some(const_expr.id), _ => None }, _ => None }; tcx.extern_const_statics.borrow_mut().insert(def_id, expr_id.unwrap_or(ast::DUMMY_NODE_ID)); expr_id.map(|id| tcx.map.expect_expr(id)) } } #[derive(Clone, PartialEq)] pub enum const_val { const_float(f64), const_int(i64), const_uint(u64), const_str(InternedString), const_binary(Rc>), const_bool(bool), Struct(ast::NodeId), Tuple(ast::NodeId) } pub fn const_expr_to_pat(tcx: &ty::ctxt, expr: &Expr, span: Span) -> P { let pat = match expr.node { ast::ExprTup(ref exprs) => ast::PatTup(exprs.iter().map(|expr| const_expr_to_pat(tcx, &**expr, span)).collect()), ast::ExprCall(ref callee, ref args) => { let def = *tcx.def_map.borrow().get(&callee.id).unwrap(); if let Vacant(entry) = tcx.def_map.borrow_mut().entry(expr.id) { entry.insert(def); } let path = match def.full_def() { def::DefStruct(def_id) => def_to_path(tcx, def_id), def::DefVariant(_, variant_did, _) => def_to_path(tcx, variant_did), _ => unreachable!() }; let pats = args.iter().map(|expr| const_expr_to_pat(tcx, &**expr, span)).collect(); ast::PatEnum(path, Some(pats)) } ast::ExprStruct(ref path, ref fields, None) => { let field_pats = fields.iter().map(|field| codemap::Spanned { span: codemap::DUMMY_SP, node: ast::FieldPat { ident: field.ident.node, pat: const_expr_to_pat(tcx, &*field.expr, span), is_shorthand: false, }, }).collect(); ast::PatStruct(path.clone(), field_pats, false) } ast::ExprVec(ref exprs) => { let pats = exprs.iter().map(|expr| const_expr_to_pat(tcx, &**expr, span)).collect(); ast::PatVec(pats, None, vec![]) } ast::ExprPath(_, ref path) => { let opt_def = tcx.def_map.borrow().get(&expr.id).map(|d| d.full_def()); match opt_def { Some(def::DefStruct(..)) => ast::PatStruct(path.clone(), vec![], false), Some(def::DefVariant(..)) => ast::PatEnum(path.clone(), None), _ => { match lookup_const(tcx, expr) { Some(actual) => return const_expr_to_pat(tcx, actual, span), _ => unreachable!() } } } } _ => ast::PatLit(P(expr.clone())) }; P(ast::Pat { id: expr.id, node: pat, span: span }) } pub fn eval_const_expr(tcx: &ty::ctxt, e: &Expr) -> const_val { match eval_const_expr_partial(tcx, e, None) { Ok(r) => r, Err(s) => tcx.sess.span_fatal(s.span, &s.description()) } } #[derive(Clone)] pub struct ConstEvalErr { pub span: Span, pub kind: ErrKind, } #[derive(Clone)] pub enum ErrKind { CannotCast, CannotCastTo(&'static str), InvalidOpForBools(ast::BinOp_), InvalidOpForFloats(ast::BinOp_), InvalidOpForIntUint(ast::BinOp_), InvalidOpForUintInt(ast::BinOp_), NegateOnString, NegateOnBoolean, NegateOnBinary, NegateOnStruct, NegateOnTuple, NotOnFloat, NotOnString, NotOnBinary, NotOnStruct, NotOnTuple, NegateWithOverflow(i64), AddiWithOverflow(i64, i64), SubiWithOverflow(i64, i64), MuliWithOverflow(i64, i64), AdduWithOverflow(u64, u64), SubuWithOverflow(u64, u64), MuluWithOverflow(u64, u64), DivideByZero, DivideWithOverflow, ModuloByZero, ModuloWithOverflow, ShiftLeftWithOverflow, ShiftRightWithOverflow, MissingStructField, NonConstPath, ExpectedConstTuple, ExpectedConstStruct, TupleIndexOutOfBounds, MiscBinaryOp, MiscCatchAll, } impl ConstEvalErr { pub fn description(&self) -> Cow { use self::ErrKind::*; match self.kind { CannotCast => "can't cast this type".into_cow(), CannotCastTo(s) => format!