// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // This implements the dead-code warning pass. It follows middle::reachable // closely. The idea is that all reachable symbols are live, codes called // from live codes are live, and everything else is dead. use front::map as ast_map; use rustc_front::hir; use rustc_front::visit::{self, Visitor}; use rustc_front::attr::{self, AttrMetaMethods}; use middle::{def, pat_util, privacy, ty}; use middle::def_id::{DefId}; use lint; use util::nodemap::NodeSet; use std::collections::HashSet; use syntax::{ast, codemap}; // Any local node that may call something in its body block should be // explored. For example, if it's a live NodeItem that is a // function, then we should explore its block to check for codes that // may need to be marked as live. fn should_explore(tcx: &ty::ctxt, def_id: DefId) -> bool { if !def_id.is_local() { return false; } match tcx.map.find(def_id.node) { Some(ast_map::NodeItem(..)) | Some(ast_map::NodeImplItem(..)) | Some(ast_map::NodeForeignItem(..)) | Some(ast_map::NodeTraitItem(..)) => true, _ => false } } struct MarkSymbolVisitor<'a, 'tcx: 'a> { worklist: Vec, tcx: &'a ty::ctxt<'tcx>, live_symbols: Box>, struct_has_extern_repr: bool, ignore_non_const_paths: bool, inherited_pub_visibility: bool, ignore_variant_stack: Vec, } impl<'a, 'tcx> MarkSymbolVisitor<'a, 'tcx> { fn new(tcx: &'a ty::ctxt<'tcx>, worklist: Vec) -> MarkSymbolVisitor<'a, 'tcx> { MarkSymbolVisitor { worklist: worklist, tcx: tcx, live_symbols: box HashSet::new(), struct_has_extern_repr: false, ignore_non_const_paths: false, inherited_pub_visibility: false, ignore_variant_stack: vec![], } } fn check_def_id(&mut self, def_id: DefId) { if should_explore(self.tcx, def_id) { self.worklist.push(def_id.node); } self.live_symbols.insert(def_id.node); } fn lookup_and_handle_definition(&mut self, id: &ast::NodeId) { use middle::ty::TypeVariants::{TyEnum, TyStruct}; // If `bar` is a trait item, make sure to mark Foo as alive in `Foo::bar` self.tcx.tables.borrow().item_substs.get(id) .and_then(|substs| substs.substs.self_ty()) .map(|ty| match ty.sty { TyEnum(tyid, _) | TyStruct(tyid, _) => self.check_def_id(tyid.did), _ => (), }); self.tcx.def_map.borrow().get(id).map(|def| { match def.full_def() { def::DefConst(_) | def::DefAssociatedConst(..) => { self.check_def_id(def.def_id()) } _ if self.ignore_non_const_paths => (), def::DefPrimTy(_) => (), def::DefVariant(enum_id, variant_id, _) => { self.check_def_id(enum_id); if !self.ignore_variant_stack.contains(&variant_id.node) { self.check_def_id(variant_id); } } _ => { self.check_def_id(def.def_id()); } } }); } fn lookup_and_handle_method(&mut self, id: ast::NodeId) { let method_call = ty::MethodCall::expr(id); let method = self.tcx.tables.borrow().method_map[&method_call]; self.check_def_id(method.def_id); } fn handle_field_access(&mut self, lhs: &hir::Expr, name: ast::Name) { if let ty::TyStruct(def, _) = self.tcx.expr_ty_adjusted(lhs).sty { self.live_symbols.insert(def.struct_variant().field_named(name).did.node); } else { self.tcx.sess.span_bug(lhs.span, "named field access on non-struct") } } fn handle_tup_field_access(&mut self, lhs: &hir::Expr, idx: usize) { if let ty::TyStruct(def, _) = self.tcx.expr_ty_adjusted(lhs).sty { self.live_symbols.insert(def.struct_variant().fields[idx].did.node); } } fn handle_field_pattern_match(&mut self, lhs: &hir::Pat, pats: &[codemap::Spanned]) { let def = self.tcx.def_map.borrow().get(&lhs.id).unwrap().full_def(); let pat_ty = self.tcx.node_id_to_type(lhs.id); let variant = match pat_ty.sty { ty::TyStruct(adt, _) | ty::TyEnum(adt, _) => adt.variant_of_def(def), _ => self.tcx.sess.span_bug(lhs.span, "non-ADT in struct pattern") }; for pat in pats { if let hir::PatWild(hir::PatWildSingle) = pat.node.pat.node { continue; } self.live_symbols.insert(variant.field_named(pat.node.ident.name).did.node); } } fn mark_live_symbols(&mut self) { let mut scanned = HashSet::new(); while !self.worklist.is_empty() { let id = self.worklist.pop().unwrap(); if scanned.contains(&id) { continue } scanned.insert(id); match self.tcx.map.find(id) { Some(ref node) => { self.live_symbols.insert(id); self.visit_node(node); } None => (), } } } fn visit_node(&mut self, node: &ast_map::Node) { let had_extern_repr = self.struct_has_extern_repr; self.struct_has_extern_repr = false; let had_inherited_pub_visibility = self.inherited_pub_visibility; self.inherited_pub_visibility = false; match *node { ast_map::NodeItem(item) => { match item.node { hir::ItemStruct(..) => { self.struct_has_extern_repr = item.attrs.iter().any(|attr| { attr::find_repr_attrs(self.tcx.sess.diagnostic(), attr) .contains(&attr::ReprExtern) }); visit::walk_item(self, &*item); } hir::ItemEnum(..) => { self.inherited_pub_visibility = item.vis == hir::Public; visit::walk_item(self, &*item); } hir::ItemFn(..) | hir::ItemTy(..) | hir::ItemStatic(..) | hir::ItemConst(..) => { visit::walk_item(self, &*item); } _ => () } } ast_map::NodeTraitItem(trait_item) => { visit::walk_trait_item(self, trait_item); } ast_map::NodeImplItem(impl_item) => { visit::walk_impl_item(self, impl_item); } ast_map::NodeForeignItem(foreign_item) => { visit::walk_foreign_item(self, &*foreign_item); } _ => () } self.struct_has_extern_repr = had_extern_repr; self.inherited_pub_visibility = had_inherited_pub_visibility; } } impl<'a, 'tcx, 'v> Visitor<'v> for MarkSymbolVisitor<'a, 'tcx> { fn visit_struct_def(&mut self, def: &hir::StructDef, _: ast::Ident, _: &hir::Generics, _: ast::NodeId) { let has_extern_repr = self.struct_has_extern_repr; let inherited_pub_visibility = self.inherited_pub_visibility; let live_fields = def.fields.iter().filter(|f| { has_extern_repr || inherited_pub_visibility || match f.node.kind { hir::NamedField(_, hir::Public) => true, _ => false } }); self.live_symbols.extend(live_fields.map(|f| f.node.id)); visit::walk_struct_def(self, def); } fn visit_expr(&mut self, expr: &hir::Expr) { match expr.node { hir::ExprMethodCall(..) => { self.lookup_and_handle_method(expr.id); } hir::ExprField(ref lhs, ref ident) => { self.handle_field_access(&**lhs, ident.node.name); } hir::ExprTupField(ref lhs, idx) => { self.handle_tup_field_access(&**lhs, idx.node); } _ => () } visit::walk_expr(self, expr); } fn visit_arm(&mut self, arm: &hir::Arm) { if arm.pats.len() == 1 { let pat = &*arm.pats[0]; let variants = pat_util::necessary_variants(&self.tcx.def_map, pat); // Inside the body, ignore constructions of variants // necessary for the pattern to match. Those construction sites // can't be reached unless the variant is constructed elsewhere. let len = self.ignore_variant_stack.len(); self.ignore_variant_stack.push_all(&*variants); visit::walk_arm(self, arm); self.ignore_variant_stack.truncate(len); } else { visit::walk_arm(self, arm); } } fn visit_pat(&mut self, pat: &hir::Pat) { let def_map = &self.tcx.def_map; match pat.node { hir::PatStruct(_, ref fields, _) => { self.handle_field_pattern_match(pat, fields); } _ if pat_util::pat_is_const(def_map, pat) => { // it might be the only use of a const self.lookup_and_handle_definition(&pat.id) } _ => () } self.ignore_non_const_paths = true; visit::walk_pat(self, pat); self.ignore_non_const_paths = false; } fn visit_path(&mut self, path: &hir::Path, id: ast::NodeId) { self.lookup_and_handle_definition(&id); visit::walk_path(self, path); } fn visit_item(&mut self, _: &hir::Item) { // Do not recurse into items. These items will be added to the // worklist and recursed into manually if necessary. } } fn has_allow_dead_code_or_lang_attr(attrs: &[hir::Attribute]) -> bool { if attr::contains_name(attrs, "lang") { return true; } let dead_code = lint::builtin::DEAD_CODE.name_lower(); for attr in lint::gather_attrs_from_hir(attrs) { match attr { Ok((ref name, lint::Allow, _)) if &name[..] == dead_code => return true, _ => (), } } false } // This visitor seeds items