// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! Random number generation. The key functions are `random()` and `RngUtil::gen()`. These are polymorphic and so can be used to generate any type that implements `Rand`. Type inference means that often a simple call to `rand::random()` or `rng.gen()` will suffice, but sometimes an annotation is required, e.g. `rand::random::()`. See the `distributions` submodule for sampling random numbers from distributions like normal and exponential. # Examples ~~~ use core::rand::RngUtil; fn main() { let rng = rand::rng(); if rng.gen() { // bool println(fmt!("int: %d, uint: %u", rng.gen(), rng.gen())) } } ~~~ ~~~ fn main () { let tuple_ptr = rand::random::<~(f64, char)>(); println(fmt!("%?", tuple_ptr)) } ~~~ */ use int; use prelude::*; use str; use task; use u32; use uint; use util; use vec; use libc::size_t; #[path="rand/distributions.rs"] pub mod distributions; /// A type that can be randomly generated using an Rng pub trait Rand { fn rand(rng: &R) -> Self; } impl Rand for int { #[inline] fn rand(rng: &R) -> int { if int::bits == 32 { rng.next() as int } else { rng.gen::() as int } } } impl Rand for i8 { #[inline] fn rand(rng: &R) -> i8 { rng.next() as i8 } } impl Rand for i16 { #[inline] fn rand(rng: &R) -> i16 { rng.next() as i16 } } impl Rand for i32 { #[inline] fn rand(rng: &R) -> i32 { rng.next() as i32 } } impl Rand for i64 { #[inline] fn rand(rng: &R) -> i64 { (rng.next() as i64 << 32) | rng.next() as i64 } } impl Rand for uint { #[inline] fn rand(rng: &R) -> uint { if uint::bits == 32 { rng.next() as uint } else { rng.gen::() as uint } } } impl Rand for u8 { #[inline] fn rand(rng: &R) -> u8 { rng.next() as u8 } } impl Rand for u16 { #[inline] fn rand(rng: &R) -> u16 { rng.next() as u16 } } impl Rand for u32 { #[inline] fn rand(rng: &R) -> u32 { rng.next() } } impl Rand for u64 { #[inline] fn rand(rng: &R) -> u64 { (rng.next() as u64 << 32) | rng.next() as u64 } } impl Rand for float { #[inline] fn rand(rng: &R) -> float { rng.gen::() as float } } impl Rand for f32 { #[inline] fn rand(rng: &R) -> f32 { rng.gen::() as f32 } } static scale : f64 = (u32::max_value as f64) + 1.0f64; impl Rand for f64 { #[inline] fn rand(rng: &R) -> f64 { let u1 = rng.next() as f64; let u2 = rng.next() as f64; let u3 = rng.next() as f64; ((u1 / scale + u2) / scale + u3) / scale } } impl Rand for char { #[inline] fn rand(rng: &R) -> char { rng.next() as char } } impl Rand for bool { #[inline] fn rand(rng: &R) -> bool { rng.next() & 1u32 == 1u32 } } macro_rules! tuple_impl { // use variables to indicate the arity of the tuple ($($tyvar:ident),* ) => { // the trailing commas are for the 1 tuple impl< $( $tyvar : Rand ),* > Rand for ( $( $tyvar ),* , ) { #[inline] fn rand(_rng: &R) -> ( $( $tyvar ),* , ) { ( // use the $tyvar's to get the appropriate number of // repeats (they're not actually needed) $( _rng.gen::<$tyvar>() ),* , ) } } } } impl Rand for () { #[inline] fn rand(_: &R) -> () { () } } tuple_impl!{A} tuple_impl!{A, B} tuple_impl!{A, B, C} tuple_impl!{A, B, C, D} tuple_impl!{A, B, C, D, E} tuple_impl!{A, B, C, D, E, F} tuple_impl!{A, B, C, D, E, F, G} tuple_impl!{A, B, C, D, E, F, G, H} tuple_impl!{A, B, C, D, E, F, G, H, I} tuple_impl!