//! A map of all publicly exported items in a crate. use std::{cmp::Ordering, fmt, hash::BuildHasherDefault, sync::Arc}; use fst::{self, Streamer}; use indexmap::{map::Entry, IndexMap}; use ra_db::CrateId; use rustc_hash::{FxHashMap, FxHasher}; use smallvec::SmallVec; use crate::{ db::DefDatabase, item_scope::ItemInNs, path::{ModPath, PathKind}, visibility::Visibility, AssocItemId, ModuleDefId, ModuleId, TraitId, }; type FxIndexMap = IndexMap>; /// Item import details stored in the `ImportMap`. #[derive(Debug, Clone, Eq, PartialEq)] pub struct ImportInfo { /// A path that can be used to import the item, relative to the crate's root. pub path: ModPath, /// The module containing this item. pub container: ModuleId, } /// A map from publicly exported items to the path needed to import/name them from a downstream /// crate. /// /// Reexports of items are taken into account, ie. if something is exported under multiple /// names, the one with the shortest import path will be used. /// /// Note that all paths are relative to the containing crate's root, so the crate name still needs /// to be prepended to the `ModPath` before the path is valid. #[derive(Default)] pub struct ImportMap { map: FxIndexMap, /// List of keys stored in `map`, sorted lexicographically by their `ModPath`. Indexed by the /// values returned by running `fst`. /// /// Since a path can refer to multiple items due to namespacing, we store all items with the /// same path right after each other. This allows us to find all items after the FST gives us /// the index of the first one. importables: Vec, fst: fst::Map>, /// Maps names of associated items to the item's ID. Only includes items whose defining trait is /// exported. assoc_map: FxHashMap>, } impl ImportMap { pub fn import_map_query(db: &dyn DefDatabase, krate: CrateId) -> Arc { let _p = ra_prof::profile("import_map_query"); let def_map = db.crate_def_map(krate); let mut import_map = Self::default(); // We look only into modules that are public(ly reexported), starting with the crate root. let empty = ModPath { kind: PathKind::Plain, segments: vec![] }; let root = ModuleId { krate, local_id: def_map.root }; let mut worklist = vec![(root, empty)]; while let Some((module, mod_path)) = worklist.pop() { let ext_def_map; let mod_data = if module.krate == krate { &def_map[module.local_id] } else { // The crate might reexport a module defined in another crate. ext_def_map = db.crate_def_map(module.krate); &ext_def_map[module.local_id] }; let visible_items = mod_data.scope.entries().filter_map(|(name, per_ns)| { let per_ns = per_ns.filter_visibility(|vis| vis == Visibility::Public); if per_ns.is_none() { None } else { Some((name, per_ns)) } }); for (name, per_ns) in visible_items { let mk_path = || { let mut path = mod_path.clone(); path.segments.push(name.clone()); path }; for item in per_ns.iter_items() { let path = mk_path(); match import_map.map.entry(item) { Entry::Vacant(entry) => { entry.insert(ImportInfo { path, container: module }); } Entry::Occupied(mut entry) => { // If the new path is shorter, prefer that one. if path.len() < entry.get().path.len() { *entry.get_mut() = ImportInfo { path, container: module }; } else { continue; } } } // If we've just added a path to a module, descend into it. We might traverse // modules multiple times, but only if the new path to it is shorter than the // first (else we `continue` above). if let Some(ModuleDefId::ModuleId(mod_id)) = item.as_module_def_id() { worklist.push((mod_id, mk_path())); } // If we've added a path to a trait, add the trait's methods to