("can't cast this type to {}", s).into_cow(), InvalidOpForBools(_) => "can't do this op on bools".into_cow(), InvalidOpForFloats(_) => "can't do this op on floats".into_cow(), InvalidOpForIntUint(..) => "can't do this op on an isize and usize".into_cow(), InvalidOpForUintInt(..) => "can't do this op on a usize and isize".into_cow(), NegateOnString => "negate on string".into_cow(), NegateOnBoolean => "negate on boolean".into_cow(), NegateOnBinary => "negate on binary literal".into_cow(), NegateOnStruct => "negate on struct".into_cow(), NegateOnTuple => "negate on tuple".into_cow(), NotOnFloat => "not on float or string".into_cow(), NotOnString => "not on float or string".into_cow(), NotOnBinary => "not on binary literal".into_cow(), NotOnStruct => "not on struct".into_cow(), NotOnTuple => "not on tuple".into_cow(), NegateWithOverflow(..) => "attempted to negate with overflow".into_cow(), AddiWithOverflow(..) => "attempted to add with overflow".into_cow(), SubiWithOverflow(..) => "attempted to sub with overflow".into_cow(), MuliWithOverflow(..) => "attempted to mul with overflow".into_cow(), AdduWithOverflow(..) => "attempted to add with overflow".into_cow(), SubuWithOverflow(..) => "attempted to sub with overflow".into_cow(), MuluWithOverflow(..) => "attempted to mul with overflow".into_cow(), DivideByZero => "attempted to divide by zero".into_cow(), DivideWithOverflow => "attempted to divide with overflow".into_cow(), ModuloByZero => "attempted remainder with a divisor of zero".into_cow(), ModuloWithOverflow => "attempted remainder with overflow".into_cow(), ShiftLeftWithOverflow => "attempted left shift with overflow".into_cow(), ShiftRightWithOverflow => "attempted right shift with overflow".into_cow(), MissingStructField => "nonexistent struct field".into_cow(), NonConstPath => "non-constant path in constant expr".into_cow(), ExpectedConstTuple => "expected constant tuple".into_cow(), ExpectedConstStruct => "expected constant struct".into_cow(), TupleIndexOutOfBounds => "tuple index out of bounds".into_cow(), MiscBinaryOp => "bad operands for binary".into_cow(), MiscCatchAll => "unsupported constant expr".into_cow(), } } } pub type EvalResult = Result; pub type CastResult = Result; #[derive(Copy, Clone, PartialEq, Debug)] pub enum IntTy { I8, I16, I32, I64 } #[derive(Copy, Clone, PartialEq, Debug)] pub enum UintTy { U8, U16, U32, U64 } impl IntTy { pub fn from(tcx: &ty::ctxt, t: ast::IntTy) -> IntTy { let t = if let ast::TyIs = t { tcx.sess.target.int_type } else { t }; match t { ast::TyIs => unreachable!(), ast::TyI8 => IntTy::I8, ast::TyI16 => IntTy::I16, ast::TyI32 => IntTy::I32, ast::TyI64 => IntTy::I64, } } } impl UintTy { pub fn from(tcx: &ty::ctxt, t: ast::UintTy) -> UintTy { let t = if let ast::TyUs = t { tcx.sess.target.uint_type } else { t }; match t { ast::TyUs => unreachable!