{A, B, C, D, E, F, G, H, I, J} impl Rand for Option { #[inline] fn rand(rng: &R) -> Option { if rng.gen() { Some(rng.gen()) } else { None } } } impl Rand for ~T { #[inline] fn rand(rng: &R) -> ~T { ~rng.gen() } } impl Rand for @T { #[inline] fn rand(rng: &R) -> @T { @rng.gen() } } #[abi = "cdecl"] pub mod rustrt { use libc::size_t; pub extern { unsafe fn rand_seed_size() -> size_t; unsafe fn rand_gen_seed(buf: *mut u8, sz: size_t); } } /// A random number generator pub trait Rng { /// Return the next random integer pub fn next(&self) -> u32; } /// A value with a particular weight compared to other values pub struct Weighted { weight: uint, item: T, } pub trait RngUtil { /// Return a random value of a Rand type fn gen(&self) -> T; /** * Return a int randomly chosen from the range [start, end), * failing if start >= end */ fn gen_int_range(&self, start: int, end: int) -> int; /** * Return a uint randomly chosen from the range [start, end), * failing if start >= end */ fn gen_uint_range(&self, start: uint, end: uint) -> uint; /** * Return a char randomly chosen from chars, failing if chars is empty */ fn gen_char_from(&self, chars: &str) -> char; /** * Return a bool with a 1 in n chance of true * * *Example* * * ~~~ * * use core::rand::RngUtil; * * fn main() { * rng = rand::rng(); * println(fmt!("%b",rng.gen_weighted_bool(3))); * } * ~~~ */ fn gen_weighted_bool(&self, n: uint) -> bool; /** * Return a random string of the specified length composed of A-Z,a-z,0-9 * * *Example* * * ~~~ * * use core::rand::RngUtil; * * fn main() { * rng = rand::rng(); * println(rng.gen_str(8)); * } * ~~~ */ fn gen_str(&self, len: uint) -> ~str; /** * Return a random byte string of the specified length * * *Example* * * ~~~ * * use core::rand::RngUtil; * * fn main() { * rng = rand::rng(); * println(fmt!("%?",rng.gen_bytes(8))); * } * ~~~ */ fn gen_bytes(&self, len: uint) -> ~[u8]; /** * Choose an item randomly, failing if values is empty * * *Example* * * ~~~ * * use core::rand::RngUtil; * * fn main() { * rng = rand::rng(); * println(fmt!("%d",rng.choose([1,2,4,8,16,32]))); * } * ~~~ */ fn choose(&self, values: &[T]) -> T; /// Choose Some(item) randomly, returning None if values is empty fn choose_option(&self, values: &[T]) -> Option; /** * Choose an item respecting the relative weights, failing if the sum of * the weights is 0 * * *Example* * * ~~~ * * use core::rand::RngUtil; * * fn main() { * rng = rand::rng(); * let x = [rand::Weighted {weight: 4, item: 'a'}, * rand::Weighted {weight: 2, item: 'b'}, * rand::Weighted {weight: 2, item: 'c'}]; * println(fmt!("%c",rng.choose_weighted(x))); * } * ~~~ */ fn choose_weighted(&self, v : &[Weighted]) -> T; /** * Choose Some(item) respecting the relative weights, returning none if * the sum of the weights is 0 * * *Example* * * ~~~ * * use core::rand::RngUtil; * * fn main() { * rng = rand::rng(); * let x = [rand::Weighted {weight: 4, item: 'a'}, * rand::Weighted {weight: 2, item: 'b'}, * rand::Weighted {weight: 2, item: 'c'}]; * println(fmt!("%?",rng.choose_weighted_option(x))); * } * ~~~ */ fn choose_weighted_option(&self, v: &[Weighted]) -> Option; /** * Return a vec containing copies of the items, in order, where * the weight of the item determines how many copies there are * * *Example* * * ~~~ * * use core::rand::RngUtil; * * fn main() { * rng = rand::rng(); * let x = [rand::Weighted {weight: 4, item: 'a'}, * rand::Weighted {weight: 2, item: 'b'}, * rand::Weighted {weight: 2, item: 'c'}]; * println(fmt!("%?",rng.weighted_vec(x))); * } * ~~~ */ fn weighted_vec(&self, v: &[Weighted]) -> ~[T]; /** * Shuffle a vec * * *Example* * * ~~~ * * use core::rand::RngUtil; * * fn main() { * rng = rand::rng(); * println(fmt!