// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_uppercase_pattern_statics)] use llvm; use llvm::{SequentiallyConsistent, Acquire, Release, Xchg, ValueRef}; use middle::subst; use middle::subst::FnSpace; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::callee; use middle::trans::cleanup; use middle::trans::cleanup::CleanupMethods; use middle::trans::common::*; use middle::trans::datum::*; use middle::trans::expr; use middle::trans::glue; use middle::trans::type_of::*; use middle::trans::type_of; use middle::trans::machine; use middle::trans::machine::llsize_of; use middle::trans::type_::Type; use middle::ty; use syntax::ast; use syntax::parse::token; use util::ppaux::ty_to_string; pub fn get_simple_intrinsic(ccx: &CrateContext, item: &ast::ForeignItem) -> Option { let name = match token::get_ident(item.ident).get() { "sqrtf32" => "llvm.sqrt.f32", "sqrtf64" => "llvm.sqrt.f64", "powif32" => "llvm.powi.f32", "powif64" => "llvm.powi.f64", "sinf32" => "llvm.sin.f32", "sinf64" => "llvm.sin.f64", "cosf32" => "llvm.cos.f32", "cosf64" => "llvm.cos.f64", "powf32" => "llvm.pow.f32", "powf64" => "llvm.pow.f64", "expf32" => "llvm.exp.f32", "expf64" => "llvm.exp.f64", "exp2f32" => "llvm.exp2.f32", "exp2f64" => "llvm.exp2.f64", "logf32" => "llvm.log.f32", "logf64" => "llvm.log.f64", "log10f32" => "llvm.log10.f32", "log10f64" => "llvm.log10.f64", "log2f32" => "llvm.log2.f32", "log2f64" => "llvm.log2.f64", "fmaf32" => "llvm.fma.f32", "fmaf64" => "llvm.fma.f64", "fabsf32" => "llvm.fabs.f32", "fabsf64" => "llvm.fabs.f64", "copysignf32" => "llvm.copysign.f32", "copysignf64" => "llvm.copysign.f64", "floorf32" => "llvm.floor.f32", "floorf64" => "llvm.floor.f64", "ceilf32" => "llvm.ceil.f32", "ceilf64" => "llvm.ceil.f64", "truncf32" => "llvm.trunc.f32", "truncf64" => "llvm.trunc.f64", "rintf32" => "llvm.rint.f32", "rintf64" => "llvm.rint.f64", "nearbyintf32" => "llvm.nearbyint.f32", "nearbyintf64" => "llvm.nearbyint.f64", "roundf32" => "llvm.round.f32", "roundf64" => "llvm.round.f64", "ctpop8" => "llvm.ctpop.i8", "ctpop16" => "llvm.ctpop.i16", "ctpop32" => "llvm.ctpop.i32", "ctpop64" => "llvm.ctpop.i64", "bswap16" => "llvm.bswap.i16", "bswap32" => "llvm.bswap.i32", "bswap64" => "llvm.bswap.i64", _ => return None }; Some(ccx.get_intrinsic(&name)) } /// Performs late verification that intrinsics are used correctly. At present, /// the only intrinsic that needs such verification is `transmute`. pub fn check_intrinsics(ccx: &CrateContext) { for transmute_restriction in ccx.tcx .transmute_restrictions .borrow() .iter() { let llfromtype = type_of::sizing_type_of(ccx, transmute_restriction.from); let lltotype = type_of::sizing_type_of(ccx, transmute_restriction.to); let from_type_size = machine::llbitsize_of_real(ccx, llfromtype); let to_type_size = machine::llbitsize_of_real(ccx, lltotype); if from_type_size != to_type_size { ccx.sess() .span_err(transmute_restriction.span, format!("transmute called on types with different sizes: \ {} ({} bit{}) to {} ({} bit{})", ty_to_string(ccx.tcx(), transmute_restriction.from), from_type_size as uint, if from_type_size == 1 { "" } else { "s" }, ty_to_string(ccx.tcx(), transmute_restriction.to), to_type_size as uint, if to_type_size == 1 { "" } else { "s" }).as_slice()); } } ccx.sess().abort_if_errors(); } pub fn trans_intrinsic_call<'a>(mut bcx: &'a Block<'a>, node: ast::NodeId, callee_ty: ty::t, cleanup_scope: cleanup::CustomScopeIndex, args: callee::CallArgs, dest: expr::Dest, substs: subst::Substs) -> Result<'a> { let fcx = bcx.fcx; let ccx = fcx.ccx; let tcx = bcx.tcx(); let ret_ty = match ty::get(callee_ty).sty { ty::ty_bare_fn(ref f) => f.sig.output, _ => fail!