/** Code that is useful in various trans modules. */ use libc::c_uint; use vec::unsafe::to_ptr; use std::map::{hashmap,set}; use syntax::{ast, ast_map}; use driver::session; use session::session; use middle::ty; use back::{link, abi, upcall}; use syntax::codemap::span; use lib::llvm::{llvm, target_data, type_names, associate_type, name_has_type}; use lib::llvm::{ModuleRef, ValueRef, TypeRef, BasicBlockRef, BuilderRef}; use lib::llvm::{True, False, Bool}; use metadata::{csearch}; use metadata::common::link_meta; use syntax::ast_map::path; use util::ppaux::ty_to_str; use syntax::print::pprust::expr_to_str; use syntax::parse::token::ident_interner; use syntax::ast::ident; type namegen = fn@(~str) -> ident; fn new_namegen(intr: ident_interner) -> namegen { return fn@(prefix: ~str) -> ident { return intr.gensym(@fmt!("%s_%u", prefix, intr.gensym(@prefix))) }; } type addrspace = c_uint; // Address spaces communicate to LLVM which destructors need to run for // specifc types. // 0 is ignored by the GC, and is used for all non-GC'd pointers. // 1 is for opaque GC'd boxes. // >= 2 are for specific types (e.g. resources). const default_addrspace: addrspace = 0; const gc_box_addrspace: addrspace = 1; type addrspace_gen = fn@() -> addrspace; fn new_addrspace_gen() -> addrspace_gen { let i = @mut 1; return fn@() -> addrspace { *i += 1; *i }; } type tydesc_info = {ty: ty::t, tydesc: ValueRef, size: ValueRef, align: ValueRef, addrspace: addrspace, mut take_glue: Option, mut drop_glue: Option, mut free_glue: Option, mut visit_glue: Option}; /* * A note on nomenclature of linking: "extern", "foreign", and "upcall". * * An "extern" is an LLVM symbol we wind up emitting an undefined external * reference to. This means "we don't have the thing in this compilation unit, * please make sure you link it in at runtime". This could be a reference to * C code found in a C library, or rust code found in a rust crate. * * Most "externs" are implicitly declared (automatically) as a result of a * user declaring an extern _module_ dependency; this causes the rust driver * to locate an extern crate, scan its compilation metadata, and emit extern * declarations for any symbols used by the declaring crate. * * A "foreign" is an extern that references C (or other non-rust ABI) code. * There is no metadata to scan for extern references so in these cases either * a header-digester like bindgen, or manual function prototypes, have to * serve as declarators. So these are usually given explicitly as prototype * declarations, in rust code, with ABI attributes on them noting which ABI to * link via. * * An "upcall" is a foreign call generated by the compiler (not corresponding * to any user-written call in the code) into the runtime library, to perform * some helper task such as bringing a task to life, allocating memory, etc. * */ type stats = {mut n_static_tydescs: uint, mut n_glues_created: uint, mut n_null_glues: uint, mut n_real_glues: uint, llvm_insn_ctxt: @mut ~[~str], llvm_insns: hashmap<~str, uint>, fn_times: @mut ~[{ident: ~str, time: int}]}; struct BuilderRef_res { B: BuilderRef, drop { llvm::LLVMDisposeBuilder(self.B); } } fn BuilderRef_res(B: BuilderRef) -> BuilderRef_res { BuilderRef_res { B: B } } // Crate context. Every crate we compile has one of these. type crate_ctxt = { sess: session::session, llmod: ModuleRef, td: target_data, tn: type_names, externs: hashmap<~str, ValueRef>, intrinsics: hashmap<~str, ValueRef>, item_vals: hashmap, exp_map: resolve::ExportMap, exp_map2: resolve::ExportMap2, reachable: reachable::map, item_symbols: hashmap, mut main_fn: Option, link_meta: link_meta, enum_sizes: hashmap, discrims: hashmap, discrim_symbols: hashmap, tydescs: hashmap, // Set when running emit_tydescs to enforce that no more tydescs are // created. mut finished_tydescs: bool, // Track mapping of external ids to local items imported for inlining external: hashmap>, // Cache instances of monomorphized functions monomorphized: hashmap, monomorphizing: hashmap, // Cache computed type parameter uses (see type_use.rs) type_use_cache: hashmap, // Cache generated vtables vtables: hashmap, // Cache of constant strings, const_cstr_cache: hashmap<~str, ValueRef>, // Reverse-direction for const ptrs cast from globals, // since the ptr -> init association is lost any // time a GlobalValue is cast. const_globals: hashmap, module_data: hashmap<~str, ValueRef>, lltypes: hashmap, names: namegen, next_addrspace: addrspace_gen, symbol_hasher: @hash::State, type_hashcodes: hashmap, type_short_names: hashmap, all_llvm_symbols: set<~str>, tcx: ty::ctxt, maps: astencode::maps, stats: stats, upcalls: @upcall::upcalls, rtcalls: hashmap<~str, ast::def_id>, tydesc_type: TypeRef, int_type: TypeRef, float_type: TypeRef, task_type: TypeRef, opaque_vec_type: TypeRef, builder: BuilderRef_res, shape_cx: shape::ctxt, crate_map: ValueRef, // Set when at least one function uses GC. Needed so that // decl_gc_metadata knows whether to link to the module metadata, which // is not emitted by LLVM's GC pass when no functions use GC. mut uses_gc: bool, dbg_cx: Option, // Mapping from class constructors to parent class -- // used in base::trans_closure // parent_class must be a def_id because ctors can be // inlined, so the parent may be in a different crate class_ctors: hashmap, mut do_not_commit_warning_issued: bool}; // Types used for llself. struct ValSelfData { v: ValueRef; t: ty::t; is_owned: bool; } enum local_val { local_mem(ValueRef), local_imm(ValueRef), } type param_substs = {tys: ~[ty::t], vtables: Option, bounds: @~[ty::param_bounds]}; // Function context. Every LLVM function we create will have one of // these. type fn_ctxt = @{ // The ValueRef returned from a call to llvm::LLVMAddFunction; the // address of the first instruction in the sequence of // instructions for this function that will go in the .text // section of the executable we're generating. llfn: ValueRef, // The two implicit arguments that arrive in the function we're creating. // For instance, foo(int, int) is really foo(ret*, env*, int, int). llenv: ValueRef, llretptr: ValueRef, // These elements: "hoisted basic blocks" containing // administrative activities that have to happen in only one place in // the function, due to LLVM's quirks. // A block for all the function's static allocas, so that LLVM // will coalesce them into a single alloca call. mut llstaticallocas: BasicBlockRef, // A block containing code that copies incoming arguments to space // already allocated by code in one of the llallocas blocks. // (LLVM requires that arguments be copied to local allocas before // allowing most any operation to be performed on them.) mut llloadenv: BasicBlockRef, mut llreturn: BasicBlockRef, // The 'self' value currently in use in this function, if there // is one. mut llself: Option, // The a value alloca'd for calls to upcalls.rust_personality. Used when // outputting the resume