("%?",rng.shuffle([1,2,3]))); * } * ~~~ */ fn shuffle(&self, values: &[T]) -> ~[T]; /** * Shuffle a mutable vec in place * * *Example* * * ~~~ * * use core::rand::RngUtil; * * fn main() { * rng = rand::rng(); * let mut y = [1,2,3]; * rng.shuffle_mut(y); * println(fmt!("%?",y)); * rng.shuffle_mut(y); * println(fmt!("%?",y)); * } * ~~~ */ fn shuffle_mut(&self, values: &mut [T]); } /// Extension methods for random number generators impl RngUtil for R { /// Return a random value for a Rand type #[inline(always)] fn gen(&self) -> T { Rand::rand(self) } /** * Return an int randomly chosen from the range [start, end), * failing if start >= end */ fn gen_int_range(&self, start: int, end: int) -> int { assert!(start < end); start + int::abs(self.gen::() % (end - start)) } /** * Return a uint randomly chosen from the range [start, end), * failing if start >= end */ fn gen_uint_range(&self, start: uint, end: uint) -> uint { assert!(start < end); start + (self.gen::() % (end - start)) } /** * Return a char randomly chosen from chars, failing if chars is empty */ fn gen_char_from(&self, chars: &str) -> char { assert!(!chars.is_empty()); let mut cs = ~[]; for str::each_char(chars) |c| { cs.push(c) } self.choose(cs) } /// Return a bool with a 1-in-n chance of true fn gen_weighted_bool(&self, n: uint) -> bool { if n == 0u { true } else { self.gen_uint_range(1u, n + 1u) == 1u } } /** * Return a random string of the specified length composed of A-Z,a-z,0-9 */ fn gen_str(&self, len: uint) -> ~str { let charset = ~"ABCDEFGHIJKLMNOPQRSTUVWXYZ\ abcdefghijklmnopqrstuvwxyz\ 0123456789"; let mut s = ~""; let mut i = 0u; while (i < len) { s = s + str::from_char(self.gen_char_from(charset)); i += 1u; } s } /// Return a random byte string of the specified length fn gen_bytes(&self, len: uint) -> ~[u8] { do vec::from_fn(len) |_i| { self.gen() } } /// Choose an item randomly, failing if values is empty fn choose(&self, values: &[T]) -> T { self.choose_option(values).get() } /// Choose Some(item) randomly, returning None if values is empty fn choose_option(&self, values: &[T]) -> Option { if values.is_empty() { None } else { Some(values[self.gen_uint_range(0u, values.len())]) } } /** * Choose an item respecting the relative weights, failing if the sum of * the weights is 0 */ fn choose_weighted(&self, v : &[Weighted]) -> T { self.choose_weighted_option(v).get() } /** * Choose Some(item) respecting the relative weights, returning none if * the sum of the weights is 0 */ fn choose_weighted_option(&self, v: &[Weighted]) -> Option { let mut total = 0u; for v.each |item| { total += item.weight; } if total == 0u { return None; } let chosen = self.gen_uint_range(0u, total); let mut so_far = 0u; for v.each |item| { so_far += item.weight; if so_far > chosen { return Some(item.item); } } util::unreachable(); } /** * Return a vec containing copies of the items, in order, where * the weight of the item determines how many copies there are */ fn weighted_vec(&self, v: &[Weighted]) -> ~[T] { let mut r = ~[]; for v.each |item| { for uint::range(0u, item.weight) |_i| { r.push(item.item); } } r } /// Shuffle a vec fn shuffle(&self, values: &[T]) -> ~[T] { let mut m = vec::from_slice(values); self.shuffle_mut(m); m } /// Shuffle a mutable vec in place fn shuffle_mut(&self, values: &mut [T]) { let mut i = values.len(); while i >= 2u { // invariant: elements with index >= i have been locked in place. i -= 1u; // lock element i in place. vec::swap(values, i, self.gen_uint_range(0u, i + 1u)); } } } /// Create a random