(), ast::TyU8 => UintTy::U8, ast::TyU16 => UintTy::U16, ast::TyU32 => UintTy::U32, ast::TyU64 => UintTy::U64, } } } macro_rules! signal { ($e:expr, $exn:expr) => { return Err(ConstEvalErr { span: $e.span, kind: $exn }) } } // The const_{int,uint}_checked_{neg,add,sub,mul,div,shl,shr} family // of functions catch and signal overflow errors during constant // evaluation. // // They all take the operator's arguments (`a` and `b` if binary), the // overall expression (`e`) and, if available, whole expression's // concrete type (`opt_ety`). // // If the whole expression's concrete type is None, then this is a // constant evaluation happening before type check (e.g. in the check // to confirm that a pattern range's left-side is not greater than its // right-side). We do not do arithmetic modulo the type's bitwidth in // such a case; we just do 64-bit arithmetic and assume that later // passes will do it again with the type information, and thus do the // overflow checks then. pub fn const_int_checked_neg<'a>( a: i64, e: &'a Expr, opt_ety: Option) -> EvalResult { let (min,max) = match opt_ety { // (-i8::MIN is itself not an i8, etc, but this is an easy way // to allow literals to pass the check. Of course that does // not work for i64::MIN.) Some(IntTy::I8) => (-(i8::MAX as i64), -(i8::MIN as i64)), Some(IntTy::I16) => (-(i16::MAX as i64), -(i16::MIN as i64)), Some(IntTy::I32) => (-(i32::MAX as i64), -(i32::MIN as i64)), None | Some(IntTy::I64) => (-i64::MAX, -(i64::MIN+1)), }; let oflo = a < min || a > max; if oflo { signal!(e, NegateWithOverflow(a)); } else { Ok(const_int(-a)) } } pub fn const_uint_checked_neg<'a>( a: u64, _e: &'a Expr, _opt_ety: Option) -> EvalResult { // This always succeeds, and by definition, returns `(!a)+1`. Ok(const_uint(-a)) } macro_rules! overflow_checking_body { ($a:ident, $b:ident, $ety:ident, $overflowing_op:ident, lhs: $to_8_lhs:ident $to_16_lhs:ident $to_32_lhs:ident, rhs: $to_8_rhs:ident $to_16_rhs:ident $to_32_rhs:ident $to_64_rhs:ident, $EnumTy:ident $T8: ident $T16: ident $T32: ident $T64: ident, $result_type: ident) => { { let (a,b,opt_ety) = ($a,$b,$ety); match opt_ety { Some($EnumTy::$T8) => match (a.$to_8_lhs(), b.$to_8_rhs()) { (Some(a), Some(b)) => { let (a, oflo) = a.$overflowing_op(b); (a as $result_type, oflo) } (None, _) | (_, None) => (0, true) }, Some($EnumTy::$T16) => match (a.$to_16_lhs(), b.$to_16_rhs()) { (Some(a), Some(b)) => { let (a, oflo) = a.$overflowing_op(b); (a as $result_type, oflo) } (None, _) | (_, None) => (0, true) }, Some($EnumTy::$T32) => match (a.$to_32_lhs(), b.$to_32_rhs()) { (Some(a), Some(b)) => { let (a, oflo) = a.$overflowing_op(b); (a as $result_type, oflo) } (None, _) | (_, None) => (0, true) }, None | Some($EnumTy::$T64) => match b.$to_64_rhs() { Some(b) => a.$overflowing_op(b), None => (0, true), } } } } } macro_rules! int_arith_body { ($a:ident, $b:ident, $ety:ident, $overflowing_op:ident) => { overflow_checking_body!( $a, $b, $ety, $overflowing_op, lhs: to_i8 to_i16 to_i32, rhs: to_i8 to_i16 to_i32 to_i64, IntTy I8 I16 I32 I64, i64) } } macro_rules! uint_arith_body { ($a:ident, $b:ident, $ety:ident, $overflowing_op:ident) => { overflow_checking_body!( $a, $b, $ety, $overflowing_op, lhs: to_u8 to_u16 to_u32, rhs: to_u8 to_u16 to_u32 to_u64, UintTy U8 U16 U32 U64, u64) } } macro_rules! int_shift_body { ($a:ident, $b:ident, $ety:ident, $overflowing_op:ident) => { overflow_checking_body!