("expected bare_fn in trans_intrinsic_call") }; let llret_ty = type_of::type_of(ccx, ret_ty); let foreign_item = tcx.map.expect_foreign_item(node); let name = token::get_ident(foreign_item.ident); // For `transmute` we can just trans the input expr directly into dest if name.get() == "transmute" { match args { callee::ArgExprs(arg_exprs) => { assert_eq!(arg_exprs.len(), 1); let (in_type, out_type) = (*substs.types.get(FnSpace, 0), *substs.types.get(FnSpace, 1)); let llintype = type_of::type_of(ccx, in_type); let llouttype = type_of::type_of(ccx, out_type); let in_type_size = machine::llbitsize_of_real(ccx, llintype); let out_type_size = machine::llbitsize_of_real(ccx, llouttype); // This should be caught by the intrinsicck pass assert_eq!(in_type_size, out_type_size); // We need to cast the dest so the types work out let dest = match dest { expr::SaveIn(d) => expr::SaveIn(PointerCast(bcx, d, llintype.ptr_to())), expr::Ignore => expr::Ignore }; bcx = expr::trans_into(bcx, &*arg_exprs[0], dest); fcx.pop_custom_cleanup_scope(cleanup_scope); return match dest { expr::SaveIn(d) => Result::new(bcx, d), expr::Ignore => Result::new(bcx, C_undef(llret_ty.ptr_to())) }; } _ => { ccx.sess().bug("expected expr as argument for transmute"); } } } // Get location to store the result. If the user does // not care about the result, just make a stack slot let llresult = match dest { expr::SaveIn(d) => d, expr::Ignore => { if !type_is_zero_size(ccx, ret_ty) { alloc_ty(bcx, ret_ty, "intrinsic_result") } else { C_undef(llret_ty.ptr_to()) } } }; // Push the arguments. let mut llargs = Vec::new(); bcx = callee::trans_args(bcx, args, callee_ty, &mut llargs, cleanup::CustomScope(cleanup_scope), false); fcx.pop_custom_cleanup_scope(cleanup_scope); let simple = get_simple_intrinsic(ccx, &*foreign_item); let llval = match (simple, name.get()) { (Some(llfn), _) => { Call(bcx, llfn, llargs.as_slice(), []) } (_, "abort") => { let llfn = ccx.get_intrinsic(&("llvm.trap")); let v = Call(bcx, llfn, [], []); Unreachable(bcx); v } (_, "breakpoint") => { let llfn = ccx.get_intrinsic(&("llvm.debugtrap")); Call(bcx, llfn, [], []) } (_, "size_of") => { let tp_ty = *substs.types.get(FnSpace, 0); let lltp_ty = type_of::type_of(ccx, tp_ty); C_uint(ccx, machine::llsize_of_real(ccx, lltp_ty) as uint) } (_, "min_align_of") => { let tp_ty = *substs.types.get(FnSpace, 0); let lltp_ty = type_of::type_of(ccx, tp_ty); C_uint(ccx, machine::llalign_of_min(ccx, lltp_ty) as uint) } (_, "pref_align_of") => { let tp_ty = *substs.types.get(FnSpace, 0); let lltp_ty = type_of::type_of(ccx, tp_ty); C_uint(ccx, machine::llalign_of_pref(ccx, lltp_ty) as uint) } (_, "move_val_init") => { // Create a datum reflecting the value being moved. // Use `appropriate_mode` so that the datum is by ref // if the value is non-immediate. Note that, with // intrinsics, there are no argument cleanups to // concern ourselves with, so we can use an rvalue datum. let tp_ty = *substs.types.get(FnSpace, 0); let mode = appropriate_rvalue_mode(ccx, tp_ty); let src = Datum { val: *llargs.get(1), ty: tp_ty, kind: Rvalue::new(mode) }; bcx = src.store_to(bcx, *llargs.get(0)); C_nil(ccx) } (_, "get_tydesc") => { let tp_ty = *substs.types.get(FnSpace, 0); let static_ti = get_tydesc(ccx, tp_ty); glue::lazily_emit_visit_glue(ccx, &*static_ti); // FIXME (#3730): ideally this shouldn't need a cast, // but there's a circularity between translating rust types to llvm // types and having a tydesc type