number generator with a default algorithm and seed. pub fn rng() -> IsaacRng { IsaacRng::new() } static RAND_SIZE_LEN: u32 = 8; static RAND_SIZE: u32 = 1 << RAND_SIZE_LEN; /// A random number generator that uses the [ISAAC /// algorithm](http://en.wikipedia.org/wiki/ISAAC_%28cipher%29). pub struct IsaacRng { priv mut cnt: u32, priv mut rsl: [u32, .. RAND_SIZE], priv mut mem: [u32, .. RAND_SIZE], priv mut a: u32, priv mut b: u32, priv mut c: u32 } pub impl IsaacRng { /// Create an ISAAC random number generator with a random seed. fn new() -> IsaacRng { IsaacRng::new_seeded(seed()) } /// Create an ISAAC random number generator with a seed. This can be any /// length, although the maximum number of bytes used is 1024 and any more /// will be silently ignored. A generator constructed with a given seed /// will generate the same sequence of values as all other generators /// constructed with the same seed. fn new_seeded(seed: &[u8]) -> IsaacRng { let mut rng = IsaacRng { cnt: 0, rsl: [0, .. RAND_SIZE], mem: [0, .. RAND_SIZE], a: 0, b: 0, c: 0 }; let array_size = sys::size_of_val(&rng.rsl); let copy_length = cmp::min(array_size, seed.len()); // manually create a &mut [u8] slice of randrsl to copy into. let dest = unsafe { cast::transmute((&mut rng.rsl, array_size)) }; vec::bytes::copy_memory(dest, seed, copy_length); rng.init(true); rng } /// Create an ISAAC random number generator using the default /// fixed seed. fn new_unseeded() -> IsaacRng { let mut rng = IsaacRng { cnt: 0, rsl: [0, .. RAND_SIZE], mem: [0, .. RAND_SIZE], a: 0, b: 0, c: 0 }; rng.init(false); rng } /// Initialises `self`. If `use_rsl` is true, then use the current value /// of `rsl` as a seed, otherwise construct one algorithmically (not /// randomly). priv fn init(&self, use_rsl: bool) { macro_rules! init_mut_many ( ($( $var:ident ),* = $val:expr ) => { let mut $( $var = $val ),*; } ); init_mut_many!(a, b, c, d, e, f, g, h = 0x9e3779b9); macro_rules! mix( () => {{ a^=b<<11; d+=a; b+=c; b^=c>>2; e+=b; c+=d; c^=d<<8; f+=c; d+=e; d^=e>>16; g+=d; e+=f; e^=f<<10; h+=e; f+=g; f^=g>>4; a+=f; g+=h; g^=h<<8; b+=g; h+=a; h^=a>>9; c+=h; a+=b; }} ); for 4.times { mix!(); } if use_rsl { macro_rules! memloop ( ($arr:expr) => {{ for u32::range_step(0, RAND_SIZE, 8) |i| { a+=$arr[i ]; b+=$arr[i+1]; c+=$arr[i+2]; d+=$arr[i+3]; e+=$arr[i+4]; f+=$arr[i+5]; g+=$arr[i+6]; h+=$arr[i+7]; mix!(); self.mem[i ]=a; self.mem[i+1]=b; self.mem[i+2]=c; self.mem[i+3]=d; self.mem[i+4]=e; self.mem[i+5]=f; self.mem[i+6]=g; self.mem[i+7]=h; } }} ); memloop!(self.rsl); memloop!(self.mem); } else { for u32::range_step(0, RAND_SIZE, 8) |i| { mix!(); self.mem[i ]=a; self.mem[i+1]=b; self.mem[i+2]=c; self.mem[i+3]=d; self.mem[i+4]=e; self.mem[i+5]=f; self.mem[i+6]=g; self.mem[i+7]=h; } } self.isaac(); } /// Refills the output buffer (`self.rsl`) #[inline] priv fn isaac(&self) { self.c += 1; // abbreviations let mut a = self.a, b = self.b + self.c; let mem = &mut self.mem; let rsl = &mut self.rsl; static midpoint: uint = RAND_SIZE as uint / 2; macro_rules! ind (($x:expr) => { mem[($x >> 2) & (RAND_SIZE - 1)] }); macro_rules! rngstep( ($j:expr, $shift:expr) => {{ let base = base + $j; let mix = if $shift < 0 { a >> -$shift as uint } else { a << $shift as uint }; let x = mem[base + mr_offset]; a = (a ^ mix) + mem[base + m2_offset]; let y = ind!(x) + a + b; mem[base + mr_offset] = y; b = ind!(y >> RAND_SIZE_LEN) + x; rsl[base + mr_offset] = b; }} ); for [(0, midpoint), (midpoint, 0)].each |&(mr_offset, m2_offset)| { for uint::range_step(0, midpoint, 4) |base| { rngstep!