instruction. mut personality: Option, // If this is a for-loop body that returns, this holds the pointers needed // for that mut loop_ret: Option<{flagptr: ValueRef, retptr: ValueRef}>, // Maps arguments to allocas created for them in llallocas. llargs: hashmap, // Maps the def_ids for local variables to the allocas created for // them in llallocas. lllocals: hashmap, // Same as above, but for closure upvars llupvars: hashmap, // The node_id of the function, or -1 if it doesn't correspond to // a user-defined function. id: ast::node_id, // If this function is being monomorphized, this contains the type // substitutions used. param_substs: Option, // The source span and nesting context where this function comes from, for // error reporting and symbol generation. span: Option, path: path, // This function's enclosing crate context. ccx: @crate_ctxt }; fn warn_not_to_commit(ccx: @crate_ctxt, msg: ~str) { if !ccx.do_not_commit_warning_issued { ccx.do_not_commit_warning_issued = true; ccx.sess.warn(msg + ~" -- do not commit like this!"); } } // Heap selectors. Indicate which heap something should go on. enum heap { heap_shared, heap_exchange, } enum cleantype { normal_exit_only, normal_exit_and_unwind } enum cleanup { clean(fn@(block) -> block, cleantype), clean_temp(ValueRef, fn@(block) -> block, cleantype), } impl cleantype : cmp::Eq { pure fn eq(&&other: cleantype) -> bool { match self { normal_exit_only => { match other { normal_exit_only => true, _ => false } } normal_exit_and_unwind => { match other { normal_exit_and_unwind => true, _ => false } } } } pure fn ne(&&other: cleantype) -> bool { !self.eq(other) } } // Used to remember and reuse existing cleanup paths // target: none means the path ends in an resume instruction type cleanup_path = {target: Option, dest: BasicBlockRef}; fn scope_clean_changed(info: scope_info) { if info.cleanup_paths.len() > 0u { info.cleanup_paths = ~[]; } info.landing_pad = None; } fn cleanup_type(cx: ty::ctxt, ty: ty::t) -> cleantype { if ty::type_needs_unwind_cleanup(cx, ty) { normal_exit_and_unwind } else { normal_exit_only } } // This is not the same as datum::Datum::root(), which is used to keep copies // of @ values live for as long as a borrowed pointer to the interior exists. // In the new GC, we can identify immediates on the stack without difficulty, // but have trouble knowing where non-immediates are on the stack. For // non-immediates, we must add an additional level of indirection, which // allows us to alloca a pointer with the right addrspace. fn root_for_cleanup(bcx: block, v: ValueRef, t: ty::t) -> {root: ValueRef, rooted: bool} { let ccx = bcx.ccx(); let addrspace = base::get_tydesc(ccx, t).addrspace; if addrspace > gc_box_addrspace { let llty = type_of::type_of_rooted(ccx, t); let root = base::alloca(bcx, llty); build::Store(bcx, build::PointerCast(bcx, v, llty), root); {root: root, rooted: true} } else { {root: v, rooted: false} } } fn add_clean(bcx: block, val: ValueRef, t: ty::t) { if !ty::type_needs_drop(bcx.tcx(), t) { return; } debug!("add_clean(%s, %s, %s)", bcx.to_str(), val_str(bcx.ccx().tn, val), ty_to_str(bcx.ccx().tcx, t)); let {root, rooted} = root_for_cleanup(bcx, val, t); let cleanup_type = cleanup_type(bcx.tcx(), t); do in_scope_cx(bcx) |info| { vec::push(info.cleanups, clean(|a| glue::drop_ty_root(a, root, rooted, t), cleanup_type)); scope_clean_changed(info); } } fn add_clean_temp_immediate(cx: block, val: ValueRef, ty: ty::t) { if !ty::type_needs_drop(cx.tcx(), ty) { return; } debug!