( $a, $b, $ety, $overflowing_op, lhs: to_i8 to_i16 to_i32, rhs: to_u32 to_u32 to_u32 to_u32, IntTy I8 I16 I32 I64, i64) } } macro_rules! uint_shift_body { ($a:ident, $b:ident, $ety:ident, $overflowing_op:ident) => { overflow_checking_body!( $a, $b, $ety, $overflowing_op, lhs: to_u8 to_u16 to_u32, rhs: to_u32 to_u32 to_u32 to_u32, UintTy U8 U16 U32 U64, u64) } } macro_rules! pub_fn_checked_op { {$fn_name:ident ($a:ident : $a_ty:ty, $b:ident : $b_ty:ty,.. $WhichTy:ident) { $ret_oflo_body:ident $overflowing_op:ident $const_ty:ident $signal_exn:expr }} => { pub fn $fn_name<'a>($a: $a_ty, $b: $b_ty, e: &'a Expr, opt_ety: Option<$WhichTy>) -> EvalResult { let (ret, oflo) = $ret_oflo_body!($a, $b, opt_ety, $overflowing_op); if !oflo { Ok($const_ty(ret)) } else { signal!(e, $signal_exn) } } } } pub_fn_checked_op!{ const_int_checked_add(a: i64, b: i64,.. IntTy) { int_arith_body overflowing_add const_int AddiWithOverflow(a, b) }} pub_fn_checked_op!{ const_int_checked_sub(a: i64, b: i64,.. IntTy) { int_arith_body overflowing_sub const_int SubiWithOverflow(a, b) }} pub_fn_checked_op!{ const_int_checked_mul(a: i64, b: i64,.. IntTy) { int_arith_body overflowing_mul const_int MuliWithOverflow(a, b) }} pub fn const_int_checked_div<'a>( a: i64, b: i64, e: &'a Expr, opt_ety: Option) -> EvalResult { if b == 0 { signal!(e, DivideByZero); } let (ret, oflo) = int_arith_body!(a, b, opt_ety, overflowing_div); if !oflo { Ok(const_int(ret)) } else { signal!(e, DivideWithOverflow) } } pub fn const_int_checked_rem<'a>( a: i64, b: i64, e: &'a Expr, opt_ety: Option) -> EvalResult { if b == 0 { signal!(e, ModuloByZero); } let (ret, oflo) = int_arith_body!(a, b, opt_ety, overflowing_rem); if !oflo { Ok(const_int(ret)) } else { signal!(e, ModuloWithOverflow) } } pub_fn_checked_op!{ const_int_checked_shl(a: i64, b: i64,.. IntTy) { int_shift_body overflowing_shl const_int ShiftLeftWithOverflow }} pub_fn_checked_op!{ const_int_checked_shl_via_uint(a: i64, b: u64,.. IntTy) { int_shift_body overflowing_shl const_int ShiftLeftWithOverflow }} pub_fn_checked_op!{ const_int_checked_shr(a: i64, b: i64,.. IntTy) { int_shift_body overflowing_shr const_int ShiftRightWithOverflow }} pub_fn_checked_op!{ const_int_checked_shr_via_uint(a: i64, b: u64,.. IntTy) { int_shift_body overflowing_shr const_int ShiftRightWithOverflow }} pub_fn_checked_op!{ const_uint_checked_add(a: u64, b: u64,.. UintTy) { uint_arith_body overflowing_add const_uint AdduWithOverflow(a, b) }} pub_fn_checked_op!{ const_uint_checked_sub(a: u64, b: u64,.. UintTy) { uint_arith_body overflowing_sub const_uint SubuWithOverflow(a, b) }} pub_fn_checked_op!{ const_uint_checked_mul(a: u64, b: u64,.. UintTy) { uint_arith_body overflowing_mul const_uint MuluWithOverflow(a, b) }} pub fn const_uint_checked_div<'a>( a: u64, b: u64, e: &'a Expr, opt_ety: Option) -> EvalResult { if b == 0 { signal!(e, DivideByZero); } let (ret, oflo) = uint_arith_body!(a, b, opt_ety, overflowing_div); if !oflo { Ok(const_uint(ret)) } else { signal!