(0, 13); rngstep!(1, -6); rngstep!(2, 2); rngstep!(3, -16); } } self.a = a; self.b = b; self.cnt = RAND_SIZE; } } impl Rng for IsaacRng { #[inline(always)] fn next(&self) -> u32 { if self.cnt == 0 { // make some more numbers self.isaac(); } self.cnt -= 1; self.rsl[self.cnt] } } /// An [Xorshift random number /// generator](http://en.wikipedia.org/wiki/Xorshift). Not suitable for /// cryptographic purposes. pub struct XorShiftRng { priv mut x: u32, priv mut y: u32, priv mut z: u32, priv mut w: u32, } impl Rng for XorShiftRng { #[inline] pub fn next(&self) -> u32 { let x = self.x; let t = x ^ (x << 11); self.x = self.y; self.y = self.z; self.z = self.w; let w = self.w; self.w = w ^ (w >> 19) ^ (t ^ (t >> 8)); self.w } } pub impl XorShiftRng { /// Create an xor shift random number generator with a default seed. fn new() -> XorShiftRng { // constants taken from http://en.wikipedia.org/wiki/Xorshift XorShiftRng::new_seeded(123456789u32, 362436069u32, 521288629u32, 88675123u32) } /** * Create a random number generator using the specified seed. A generator * constructed with a given seed will generate the same sequence of values as * all other generators constructed with the same seed. */ fn new_seeded(x: u32, y: u32, z: u32, w: u32) -> XorShiftRng { XorShiftRng { x: x, y: y, z: z, w: w } } } /// Create a new random seed. pub fn seed() -> ~[u8] { unsafe { let n = rustrt::rand_seed_size() as uint; let mut s = vec::from_elem(n, 0_u8); do vec::as_mut_buf(s) |p, sz| { rustrt::rand_gen_seed(p, sz as size_t) } s } } // used to make space in TLS for a random number generator fn tls_rng_state(_v: @IsaacRng) {} /** * Gives back a lazily initialized task-local random number generator, * seeded by the system. Intended to be used in method chaining style, ie * `task_rng().gen::()`. */ #[inline] pub fn task_rng() -> @IsaacRng { let r : Option<@IsaacRng>; unsafe { r = task::local_data::local_data_get(tls_rng_state); } match r { None => { unsafe { let rng = @IsaacRng::new_seeded(seed()); task::local_data::local_data_set(tls_rng_state, rng); rng } } Some(rng) => rng } } // Allow direct chaining with `task_rng` impl Rng for @R { #[inline(always)] fn next(&self) -> u32 { (**self).next() } } /** * Returns a random value of a Rand type, using the task's random number * generator. */ #[inline] pub fn random() -> T { (*task_rng()).gen() } #[cfg(test)] mod tests { use option::{Option, Some}; use super::*; #[test] fn test_rng_seeded() { let seed = seed(); let ra = IsaacRng::new_seeded(seed); let rb = IsaacRng::new_seeded(seed); assert!(ra.gen_str(100u) == rb.gen_str(100u)); } #[test] fn test_rng_seeded_custom_seed() { // much shorter than generated seeds which are 1024 bytes let seed = [2u8, 32u8, 4u8, 32u8, 51u8]; let ra = IsaacRng::new_seeded(seed); let rb = IsaacRng::new_seeded(seed); assert!(ra.gen_str(100u) == rb.gen_str(100u)); } #[test] fn test_rng_seeded_custom_seed2() { let seed = [2u8, 32u8, 4u8, 32u8, 51u8]; let ra = IsaacRng::new_seeded(seed); // Regression test that isaac is actually using the above vector let r = ra.next(); error!("%?", r); assert!(r == 890007737u32 // on x86_64 || r == 2935188040u32); // on x86 } #[test] fn test_gen_int_range() { let r = rng(); let a = r.gen_int_range(-3, 42); assert!(a >= -3 && a < 42); assert!(r.gen_int_range(0, 1) == 0); assert!