that // 1) We want to explicitly consider as live: // * Item annotated with #[allow(dead_code)] // - This is done so that if we want to suppress warnings for a // group of dead functions, we only have to annotate the "root". // For example, if both `f` and `g` are dead and `f` calls `g`, // then annotating `f` with `#[allow(dead_code)]` will suppress // warning for both `f` and `g`. // * Item annotated with #[lang=".."] // - This is because lang items are always callable from elsewhere. // or // 2) We are not sure to be live or not // * Implementation of a trait method struct LifeSeeder { worklist: Vec } impl<'v> Visitor<'v> for LifeSeeder { fn visit_item(&mut self, item: &hir::Item) { let allow_dead_code = has_allow_dead_code_or_lang_attr(&item.attrs); if allow_dead_code { self.worklist.push(item.id); } match item.node { hir::ItemEnum(ref enum_def, _) if allow_dead_code => { self.worklist.extend(enum_def.variants.iter().map(|variant| variant.node.id)); } hir::ItemTrait(_, _, _, ref trait_items) => { for trait_item in trait_items { match trait_item.node { hir::ConstTraitItem(_, Some(_)) | hir::MethodTraitItem(_, Some(_)) => { if has_allow_dead_code_or_lang_attr(&trait_item.attrs) { self.worklist.push(trait_item.id); } } _ => {} } } } hir::ItemImpl(_, _, _, ref opt_trait, _, ref impl_items) => { for impl_item in impl_items { match impl_item.node { hir::ConstImplItem(..) | hir::MethodImplItem(..) => { if opt_trait.is_some() || has_allow_dead_code_or_lang_attr(&impl_item.attrs) { self.worklist.push(impl_item.id); } } hir::TypeImplItem(_) => {} } } } _ => () } visit::walk_item(self, item); } } fn create_and_seed_worklist(tcx: &ty::ctxt, exported_items: &privacy::ExportedItems, reachable_symbols: &NodeSet, krate: &hir::Crate) -> Vec { let mut worklist = Vec::new(); // Preferably, we would only need to seed the worklist with reachable // symbols. However, since the set of reachable symbols differs // depending on whether a crate is built as bin or lib, and we want // the warning to be consistent, we also seed the worklist with // exported symbols. for id in exported_items { worklist.push(*id); } for id in reachable_symbols { // Reachable variants can be dead, because we warn about // variants never constructed, not variants never used. if let Some(ast_map::NodeVariant(..)) = tcx.map.find(*id) { continue; } worklist.push(*id); } // Seed entry point match *tcx.sess.entry_fn.borrow() { Some((id, _)) => worklist.push(id), None => () } // Seed implemented trait items let mut life_seeder = LifeSeeder { worklist: worklist }; visit::walk_crate(&mut life_seeder, krate); return life_seeder.worklist; } fn find_live(tcx: &ty::ctxt, exported_items: &privacy::ExportedItems, reachable_symbols: &NodeSet, krate: &hir::Crate) -> Box> { let worklist = create_and_seed_worklist(tcx, exported_items, reachable_symbols, krate); let mut symbol_visitor = MarkSymbolVisitor::new(tcx, worklist); symbol_visitor.mark_live_symbols(); symbol_visitor.live_symbols } fn get_struct_ctor_id(item: &hir::Item) -> Option { match item.node { hir::ItemStruct(ref struct_def, _) => struct_def.ctor_id, _ => None } } struct DeadVisitor<'a, 'tcx: 'a> { tcx: &'a ty::ctxt<'tcx>, live_symbols: Box>, } impl<'a, 'tcx> DeadVisitor<'a, 'tcx> { fn should_warn_about_item(&mut self, item: &hir::Item) -> bool { let should_warn = match item.node { hir::ItemStatic(..) | hir::ItemConst(..) | hir::ItemFn(..) | hir::ItemEnum(..) | hir::ItemStruct(..) => true, _ => false }; let ctor_id = get_struct_ctor_id(item); should_warn && !self.symbol_is_live(item.id, ctor_id) } fn should_warn_about_field(&mut self, node: &hir::StructField_) -> bool { let is_named = node.ident().is_some(); let field_type = self.tcx.node_id_to_type(node.id); let is_marker_field = match field_type.ty_to_def_id() { Some(def_id) => self.tcx.lang_items.items().any(|(_, item)| *item == Some(def_id)), _ => false }; is_named && !self.symbol_is_live(node.id, None) && !is_marker_field && !has_allow_dead_code_or_lang_attr(&node.attrs) } fn should_warn_about_variant(&mut self, variant: &hir::Variant_) -> bool { !self.symbol_is_live(variant.id, None) && !has_allow_dead_code_or_lang_attr(&variant.attrs) } // id := node id of an item's definition. // ctor_id := `Some` if the item is a struct_ctor (tuple struct), // `None` otherwise. // If the item is a struct_ctor, then either its `id` or // `ctor_id` (unwrapped) is in the live_symbols set. More specifically, // DefMap maps the ExprPath of a struct_ctor to the node referred by // `ctor_id`. On the other hand, in a statement like // `type = ;` where refers to a struct_ctor, // DefMap maps to `id` instead. fn symbol_is_live(&mut self, id: ast::NodeId, ctor_id: Option) -> bool { if self.live_symbols.contains(&id) || ctor_id.map_or(false, |ctor| self.live_symbols.contains(&ctor)) { return true; } // If it's a type whose items are live, then it's live, too. // This is done to handle the case where, for example, the static // method of a private type is used, but the type itself is never // called directly. let impl_items = self.tcx.impl_items.borrow(); match self.tcx.inherent_impls.borrow().get(&DefId::local(id)) { None => (), Some(impl_list) => { for impl_did in impl_list.iter() { for item_did in impl_items.get(impl_did).unwrap().iter() { if self.live_symbols.contains(&item_did.def_id() .node) { return true; } } } } } false } fn warn_dead_code(&mut self, id: ast::NodeId, span: codemap::Span, name: ast::Name, node_type: &str) { let name = name.as_str(); if !name.starts_with("_") { self.tcx .sess .add_lint(lint::builtin::DEAD_CODE, id, span, format!("{} is never used: `{}`", node_type, name)); } } } impl<'a, 'tcx, 'v> Visitor<'v> for DeadVisitor<'a, 'tcx> { fn visit_item(&mut self, item: &hir::Item) { if self.should_warn_about_item(item) { self.warn_dead_code( item.id, item.span, item.ident.name, item.node.descriptive_variant() ); } else { match item.node { hir::ItemEnum(ref enum_def, _) => { for variant in &enum_def.variants { if self.should_warn_about_variant(&variant.node) { self.warn_dead_code(variant.node.id, variant.span, variant.node.name.name, "variant"); } } }, _ => () } } visit::walk_item(self, item); } fn visit_foreign_item(&mut self, fi: &hir::ForeignItem) { if !self.symbol_is_live(fi.id, None) { self.warn_dead_code(fi.id, fi.span, fi.ident.name, fi.node.descriptive_variant()); } visit::walk_foreign_item(self, fi); } fn visit_struct_field(&mut self, field: &hir::StructField) { if self.should_warn_about_field(&field.node) { self.warn_dead_code(field.node.id, field.span, field.node.ident().unwrap().name, "struct field"); } visit::walk_struct_field(self, field); } fn visit_impl_item(&mut self, impl_item: &hir::ImplItem) { match impl_item.node { hir::ConstImplItem(_, ref expr) => { if !self.symbol_is_live(impl_item.id, None) { self.warn_dead_code(impl_item.id, impl_item.span, impl_item.ident.name, "associated const"); } visit::walk_expr(self, expr) } hir::MethodImplItem(_, ref body) => { if !self.symbol_is_live(impl_item.id, None) { self.warn_dead_code(impl_item.id, impl_item.span, impl_item.ident.name, "method"); } visit::walk_block(self, body) } hir::TypeImplItem(..) => {} } } // Overwrite so that we don't warn the trait item itself. fn visit_trait_item(&mut self, trait_item: &hir::TraitItem) { match trait_item.node { hir::ConstTraitItem(_, Some(ref expr)) => { visit::walk_expr(self, expr) } hir::MethodTraitItem(_, Some(ref body)) => { visit::walk_block(self, body) } hir::ConstTraitItem(_, None) | hir::MethodTraitItem(_, None) | hir::TypeTraitItem(..) => {} } } } pub fn check_crate(tcx: &ty::ctxt, exported_items: &privacy::ExportedItems, reachable_symbols: &NodeSet) { let krate = tcx.map.krate(); let live_symbols = find_live(tcx, exported_items, reachable_symbols, krate); let mut visitor = DeadVisitor { tcx: tcx, live_symbols: live_symbols }; visit::walk_crate(&mut visitor, krate); }