(e, DivideWithOverflow) } } pub fn const_uint_checked_rem<'a>( a: u64, b: u64, e: &'a Expr, opt_ety: Option) -> EvalResult { if b == 0 { signal!(e, ModuloByZero); } let (ret, oflo) = uint_arith_body!(a, b, opt_ety, overflowing_rem); if !oflo { Ok(const_uint(ret)) } else { signal!(e, ModuloWithOverflow) } } pub_fn_checked_op!{ const_uint_checked_shl(a: u64, b: u64,.. UintTy) { uint_shift_body overflowing_shl const_uint ShiftLeftWithOverflow }} pub_fn_checked_op!{ const_uint_checked_shl_via_int(a: u64, b: i64,.. UintTy) { uint_shift_body overflowing_shl const_uint ShiftLeftWithOverflow }} pub_fn_checked_op!{ const_uint_checked_shr(a: u64, b: u64,.. UintTy) { uint_shift_body overflowing_shr const_uint ShiftRightWithOverflow }} pub_fn_checked_op!{ const_uint_checked_shr_via_int(a: u64, b: i64,.. UintTy) { uint_shift_body overflowing_shr const_uint ShiftRightWithOverflow }} pub fn eval_const_expr_partial<'tcx>(tcx: &ty::ctxt<'tcx>, e: &Expr, ty_hint: Option>) -> EvalResult { fn fromb(b: bool) -> const_val { const_int(b as i64) } let ety = ty_hint.or_else(|| ty::expr_ty_opt(tcx, e)); // If type of expression itself is int or uint, normalize in these // bindings so that isize/usize is mapped to a type with an // inherently known bitwidth. let expr_int_type = ety.and_then(|ty| { if let ty::ty_int(t) = ty.sty { Some(IntTy::from(tcx, t)) } else { None } }); let expr_uint_type = ety.and_then(|ty| { if let ty::ty_uint(t) = ty.sty { Some(UintTy::from(tcx, t)) } else { None } }); let result = match e.node { ast::ExprUnary(ast::UnNeg, ref inner) => { match try!(eval_const_expr_partial(tcx, &**inner, ety)) { const_float(f) => const_float(-f), const_int(n) => try!(const_int_checked_neg(n, e, expr_int_type)), const_uint(n) => try!(const_uint_checked_neg(n, e, expr_uint_type)), const_str(_) => signal!(e, NegateOnString), const_bool(_) => signal!(e, NegateOnBoolean), const_binary(_) => signal!(e, NegateOnBinary), const_val::Tuple(_) => signal!(e, NegateOnTuple), const_val::Struct(..) => signal!(e, NegateOnStruct), } } ast::ExprUnary(ast::UnNot, ref inner) => { match try!(eval_const_expr_partial(tcx, &**inner, ety)) { const_int(i) => const_int(!i), const_uint(i) => const_uint(!i), const_bool(b) => const_bool(!b), const_str(_) => signal!(e, NotOnString), const_float(_) => signal!(e, NotOnFloat), const_binary(_) => signal!(e, NotOnBinary), const_val::Tuple(_) => signal!(e, NotOnTuple), const_val::Struct(..) => signal!(e, NotOnStruct), } } ast::ExprBinary(op, ref a, ref b) => { let b_ty = match op.node { ast::BiShl | ast::BiShr => Some(tcx.types.usize), _ => ety }; match (try!(eval_const_expr_partial(tcx, &**a, ety)), try!(eval_const_expr_partial(tcx, &**b, b_ty))) { (const_float(a), const_float(b)) => { match op.node { ast::BiAdd => const_float(a + b), ast::BiSub => const_float(a - b), ast::BiMul => const_float(a * b), ast::BiDiv => const_float(a / b), ast::BiRem => const_float(a % b), ast::BiEq => fromb(a == b), ast::BiLt => fromb(a < b), ast::BiLe => fromb(a <= b), ast::BiNe => fromb(a != b), ast::BiGe => fromb(a >= b), ast::BiGt => fromb(a > b), _ => signal!(e, InvalidOpForFloats(op.node)) } } (const_int(a), const_int(b)) => { match op.node { ast::BiAdd => try!