available. So I can't directly access // the llvm type of intrinsic::TyDesc struct. PointerCast(bcx, static_ti.tydesc, llret_ty) } (_, "type_id") => { let hash = ty::hash_crate_independent( ccx.tcx(), *substs.types.get(FnSpace, 0), &ccx.link_meta.crate_hash); // NB: This needs to be kept in lockstep with the TypeId struct in // the intrinsic module C_named_struct(llret_ty, [C_u64(ccx, hash)]) } (_, "init") => { let tp_ty = *substs.types.get(FnSpace, 0); let lltp_ty = type_of::type_of(ccx, tp_ty); if return_type_is_void(ccx, tp_ty) { C_nil(ccx) } else { C_null(lltp_ty) } } // Effectively no-ops (_, "uninit") | (_, "forget") => { C_nil(ccx) } (_, "needs_drop") => { let tp_ty = *substs.types.get(FnSpace, 0); C_bool(ccx, ty::type_needs_drop(ccx.tcx(), tp_ty)) } (_, "owns_managed") => { let tp_ty = *substs.types.get(FnSpace, 0); C_bool(ccx, ty::type_contents(ccx.tcx(), tp_ty).owns_managed()) } (_, "visit_tydesc") => { let td = *llargs.get(0); let visitor = *llargs.get(1); let td = PointerCast(bcx, td, ccx.tydesc_type().ptr_to()); glue::call_visit_glue(bcx, visitor, td, None); C_nil(ccx) } (_, "offset") => { let ptr = *llargs.get(0); let offset = *llargs.get(1); InBoundsGEP(bcx, ptr, [offset]) } (_, "copy_nonoverlapping_memory") => { copy_intrinsic(bcx, false, false, *substs.types.get(FnSpace, 0), *llargs.get(0), *llargs.get(1), *llargs.get(2)) } (_, "copy_memory") => { copy_intrinsic(bcx, true, false, *substs.types.get(FnSpace, 0), *llargs.get(0), *llargs.get(1), *llargs.get(2)) } (_, "set_memory") => { memset_intrinsic(bcx, false, *substs.types.get(FnSpace, 0), *llargs.get(0), *llargs.get(1), *llargs.get(2)) } (_, "volatile_copy_nonoverlapping_memory") => { copy_intrinsic(bcx, false, true, *substs.types.get(FnSpace, 0), *llargs.get(0), *llargs.get(1), *llargs.get(2)) } (_, "volatile_copy_memory") => { copy_intrinsic(bcx, true, true, *substs.types.get(FnSpace, 0), *llargs.get(0), *llargs.get(1), *llargs.get(2)) } (_, "volatile_set_memory") => { memset_intrinsic(bcx, true, *substs.types.get(FnSpace, 0), *llargs.get(0), *llargs.get(1), *llargs.get(2)) } (_, "volatile_load") => { VolatileLoad(bcx, *llargs.get(0)) }, (_, "volatile_store") => { VolatileStore(bcx, *llargs.get(1), *llargs.get(0)); C_nil(ccx) }, (_, "ctlz8") => count_zeros_intrinsic(bcx, "llvm.ctlz.i8", *llargs.get(0)), (_, "ctlz16") => count_zeros_intrinsic(bcx, "llvm.ctlz.i16", *llargs.get(0)), (_, "ctlz32") => count_zeros_intrinsic(bcx, "llvm.ctlz.i32", *llargs.get(0)), (_, "ctlz64") => count_zeros_intrinsic(bcx, "llvm.ctlz.i64", *llargs.get(0)), (_, "cttz8") => count_zeros_intrinsic(bcx, "llvm.cttz.i8", *llargs.get(0)), (_, "cttz16") => count_zeros_intrinsic(bcx, "llvm.cttz.i16", *llargs.get(0)), (_, "cttz32") => count_zeros_intrinsic(bcx, "llvm.cttz.i32", *llargs.get(0)), (_, "cttz64") => count_zeros_intrinsic(bcx, "llvm.cttz.i64", *llargs.get(0)), (_, "i8_add_with_overflow") => with_overflow_intrinsic(bcx, "llvm.sadd.with.overflow.i8", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "i16_add_with_overflow") => with_overflow_intrinsic(bcx, "llvm.sadd.with.overflow.i16", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "i32_add_with_overflow") => with_overflow_intrinsic(bcx, "llvm.sadd.with.overflow.i32", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "i64_add_with_overflow") => with_overflow_intrinsic(bcx, "llvm.sadd.with.overflow.i64", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u8_add_with_overflow") => with_overflow_intrinsic(bcx, "llvm.uadd.with.overflow.i8", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u16_add_with