the method map. if let Some(ModuleDefId::TraitId(tr)) = item.as_module_def_id() { import_map.collect_trait_methods(db, tr); } } } } let mut importables = import_map.map.iter().collect::>(); importables.sort_by(cmp); // Build the FST, taking care not to insert duplicate values. let mut builder = fst::MapBuilder::memory(); let mut last_batch_start = 0; for idx in 0..importables.len() { if let Some(next_item) = importables.get(idx + 1) { if cmp(&importables[last_batch_start], next_item) == Ordering::Equal { continue; } } let start = last_batch_start; last_batch_start = idx + 1; let key = fst_path(&importables[start].1.path); builder.insert(key, start as u64).unwrap(); } import_map.fst = fst::Map::new(builder.into_inner().unwrap()).unwrap(); import_map.importables = importables.iter().map(|(item, _)| **item).collect(); Arc::new(import_map) } /// Returns the `ModPath` needed to import/mention `item`, relative to this crate's root. pub fn path_of(&self, item: ItemInNs) -> Option<&ModPath> { Some(&self.map.get(&item)?.path) } pub fn import_info_for(&self, item: ItemInNs) -> Option<&ImportInfo> { self.map.get(&item) } fn collect_trait_methods(&mut self, db: &dyn DefDatabase, tr: TraitId) { let data = db.trait_data(tr); for (name, item) in data.items.iter() { self.assoc_map.entry(name.to_string()).or_default().push(*item); } } } impl PartialEq for ImportMap { fn eq(&self, other: &Self) -> bool { // `fst` and `importables` are built from `map`, so we don't need to compare them. self.map == other.map } } impl Eq for ImportMap {} impl fmt::Debug for ImportMap { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut importable_paths: Vec<_> = self .map .iter() .map(|(item, info)| { let ns = match item { ItemInNs::Types(_) => "t", ItemInNs::Values(_) => "v", ItemInNs::Macros(_) => "m", }; format!("- {} ({})", info.path, ns) }) .collect(); importable_paths.sort(); f.write_str(&importable_paths.join("\n")) } } fn fst_path(path: &ModPath) -> String { let mut s = path.to_string(); s.make_ascii_lowercase(); s } fn cmp((_, lhs): &(&ItemInNs, &ImportInfo), (_, rhs): &(&ItemInNs, &ImportInfo)) -> Ordering { let lhs_str = fst_path(&lhs.path); let rhs_str = fst_path(&rhs.path); lhs_str.cmp(&rhs_str) } #[derive(Debug)] pub struct Query { query: String, lowercased: String, anchor_end: bool, case_sensitive: bool, limit: usize, } impl Query { pub fn new(query: &str) -> Self { Self { lowercased: query.to_lowercase(), query: query.to_string(), anchor_end: false, case_sensitive: false, limit: usize::max_value(), } } /// Only returns items whose paths end with the (case-insensitive) query string as their last /// segment. pub fn anchor_end(self) -> Self { Self { anchor_end: true, ..self } } /// Limits the returned number of items to `limit`. pub fn limit(self, limit: usize) -> Self { Self { limit, ..self } } /// Respect casing of the query string when matching. pub fn case_sensitive(self) -> Self { Self { case_sensitive: true, ..self } } } /// Searches dependencies of `krate` for an importable path matching `query`. /// /// This returns a list of items that could be imported from dependencies of `krate`. pub fn search_dependencies<'a>( db: &'a dyn DefDatabase, krate: CrateId, query: Query, ) -> Vec { let _p = ra_prof::profile("search_dependencies").detail(|| format!("{:?