(const_int_checked_add(a,b,e,expr_int_type)), ast::BiSub => try!(const_int_checked_sub(a,b,e,expr_int_type)), ast::BiMul => try!(const_int_checked_mul(a,b,e,expr_int_type)), ast::BiDiv => try!(const_int_checked_div(a,b,e,expr_int_type)), ast::BiRem => try!(const_int_checked_rem(a,b,e,expr_int_type)), ast::BiAnd | ast::BiBitAnd => const_int(a & b), ast::BiOr | ast::BiBitOr => const_int(a | b), ast::BiBitXor => const_int(a ^ b), ast::BiShl => try!(const_int_checked_shl(a,b,e,expr_int_type)), ast::BiShr => try!(const_int_checked_shr(a,b,e,expr_int_type)), ast::BiEq => fromb(a == b), ast::BiLt => fromb(a < b), ast::BiLe => fromb(a <= b), ast::BiNe => fromb(a != b), ast::BiGe => fromb(a >= b), ast::BiGt => fromb(a > b) } } (const_uint(a), const_uint(b)) => { match op.node { ast::BiAdd => try!(const_uint_checked_add(a,b,e,expr_uint_type)), ast::BiSub => try!(const_uint_checked_sub(a,b,e,expr_uint_type)), ast::BiMul => try!(const_uint_checked_mul(a,b,e,expr_uint_type)), ast::BiDiv => try!(const_uint_checked_div(a,b,e,expr_uint_type)), ast::BiRem => try!(const_uint_checked_rem(a,b,e,expr_uint_type)), ast::BiAnd | ast::BiBitAnd => const_uint(a & b), ast::BiOr | ast::BiBitOr => const_uint(a | b), ast::BiBitXor => const_uint(a ^ b), ast::BiShl => try!(const_uint_checked_shl(a,b,e,expr_uint_type)), ast::BiShr => try!(const_uint_checked_shr(a,b,e,expr_uint_type)), ast::BiEq => fromb(a == b), ast::BiLt => fromb(a < b), ast::BiLe => fromb(a <= b), ast::BiNe => fromb(a != b), ast::BiGe => fromb(a >= b), ast::BiGt => fromb(a > b), } } // shifts can have any integral type as their rhs (const_int(a), const_uint(b)) => { match op.node { ast::BiShl => try!(const_int_checked_shl_via_uint(a,b,e,expr_int_type)), ast::BiShr => try!(const_int_checked_shr_via_uint(a,b,e,expr_int_type)), _ => signal!(e, InvalidOpForIntUint(op.node)), } } (const_uint(a), const_int(b)) => { match op.node { ast::BiShl => try!(const_uint_checked_shl_via_int(a,b,e,expr_uint_type)), ast::BiShr => try!(const_uint_checked_shr_via_int(a,b,e,expr_uint_type)), _ => signal!(e, InvalidOpForUintInt(op.node)), } } (const_bool(a), const_bool(b)) => { const_bool(match op.node { ast::BiAnd => a && b, ast::BiOr => a || b, ast::BiBitXor => a ^ b, ast::BiBitAnd => a & b, ast::BiBitOr => a | b, ast::BiEq => a == b, ast::BiNe => a != b, _ => signal!(e, InvalidOpForBools(op.node)), }) } _ => signal!(e, MiscBinaryOp), } } ast::ExprCast(ref base, ref target_ty) => { // This tends to get called w/o the type actually having been // populated in the ctxt, which was causing things to blow up // (#5900). Fall back to doing a limited lookup to get past it. let ety = ety.or_else(|| ast_ty_to_prim_ty(tcx, &**target_ty)) .unwrap_or_else(|| { tcx.sess.span_fatal(target_ty.span, "target type not found for const cast") }); // Prefer known type to noop, but always have a type hint. // // FIXME (#23833): the type-hint can cause problems, // e.g. `(i8::MAX + 1_i8) as u32` feeds in `u32` as result // type to the sum, and thus no overflow is signaled. let base_hint = ty::expr_ty_opt(tcx, &**base).unwrap_or(ety); let val = try!