(r.gen_int_range(-12, -11) == -12); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_gen_int_from_fail() { rng().gen_int_range(5, -2); } #[test] fn test_gen_uint_range() { let r = rng(); let a = r.gen_uint_range(3u, 42u); assert!(a >= 3u && a < 42u); assert!(r.gen_uint_range(0u, 1u) == 0u); assert!(r.gen_uint_range(12u, 13u) == 12u); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_gen_uint_range_fail() { rng().gen_uint_range(5u, 2u); } #[test] fn test_gen_float() { let r = rng(); let a = r.gen::(); let b = r.gen::(); debug!((a, b)); } #[test] fn test_gen_weighted_bool() { let r = rng(); assert!(r.gen_weighted_bool(0u) == true); assert!(r.gen_weighted_bool(1u) == true); } #[test] fn test_gen_str() { let r = rng(); debug!(r.gen_str(10u)); debug!(r.gen_str(10u)); debug!(r.gen_str(10u)); assert!(r.gen_str(0u).len() == 0u); assert!(r.gen_str(10u).len() == 10u); assert!(r.gen_str(16u).len() == 16u); } #[test] fn test_gen_bytes() { let r = rng(); assert!(r.gen_bytes(0u).len() == 0u); assert!(r.gen_bytes(10u).len() == 10u); assert!(r.gen_bytes(16u).len() == 16u); } #[test] fn test_choose() { let r = rng(); assert!(r.choose([1, 1, 1]) == 1); } #[test] fn test_choose_option() { let r = rng(); let x: Option = r.choose_option([]); assert!(x.is_none()); assert!(r.choose_option([1, 1, 1]) == Some(1)); } #[test] fn test_choose_weighted() { let r = rng(); assert!(r.choose_weighted(~[ Weighted { weight: 1u, item: 42 }, ]) == 42); assert!(r.choose_weighted(~[ Weighted { weight: 0u, item: 42 }, Weighted { weight: 1u, item: 43 }, ]) == 43); } #[test] fn test_choose_weighted_option() { let r = rng(); assert!(r.choose_weighted_option(~[ Weighted { weight: 1u, item: 42 }, ]) == Some(42)); assert!(r.choose_weighted_option(~[ Weighted { weight: 0u, item: 42 }, Weighted { weight: 1u, item: 43 }, ]) == Some(43)); let v: Option = r.choose_weighted_option([]); assert!(v.is_none()); } #[test] fn test_weighted_vec() { let r = rng(); let empty: ~[int] = ~[]; assert!(r.weighted_vec(~[]) == empty); assert!(r.weighted_vec(~[ Weighted { weight: 0u, item: 3u }, Weighted { weight: 1u, item: 2u }, Weighted { weight: 2u, item: 1u }, ]) == ~[2u, 1u, 1u]); } #[test] fn test_shuffle() { let r = rng(); let empty: ~[int] = ~[]; assert!(r.shuffle(~[]) == empty); assert!(r.shuffle(~[1, 1, 1]) == ~[1, 1, 1]); } #[test] fn test_task_rng() { let r = task_rng(); r.gen::(); assert!(r.shuffle(~[1, 1, 1]) == ~[1, 1, 1]); assert!(r.gen_uint_range(0u, 1u) == 0u); } #[test] fn test_random() { // not sure how to test this aside from just getting some values let _n : uint = random(); let _f : f32 = random(); let _o : Option> = random(); let _many : ((), (~uint, @int, ~Option<~(@char, ~(@bool,))>), (u8, i8, u16, i16, u32, i32, u64, i64), (f32, (f64, (float,)))) = random(); } #[test] fn compare_isaac_implementation() { // This is to verify that the implementation of the ISAAC rng is // correct (i.e. matches the output of the upstream implementation, // which is in the runtime) use vec; use libc::size_t; #[abi = "cdecl"] mod rustrt { use libc::size_t; #[allow(non_camel_case_types)] // runtime type pub enum rust_rng {} pub extern { unsafe fn rand_new_seeded(buf: *u8, sz: size_t) -> *rust_rng; unsafe fn rand_next(rng: *rust_rng) -> u32; unsafe fn rand_free(rng: *rust_rng); } } // run against several seeds for 10.times { unsafe { let seed = super::seed(); let rt_rng = do vec::as_imm_buf(seed) |p, sz| { rustrt::rand_new_seeded(p, sz as size_t) }; let rng = IsaacRng::new_seeded(seed); for 10000.times { assert_eq!(rng.next(), rustrt::rand_next(rt_rng)); } rustrt::rand_free(rt_rng); } } } }