("add_clean_temp_immediate(%s, %s, %s)", cx.to_str(), val_str(cx.ccx().tn, val), ty_to_str(cx.ccx().tcx, ty)); let cleanup_type = cleanup_type(cx.tcx(), ty); do in_scope_cx(cx) |info| { vec::push(info.cleanups, clean_temp(val, |a| glue::drop_ty_immediate(a, val, ty), cleanup_type)); scope_clean_changed(info); } } fn add_clean_temp_mem(bcx: block, val: ValueRef, t: ty::t) { if !ty::type_needs_drop(bcx.tcx(), t) { return; } debug!("add_clean_temp_mem(%s, %s, %s)", bcx.to_str(), val_str(bcx.ccx().tn, val), ty_to_str(bcx.ccx().tcx, t)); let {root, rooted} = root_for_cleanup(bcx, val, t); let cleanup_type = cleanup_type(bcx.tcx(), t); do in_scope_cx(bcx) |info| { vec::push(info.cleanups, clean_temp(val, |a| glue::drop_ty_root(a, root, rooted, t), cleanup_type)); scope_clean_changed(info); } } fn add_clean_free(cx: block, ptr: ValueRef, heap: heap) { let free_fn = match heap { heap_shared => |a| glue::trans_free(a, ptr), heap_exchange => |a| glue::trans_unique_free(a, ptr) }; do in_scope_cx(cx) |info| { vec::push(info.cleanups, clean_temp(ptr, free_fn, normal_exit_and_unwind)); scope_clean_changed(info); } } // Note that this only works for temporaries. We should, at some point, move // to a system where we can also cancel the cleanup on local variables, but // this will be more involved. For now, we simply zero out the local, and the // drop glue checks whether it is zero. fn revoke_clean(cx: block, val: ValueRef) { do in_scope_cx(cx) |info| { let cleanup_pos = vec::position( info.cleanups, |cu| match cu { clean_temp(v, _, _) if v == val => true, _ => false }); for cleanup_pos.each |i| { info.cleanups = vec::append(vec::slice(info.cleanups, 0u, i), vec::view(info.cleanups, i + 1u, info.cleanups.len())); scope_clean_changed(info); } } } fn block_cleanups(bcx: block) -> ~[cleanup] { match bcx.kind { block_non_scope => ~[], block_scope(inf) => inf.cleanups } } enum block_kind { // A scope at the end of which temporary values created inside of it are // cleaned up. May correspond to an actual block in the language, but also // to an implicit scope, for example, calls introduce an implicit scope in // which the arguments are evaluated and cleaned up. block_scope(scope_info), // A non-scope block is a basic block created as a translation artifact // from translating code that expresses conditional logic rather than by // explicit { ... } block structure in the source language. It's called a // non-scope block because it doesn't introduce a new variable scope. block_non_scope, } type scope_info = { loop_break: Option, // A list of functions that must be run at when leaving this // block, cleaning up any variables that were introduced in the // block. mut cleanups: ~[cleanup], // Existing cleanup paths that may be reused, indexed by destination and // cleared when the set of cleanups changes. mut cleanup_paths: ~[cleanup_path], // Unwinding landing pad. Also cleared when cleanups change. mut landing_pad: Option, }; trait get_node_info { fn info() -> Option; } impl @ast::expr: get_node_info { fn info() -> Option { Some({id: self.id, span: self.span}) } } impl ast::blk: get_node_info { fn info() -> Option { Some({id: self.node.id, span: self.span}) } } // XXX: Work around a trait parsing bug. remove after snapshot type optional_boxed_ast_expr = Option<@ast::expr>; impl optional_boxed_ast_expr: get_node_info { fn info() -> Option { self.chain(|s| s.info()) } } type