(eval_const_expr_partial(tcx, &**base, Some(base_hint))); match cast_const(tcx, val, ety) { Ok(val) => val, Err(kind) => return Err(ConstEvalErr { span: e.span, kind: kind }), } } ast::ExprPath(..) => { let opt_def = tcx.def_map.borrow().get(&e.id).map(|d| d.full_def()); let (const_expr, const_ty) = match opt_def { Some(def::DefConst(def_id)) => { if ast_util::is_local(def_id) { match tcx.map.find(def_id.node) { Some(ast_map::NodeItem(it)) => match it.node { ast::ItemConst(ref ty, ref expr) => { (Some(&**expr), Some(&**ty)) } _ => (None, None) }, _ => (None, None) } } else { (lookup_const_by_id(tcx, def_id), None) } } Some(def::DefVariant(enum_def, variant_def, _)) => { (lookup_variant_by_id(tcx, enum_def, variant_def), None) } _ => (None, None) }; let const_expr = match const_expr { Some(actual_e) => actual_e, None => signal!(e, NonConstPath) }; let ety = ety.or_else(|| const_ty.and_then(|ty| ast_ty_to_prim_ty(tcx, ty))); try!(eval_const_expr_partial(tcx, const_expr, ety)) } ast::ExprLit(ref lit) => { lit_to_const(&**lit, ety) } ast::ExprParen(ref e) => try!(eval_const_expr_partial(tcx, &**e, ety)), ast::ExprBlock(ref block) => { match block.expr { Some(ref expr) => try!(eval_const_expr_partial(tcx, &**expr, ety)), None => const_int(0) } } ast::ExprTup(_) => { const_val::Tuple(e.id) } ast::ExprStruct(..) => { const_val::Struct(e.id) } ast::ExprTupField(ref base, index) => { if let Ok(c) = eval_const_expr_partial(tcx, base, None) { if let const_val::Tuple(tup_id) = c { if let ast::ExprTup(ref fields) = tcx.map.expect_expr(tup_id).node { if index.node < fields.len() { return eval_const_expr_partial(tcx, &fields[index.node], None) } else { signal!(e, TupleIndexOutOfBounds); } } else { unreachable!() } } else { signal!(base, ExpectedConstTuple); } } else { signal!(base, NonConstPath) } } ast::ExprField(ref base, field_name) => { // Get the base expression if it is a struct and it is constant if let Ok(c) = eval_const_expr_partial(tcx, base, None) { if let const_val::Struct(struct_id) = c { if let ast::ExprStruct(_, ref fields, _) = tcx.map.expect_expr(struct_id).node { // Check that the given field exists and evaluate it if let Some(f) = fields.iter().find(|f| f.ident.node.as_str() == field_name.node.as_str()) { return eval_const_expr_partial(tcx, &*f.expr, None) } else { signal!(e, MissingStructField); } } else { unreachable!() } } else { signal!(base, ExpectedConstStruct); } } else { signal!(base, NonConstPath); } } _ => signal!(e, MiscCatchAll) }; Ok(result) } fn cast_const<'tcx>(tcx: &ty::ctxt<'tcx>, val: const_val, ty: Ty) -> CastResult { macro_rules! convert_val { ($intermediate_ty:ty, $const_type:ident, $target_ty:ty) => { match val { const_bool(b) => Ok($const_type(b as $intermediate_ty as $target_ty)), const_uint(u) => Ok($const_type(u as $intermediate_ty as $target_ty)), const_int(i) => Ok($const_type(i as $intermediate_ty as $target_ty)), const_float(f) => Ok($const_type(f as $intermediate_ty as $target_ty)), _ => Err(ErrKind::CannotCastTo(stringify!