_overflow") => with_overflow_intrinsic(bcx, "llvm.uadd.with.overflow.i16", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u32_add_with_overflow") => with_overflow_intrinsic(bcx, "llvm.uadd.with.overflow.i32", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u64_add_with_overflow") => with_overflow_intrinsic(bcx, "llvm.uadd.with.overflow.i64", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "i8_sub_with_overflow") => with_overflow_intrinsic(bcx, "llvm.ssub.with.overflow.i8", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "i16_sub_with_overflow") => with_overflow_intrinsic(bcx, "llvm.ssub.with.overflow.i16", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "i32_sub_with_overflow") => with_overflow_intrinsic(bcx, "llvm.ssub.with.overflow.i32", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "i64_sub_with_overflow") => with_overflow_intrinsic(bcx, "llvm.ssub.with.overflow.i64", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u8_sub_with_overflow") => with_overflow_intrinsic(bcx, "llvm.usub.with.overflow.i8", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u16_sub_with_overflow") => with_overflow_intrinsic(bcx, "llvm.usub.with.overflow.i16", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u32_sub_with_overflow") => with_overflow_intrinsic(bcx, "llvm.usub.with.overflow.i32", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u64_sub_with_overflow") => with_overflow_intrinsic(bcx, "llvm.usub.with.overflow.i64", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "i8_mul_with_overflow") => with_overflow_intrinsic(bcx, "llvm.smul.with.overflow.i8", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "i16_mul_with_overflow") => with_overflow_intrinsic(bcx, "llvm.smul.with.overflow.i16", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "i32_mul_with_overflow") => with_overflow_intrinsic(bcx, "llvm.smul.with.overflow.i32", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "i64_mul_with_overflow") => with_overflow_intrinsic(bcx, "llvm.smul.with.overflow.i64", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u8_mul_with_overflow") => with_overflow_intrinsic(bcx, "llvm.umul.with.overflow.i8", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u16_mul_with_overflow") => with_overflow_intrinsic(bcx, "llvm.umul.with.overflow.i16", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u32_mul_with_overflow") => with_overflow_intrinsic(bcx, "llvm.umul.with.overflow.i32", ret_ty, *llargs.get(0), *llargs.get(1)), (_, "u64_mul_with_overflow") => with_overflow_intrinsic(bcx, "llvm.umul.with.overflow.i64", ret_ty, *llargs.get(0), *llargs.get(1)), // This requires that atomic intrinsics follow a specific naming pattern: // "atomic_[_]", and no ordering means SeqCst (_, name) if name.starts_with("atomic_") => { let split: Vec<&str> = name.split('_').collect(); assert!(split.len() >= 2, "Atomic intrinsic not correct format"); let order = if split.len() == 2 { lib::llvm::SequentiallyConsistent } else { match *split.get(2) { "relaxed" => lib::llvm::Monotonic, "acq" => lib::llvm::Acquire, "rel" => lib::llvm::Release, "acqrel" => lib::llvm::AcquireRelease, _ => ccx.sess().fatal("unknown ordering in atomic intrinsic") } }; match *split.get(1) { "cxchg" => { // See include/llvm/IR/Instructions.h for their implementation // of this, I assume that it's good enough for us to use for // now. let strongest_failure_ordering = match order { lib::llvm::NotAtomic | lib::llvm::Unordered => ccx.sess().fatal("cmpxchg must be atomic"), lib::llvm::Monotonic | lib::llvm::Release => lib::llvm::Monotonic, lib::llvm::Acquire | lib::llvm::AcquireRelease => lib::llvm::Acquire, lib::llvm::SequentiallyConsistent => lib::llvm::SequentiallyConsistent }; let res = AtomicCmpXchg(bcx, *llargs.get(0), *llargs.get(1), *llargs.get(2), order, strongest_failure_ordering); if unsafe { lib::llvm::llvm::LLVMVersionMinor() >= 5 } { ExtractValue(bcx, res, 0) } else { res } } "load" => { AtomicLoad(bcx, *llargs.get(0), order) } "store" => { AtomicStore(bcx, *llargs.get(1), *llargs.get(0), order); C_nil(ccx) } "fence" => { AtomicFence(bcx, order); C_nil(ccx) } // These are all AtomicRMW ops op => { let atom_op = match op { "xchg" => lib::llvm::Xchg, "xadd" => lib::llvm::Add, "xsub" => lib::llvm::Sub, "and" => lib::llvm::And, "nand" => lib::llvm::Nand, "or" => lib::llvm::Or, "xor" => lib::llvm::Xor, "max" => lib::llvm::Max, "min" => lib::llvm::Min, "umax" => lib::llvm::UMax, "umin" => lib::llvm::UMin, _ => ccx.sess().fatal("unknown atomic operation") }; AtomicRMW(bcx, atom_op, *llargs.get(0), *llargs.get(1), order) } } } (_, _) => ccx.sess().span_bug(foreign_item.span, "unknown intrinsic") }; if val_ty(llval) != Type::void(ccx) && machine::llsize_of_alloc(ccx, val_ty(llval)) != 0 { store_ty(bcx, llval, llresult, ret_ty); } // If we made a temporary stack slot, let's clean it up match dest { expr::Ignore => { bcx = glue::drop_ty(bcx, llresult, ret_ty); } expr::SaveIn(_) => {} } Result::new(bcx, llresult) } fn copy_intrinsic(bcx: &Block, allow_overlap: bool, volatile: bool, tp_ty: ty::t, dst: ValueRef, src: ValueRef, count: ValueRef) -> ValueRef { let ccx = bcx.ccx(); let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(ccx, machine::llalign_of_min(ccx, lltp_ty) as i32); let size = machine::llsize_of(ccx, lltp_ty); let int_size = machine::llbitsize_of_real(ccx, ccx.int_type); let name = if allow_overlap { if int_size == 32 { "llvm.memmove.p0i8.p0i8.i32" } else { "llvm.memmove.p0i8.p0i8.i64" } } else { if int_size == 32 { "llvm.memcpy.p0i8.p0i8.i32" } else { "llvm.memcpy.p0i8.p0i8.i64" } }; let dst_ptr = PointerCast(bcx, dst, Type::i8p(ccx)); let src_ptr = PointerCast(bcx, src, Type::i8p(ccx)); let llfn = ccx.get_intrinsic(&name); Call(bcx, llfn, [dst_ptr, src_ptr, Mul(bcx, size, count), align, C_bool(ccx, volatile)], []) } fn memset_intrinsic(bcx: &Block, volatile: bool, tp_ty: ty::t, dst: ValueRef, val: ValueRef, count: ValueRef) -> ValueRef { let ccx = bcx.ccx(); let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(ccx, machine::llalign_of_min(ccx, lltp_ty) as i32); let size = machine::llsize_of(ccx, lltp_ty); let name = if machine::llbitsize_of_real(ccx, ccx.int_type) == 32 { "llvm.memset.p0i8.i32" } else { "llvm.memset.p0i8.i64" }; let dst_ptr = PointerCast(bcx, dst, Type::i8p(ccx)); let llfn = ccx.get_intrinsic(&name); Call(bcx, llfn, [dst_ptr, val, Mul(bcx, size, count), align, C_bool(ccx, volatile)], []) } fn count_zeros_intrinsic(bcx: &Block, name: &'static str, val: ValueRef) -> ValueRef { let y = C_bool(bcx.ccx(), false); let llfn = bcx.ccx().get_intrinsic(&name); Call(bcx, llfn, [val, y], []) } fn with_overflow_intrinsic(bcx: &Block, name: &'static str, t: ty::t, a: ValueRef, b: ValueRef) -> ValueRef { let llfn = bcx.ccx().get_intrinsic(&name); // Convert `i1` to a `bool`, and write it to the out parameter let val = Call(bcx, llfn, [a, b], []); let result = ExtractValue(bcx, val, 0); let overflow = ZExt(bcx, ExtractValue(bcx, val, 1), Type::bool(bcx.ccx())); let ret = C_undef(type_of::type_of(bcx.ccx(), t)); let ret = InsertValue(bcx, ret, result, 0); let ret = InsertValue(bcx, ret, overflow, 1); ret }