node_info = { id: ast::node_id, span: span }; // Basic block context. We create a block context for each basic block // (single-entry, single-exit sequence of instructions) we generate from Rust // code. Each basic block we generate is attached to a function, typically // with many basic blocks per function. All the basic blocks attached to a // function are organized as a directed graph. struct block_ { // The BasicBlockRef returned from a call to // llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic // block to the function pointed to by llfn. We insert // instructions into that block by way of this block context. // The block pointing to this one in the function's digraph. llbb: BasicBlockRef, mut terminated: bool, mut unreachable: bool, parent: Option, // The 'kind' of basic block this is. kind: block_kind, // Is this block part of a landing pad? is_lpad: bool, // info about the AST node this block originated from, if any node_info: Option, // The function context for the function to which this block is // attached. fcx: fn_ctxt } fn block_(llbb: BasicBlockRef, parent: Option, -kind: block_kind, is_lpad: bool, node_info: Option, fcx: fn_ctxt) -> block_ { block_ { llbb: llbb, terminated: false, unreachable: false, parent: parent, kind: kind, is_lpad: is_lpad, node_info: node_info, fcx: fcx } } /* This must be enum and not type, or trans goes into an infinite loop (#2572) */ enum block = @block_; fn mk_block(llbb: BasicBlockRef, parent: Option, -kind: block_kind, is_lpad: bool, node_info: Option, fcx: fn_ctxt) -> block { block(@block_(llbb, parent, kind, is_lpad, node_info, fcx)) } // First two args are retptr, env const first_real_arg: uint = 2u; struct Result { bcx: block; val: ValueRef; } fn rslt(bcx: block, val: ValueRef) -> Result { Result {bcx: bcx, val: val} } impl Result { fn unpack(bcx: &mut block) -> ValueRef { *bcx = self.bcx; return self.val; } } fn ty_str(tn: type_names, t: TypeRef) -> ~str { return lib::llvm::type_to_str(tn, t); } fn val_ty(v: ValueRef) -> TypeRef { return llvm::LLVMTypeOf(v); } fn val_str(tn: type_names, v: ValueRef) -> ~str { return ty_str(tn, val_ty(v)); } // Returns the nth element of the given LLVM structure type. fn struct_elt(llstructty: TypeRef, n: uint) -> TypeRef unsafe { let elt_count = llvm::LLVMCountStructElementTypes(llstructty) as uint; assert (n < elt_count); let elt_tys = vec::from_elem(elt_count, T_nil()); llvm::LLVMGetStructElementTypes(llstructty, to_ptr(elt_tys)); return llvm::LLVMGetElementType(elt_tys[n]); } fn in_scope_cx(cx: block, f: fn(scope_info)) { let mut cur = cx; loop { match cur.kind { block_scope(inf) => { debug!("in_scope_cx: selected cur=%s (cx=%s)", cur.to_str(), cx.to_str()); f(inf); return; } _ => () } cur = block_parent(cur); } } fn block_parent(cx: block) -> block { match cx.parent { Some(b) => b, None => cx.sess().bug(fmt!("block_parent called on root block %?", cx)) } } // Accessors impl block { pure fn ccx() -> @crate_ctxt { self.fcx.ccx } pure fn tcx() -> ty::ctxt { self.fcx.ccx.tcx } pure fn sess() -> session { self.fcx.ccx.sess } fn node_id_to_str(id: ast::node_id) -> ~str { ast_map::node_id_to_str(self.tcx().items, id, self.sess().intr()) } fn expr_to_str(e: @ast::expr) -> ~str { fmt!("expr(%d: %s)", e.id, expr_to_str(e, self.sess().intr())) } fn expr_is_lval(e: @ast::expr) -> bool { ty::expr_is_lval(self.tcx(), self.ccx().maps.method_map, e) } fn expr_kind(e: @ast::expr) -> ty::ExprKind { ty::expr_kind(self.tcx(), self.ccx().maps.method_map, e) } fn def(nid: ast::node_id) -> ast::def { match self.tcx().def_map.find(nid) { Some(v) => v, None => { self.tcx().sess.bug(fmt!