($const_type))), } } } // Issue #23890: If isize/usize, then dispatch to appropriate target representation type match (&ty.sty, tcx.sess.target.int_type, tcx.sess.target.uint_type) { (&ty::ty_int(ast::TyIs), ast::TyI32, _) => return convert_val!(i32, const_int, i64), (&ty::ty_int(ast::TyIs), ast::TyI64, _) => return convert_val!(i64, const_int, i64), (&ty::ty_int(ast::TyIs), _, _) => panic!("unexpected target.int_type"), (&ty::ty_uint(ast::TyUs), _, ast::TyU32) => return convert_val!(u32, const_uint, u64), (&ty::ty_uint(ast::TyUs), _, ast::TyU64) => return convert_val!(u64, const_uint, u64), (&ty::ty_uint(ast::TyUs), _, _) => panic!("unexpected target.uint_type"), _ => {} } match ty.sty { ty::ty_int(ast::TyIs) => unreachable!(), ty::ty_uint(ast::TyUs) => unreachable!(), ty::ty_int(ast::TyI8) => convert_val!(i8, const_int, i64), ty::ty_int(ast::TyI16) => convert_val!(i16, const_int, i64), ty::ty_int(ast::TyI32) => convert_val!(i32, const_int, i64), ty::ty_int(ast::TyI64) => convert_val!(i64, const_int, i64), ty::ty_uint(ast::TyU8) => convert_val!(u8, const_uint, u64), ty::ty_uint(ast::TyU16) => convert_val!(u16, const_uint, u64), ty::ty_uint(ast::TyU32) => convert_val!(u32, const_uint, u64), ty::ty_uint(ast::TyU64) => convert_val!(u64, const_uint, u64), ty::ty_float(ast::TyF32) => convert_val!(f32, const_float, f64), ty::ty_float(ast::TyF64) => convert_val!(f64, const_float, f64), _ => Err(ErrKind::CannotCast), } } fn lit_to_const(lit: &ast::Lit, ty_hint: Option) -> const_val { match lit.node { ast::LitStr(ref s, _) => const_str((*s).clone()), ast::LitBinary(ref data) => { const_binary(data.clone()) } ast::LitByte(n) => const_uint(n as u64), ast::LitChar(n) => const_uint(n as u64), ast::LitInt(n, ast::SignedIntLit(_, ast::Plus)) => const_int(n as i64), ast::LitInt(n, ast::UnsuffixedIntLit(ast::Plus)) => { match ty_hint.map(|ty| &ty.sty) { Some(&ty::ty_uint(_)) => const_uint(n), _ => const_int(n as i64) } } ast::LitInt(n, ast::SignedIntLit(_, ast::Minus)) | ast::LitInt(n, ast::UnsuffixedIntLit(ast::Minus)) => const_int(-(n as i64)), ast::LitInt(n, ast::UnsignedIntLit(_)) => const_uint(n), ast::LitFloat(ref n, _) | ast::LitFloatUnsuffixed(ref n) => { const_float(n.parse::().unwrap() as f64) } ast::LitBool(b) => const_bool(b) } } pub fn compare_const_vals(a: &const_val, b: &const_val) -> Option { Some(match (a, b) { (&const_int(a), &const_int(b)) => a.cmp(&b), (&const_uint(a), &const_uint(b)) => a.cmp(&b), (&const_float(a), &const_float(b)) => { // This is pretty bad but it is the existing behavior. if a == b { Ordering::Equal } else if a < b { Ordering::Less } else { Ordering::Greater } } (&const_str(ref a), &const_str(ref b)) => a.cmp(b), (&const_bool(a), &const_bool(b)) => a.cmp(&b), (&const_binary(ref a), &const_binary(ref b)) => a.cmp(b), _ => return None }) } pub fn compare_lit_exprs<'tcx>(tcx: &ty::ctxt<'tcx>, a: &Expr, b: &Expr, ty_hint: Option>) -> Option { let a = match eval_const_expr_partial(tcx, a, ty_hint) { Ok(a) => a, Err(e) => { tcx.sess.span_err(a.span, &e.description()); return None; } }; let b = match eval_const_expr_partial(tcx, b, ty_hint) { Ok(b) => b, Err(e) => { tcx.sess.span_err(b.span, &e.description()); return None; } }; compare_const_vals(&a, &b) }