}", query)); let graph = db.crate_graph(); let import_maps: Vec<_> = graph[krate].dependencies.iter().map(|dep| db.import_map(dep.crate_id)).collect(); let automaton = fst::automaton::Subsequence::new(&query.lowercased); let mut op = fst::map::OpBuilder::new(); for map in &import_maps { op = op.add(map.fst.search(&automaton)); } let mut stream = op.union(); let mut res = Vec::new(); while let Some((_, indexed_values)) = stream.next() { for indexed_value in indexed_values { let import_map = &import_maps[indexed_value.index]; let importables = &import_map.importables[indexed_value.value as usize..]; // Path shared by the importable items in this group. let path = &import_map.map[&importables[0]].path; if query.anchor_end { // Last segment must match query. let last = path.segments.last().unwrap().to_string(); if last.to_lowercase() != query.lowercased { continue; } } // Add the items from this `ModPath` group. Those are all subsequent items in // `importables` whose paths match `path`. let iter = importables.iter().copied().take_while(|item| { let item_path = &import_map.map[item].path; fst_path(item_path) == fst_path(path) }); if query.case_sensitive { // FIXME: This does not do a subsequence match. res.extend(iter.filter(|item| { let item_path = &import_map.map[item].path; item_path.to_string().contains(&query.query) })); } else { res.extend(iter); } if res.len() >= query.limit { res.truncate(query.limit); return res; } } } // Add all exported associated items whose names match the query (exactly). for map in &import_maps { if let Some(v) = map.assoc_map.get(&query.query) { res.extend(v.iter().map(|&assoc| { ItemInNs::Types(match assoc { AssocItemId::FunctionId(it) => it.into(), AssocItemId::ConstId(it) => it.into(), AssocItemId::TypeAliasId(it) => it.into(), }) })); } } res } #[cfg(test)] mod tests { use super::*; use crate::test_db::TestDB; use insta::assert_snapshot; use itertools::Itertools; use ra_db::fixture::WithFixture; use ra_db::{SourceDatabase, Upcast}; fn import_map(ra_fixture: &str) -> String { let db = TestDB::with_files(ra_fixture); let crate_graph = db.crate_graph(); let s = crate_graph .iter() .filter_map(|krate| { let cdata = &crate_graph[krate]; let name = cdata.display_name.as_ref()?; let map = db.import_map(krate); Some(format!("{}:\n{:?}", name, map)) }) .join("\n"); s } fn search_dependencies_of(ra_fixture: &str, krate_name: &str, query: Query) -> String { let db = TestDB::with_files(ra_fixture); let crate_graph = db.crate_graph(); let krate = crate_graph .iter() .find(|krate| { crate_graph[*krate].display_name.as_ref().map(|n| n.to_string()) == Some(krate_name.to_string()) }) .unwrap(); search_dependencies(db.upcast(), krate, query) .into_iter() .filter_map(|item| { let mark = match item { ItemInNs::Types(_) => "t", ItemInNs::Values(_) => "v", ItemInNs::Macros(_) => "m", }; item.krate(db.upcast()).map(|krate| { let map = db.import_map(krate); let path = map.path_of(item).unwrap(); format!( "{}::{} ({})", crate_graph[krate].display_name.as_ref().unwrap(), path, mark ) }) }) .join("\n") } #[test] fn smoke() { let map = import_map( r" //- /main.rs crate:main deps:lib mod private { pub use lib::Pub; pub struct InPrivateModule; } pub mod publ1 { use lib::Pub; } pub mod real_pub { pub use lib::Pub; } pub mod real_pu2 { // same path length as above pub use lib::Pub; } //- /lib.rs crate:lib pub struct Pub {} pub struct Pub2; // t + v struct Priv; ", ); assert_snapshot!(map, @r###" main: - publ1 (t) - real_pu2 (t) - real_pub (t) - real_pub::Pub (t) lib: - Pub (t) - Pub2 (t) - Pub2 (v) "###); } #[test] fn prefers_shortest_path() { let map = import_map( r" //- /main.rs crate:main pub mod sub { pub mod subsub { pub struct Def {} } pub use super::sub::subsub::Def; } ", ); assert_snapshot!(map, @r###" main: - sub (t) - sub::Def (t) - sub::subsub (t) "###); } #[test] fn type_reexport_cross_crate() { // Reexports need to be visible from a crate, even if the original crate exports the item // at a shorter path. let map = import_map( r" //- /main.rs crate:main deps:lib pub mod m { pub use lib::S; } //- /lib.rs crate:lib pub struct S; ", ); assert_snapshot!(map, @r###" main: - m (t) - m::S (t) - m::S (v) lib: - S (t) - S (v) "###); } #[test] fn macro_reexport() { let map = import_map( r" //- /main.rs crate:main deps:lib pub mod m { pub use lib::pub_macro; } //- /lib.rs crate:lib #[macro_export] macro_rules! pub_macro { () => {}; } ", ); assert_snapshot!(map, @r###" main: - m (t) - m::pub_macro (m) lib: - pub_macro (m) "###); } #[test] fn module_reexport() { // Reexporting modules from a dependency adds all contents to the import map. let map = import_map( r" //- /main.rs crate:main deps:lib pub use lib::module as reexported_module; //- /lib.rs crate:lib pub mod module { pub struct S; } ", ); assert_snapshot!(map, @r###" main: - reexported_module (t) - reexported_module::S (t) - reexported_module::S (v) lib: - module (t) - module::S (t) - module::S (v) "###); } #[test] fn cyclic_module_reexport() { // A cyclic reexport does not hang. let map = import_map( r" //- /lib.rs crate:lib pub mod module { pub struct S; pub use super::sub::*; } pub mod sub { pub use super::module; } ", ); assert_snapshot!(map, @r###" lib: - module (t) - module::S (t) - module::S (v) - sub (t) "###); } #[test] fn private_macro() { let map = import_map( r" //- /lib.rs crate:lib macro_rules! private_macro { () => {}; } ", ); assert_snapshot!(map, @r###" lib: "###); } #[test] fn namespacing() { let map = import_map( r" //- /lib.rs crate:lib pub struct Thing; // t + v #[macro_export] macro_rules! Thing { // m () => {}; } ", ); assert_snapshot!(map, @r###" lib: - Thing (m) - Thing (t) - Thing (v) "###); let map = import_map( r" //- /lib.rs crate:lib pub mod Thing {} // t #[macro_export] macro_rules! Thing { // m () => {}; } ", ); assert_snapshot!(map, @r###" lib: - Thing (m) - Thing (t) "###); } #[test] fn search() { let ra_fixture = r#" //- /main.rs crate:main deps:dep //- /dep.rs crate:dep deps:tdep use tdep::fmt as fmt_dep; pub mod fmt { pub trait Display { fn fmt(); } } #[macro_export] macro_rules! Fmt { () => {}; } pub struct Fmt; pub fn format() {} pub fn no() {} //- /tdep.rs crate:tdep pub mod fmt { pub struct NotImportableFromMain; } "#; let res = search_dependencies_of(ra_fixture, "main", Query::new("fmt")); assert_snapshot!(res, @r###" dep::fmt (t) dep::Fmt (t) dep::Fmt (v) dep::Fmt (m) dep::fmt::Display (t) dep::format (v) "###); let res = search_dependencies_of(ra_fixture, "main", Query::new("fmt").anchor_end()); assert_snapshot!(res, @r###" dep::fmt (t) dep::Fmt (t) dep::Fmt (v) dep::Fmt (m) "###); } #[test] fn search_casing() { let ra_fixture = r#" //- /main.rs crate:main deps:dep //- /dep.rs crate:dep pub struct fmt; pub struct FMT; "#; let res = search_dependencies_of(ra_fixture, "main", Query::new("FMT")); assert_snapshot!(res, @r###" dep::fmt (t) dep::fmt (v) dep::FMT (t) dep::FMT (v) "###); let res = search_dependencies_of(ra_fixture, "main", Query::new("FMT").case_sensitive()); assert_snapshot!(res, @r###" dep::FMT (t) dep::FMT (v) "###); } #[test] fn search_limit() { let res = search_dependencies_of( r#" //- /main.rs crate:main deps:dep //- /dep.rs crate:dep pub mod fmt { pub trait Display { fn fmt(); } } #[macro_export] macro_rules! Fmt { () => {}; } pub struct Fmt; pub fn format() {} pub fn no() {} "#, "main", Query::new("").limit(2), ); assert_snapshot!(res, @r###" dep::fmt (t) dep::Fmt (t) "###); } }