( "No def associated with node id %?", nid)); } } } fn val_str(val: ValueRef) -> ~str { val_str(self.ccx().tn, val) } fn llty_str(llty: TypeRef) -> ~str { ty_str(self.ccx().tn, llty) } fn ty_to_str(t: ty::t) -> ~str { ty_to_str(self.tcx(), t) } fn to_str() -> ~str { match self.node_info { Some(node_info) => { fmt!("[block %d]", node_info.id) } None => { fmt!("[block %x]", ptr::addr_of(*self) as uint) } } } } // LLVM type constructors. fn T_void() -> TypeRef { // Note: For the time being llvm is kinda busted here, it has the notion // of a 'void' type that can only occur as part of the signature of a // function, but no general unit type of 0-sized value. This is, afaict, // vestigial from its C heritage, and we'll be attempting to submit a // patch upstream to fix it. In the mean time we only model function // outputs (Rust functions and C functions) using T_void, and model the // Rust general purpose nil type you can construct as 1-bit (always // zero). This makes the result incorrect for now -- things like a tuple // of 10 nil values will have 10-bit size -- but it doesn't seem like we // have any other options until it's fixed upstream. return llvm::LLVMVoidType(); } fn T_nil() -> TypeRef { // NB: See above in T_void(). return llvm::LLVMInt1Type(); } fn T_metadata() -> TypeRef { return llvm::LLVMMetadataType(); } fn T_i1() -> TypeRef { return llvm::LLVMInt1Type(); } fn T_i8() -> TypeRef { return llvm::LLVMInt8Type(); } fn T_i16() -> TypeRef { return llvm::LLVMInt16Type(); } fn T_i32() -> TypeRef { return llvm::LLVMInt32Type(); } fn T_i64() -> TypeRef { return llvm::LLVMInt64Type(); } fn T_f32() -> TypeRef { return llvm::LLVMFloatType(); } fn T_f64() -> TypeRef { return llvm::LLVMDoubleType(); } fn T_bool() -> TypeRef { return T_i1(); } fn T_int(targ_cfg: @session::config) -> TypeRef { return match targ_cfg.arch { session::arch_x86 => T_i32(), session::arch_x86_64 => T_i64(), session::arch_arm => T_i32() }; } fn T_int_ty(cx: @crate_ctxt, t: ast::int_ty) -> TypeRef { match t { ast::ty_i => cx.int_type, ast::ty_char => T_char(), ast::ty_i8 => T_i8(), ast::ty_i16 => T_i16(), ast::ty_i32 => T_i32(), ast::ty_i64 => T_i64() } } fn T_uint_ty(cx: @crate_ctxt, t: ast::uint_ty) -> TypeRef { match t { ast::ty_u => cx.int_type, ast::ty_u8 => T_i8(), ast::ty_u16 => T_i16(), ast::ty_u32 => T_i32(), ast::ty_u64 => T_i64() } } fn T_float_ty(cx: @crate_ctxt, t: ast::float_ty) -> TypeRef { match t { ast::ty_f => cx.float_type, ast::ty_f32 => T_f32(), ast::ty_f64 => T_f64() } } fn T_float(targ_cfg: @session::config) -> TypeRef { return match targ_cfg.arch { session::arch_x86 => T_f64(), session::arch_x86_64 => T_f64(), session::arch_arm => T_f64() }; } fn T_char() -> TypeRef { return T_i32(); } fn T_size_t(targ_cfg: @session::config) -> TypeRef { return T_int(targ_cfg); } fn T_fn(inputs: ~[TypeRef], output: TypeRef) -> TypeRef unsafe { return llvm::LLVMFunctionType(output, to_ptr(inputs), inputs.len() as c_uint, False); } fn T_fn_pair(cx: @crate_ctxt, tfn: TypeRef) -> TypeRef { return T_struct(~[T_ptr(tfn), T_opaque_cbox_ptr(cx)]); } fn T_ptr(t: TypeRef) -> TypeRef { return llvm::LLVMPointerType(t, default_addrspace); } fn T_root(t: TypeRef, addrspace: addrspace) -> TypeRef { return llvm::LLVMPointerType(t, addrspace); } fn T_struct(elts: ~[TypeRef]) -> TypeRef unsafe { return llvm::LLVMStructType(to_ptr(elts), elts.len() as c_uint, False); } fn T_named_struct(name: ~str) -> TypeRef { let c = llvm::LLVMGetGlobalContext(); return str::as_c_str(name, |buf| llvm::LLVMStructCreateNamed(c, buf)); } fn set_struct_body(t: TypeRef, elts: ~[TypeRef]) unsafe { llvm::LLVMStructSetBody(t, to_ptr(elts), elts.len() as c_uint, False); } fn T_empty_struct() -> TypeRef { return T_struct(~[]); } // A vtable is, in reality, a vtable pointer followed by zero or more pointers // to tydescs and other vtables that it closes over. But the types and number // of those are rarely known to the code that needs to manipulate them, so // they are described by this opaque type. fn T_vtable() -> TypeRef { T_array(T_ptr(T_i8()), 1u) } fn T_task(targ_cfg: @session::config) -> TypeRef { let t = T_named_struct(~"task"); // Refcount // Delegate pointer // Stack segment pointer // Runtime SP // Rust SP // GC chain // Domain pointer // Crate cache pointer let t_int = T_int(targ_cfg); let elems = ~[t_int, t_int, t_int, t_int, t_int, t_int, t_int, t_int]; set_struct_body(t, elems); return t; } fn T_tydesc_field(cx: @crate_ctxt, field: uint) -> TypeRef unsafe { // Bit of a kludge: pick the fn typeref out of the tydesc.. let tydesc_elts: ~[TypeRef] = vec::from_elem::(abi::n_tydesc_fields, T_nil()); llvm::LLVMGetStructElementTypes(cx.tydesc_type, to_ptr::(tydesc_elts)); let t = llvm::LLVMGetElementType(tydesc_elts[field]); return t; } fn T_generic_glue_fn(cx: @crate_ctxt) -> TypeRef { let s = ~"glue_fn"; match name_has_type(cx.tn, s) { Some(t) => return t, _ => () } let t = T_tydesc_field(cx, abi::tydesc_field_drop_glue); associate_type(cx.tn, s, t); return t; } fn T_tydesc(targ_cfg: @session::config) -> TypeRef { let tydesc = T_named_struct(~"tydesc"); let tydescpp = T_ptr(T_ptr(tydesc)); let pvoid = T_ptr(T_i8()); let glue_fn_ty = T_ptr(T_fn(~[T_ptr(T_nil()), T_ptr(T_nil()), tydescpp, pvoid], T_void())); let int_type = T_int(targ_cfg); let elems = ~[int_type, int_type, glue_fn_ty, glue_fn_ty, glue_fn_ty, glue_fn_ty, T_ptr(T_i8()), T_ptr(T_i8())]; set_struct_body(tydesc, elems); return tydesc; } fn T_array(t: TypeRef, n: uint) -> TypeRef { return llvm::LLVMArrayType(t, n as c_uint); } // Interior vector. fn T_vec2(targ_cfg: @session::config, t: TypeRef) -> TypeRef { return T_struct(~[T_int(targ_cfg), // fill T_int(targ_cfg), // alloc T_array(t, 0u)]); // elements } fn T_vec(ccx: @crate_ctxt, t: TypeRef) -> TypeRef { return T_vec2(ccx.sess.targ_cfg, t); } // Note that the size of this one is in bytes. fn T_opaque_vec(targ_cfg: @session::config) -> TypeRef { return T_vec2(targ_cfg, T_i8()); } // Let T be the content of a box @T. tuplify_box_ty(t) returns the // representation of @T as a tuple (i.e., the ty::t version of what T_box() // returns). fn tuplify_box_ty(tcx: ty::ctxt, t: ty::t) -> ty::t { let ptr = ty::mk_ptr(tcx, {ty: ty::mk_nil(tcx), mutbl: ast::m_imm}); return ty::mk_tup(tcx, ~[ty::mk_uint(tcx), ty::mk_type(tcx), ptr, ptr, t]); } fn T_box_header_fields(cx: @crate_ctxt) -> ~[TypeRef] { let ptr = T_ptr(T_i8()); return ~[cx.int_type, T_ptr(cx.tydesc_type), ptr, ptr]; } fn T_box_header(cx: @crate_ctxt) -> TypeRef { return T_struct(T_box_header_fields(cx)); } fn T_box(cx: @crate_ctxt, t: TypeRef) -> TypeRef { return T_struct(vec::append(T_box_header_fields(cx), ~[t])); } fn T_box_ptr(t: TypeRef) -> TypeRef { return llvm::LLVMPointerType(t, gc_box_addrspace); } fn T_opaque_box(cx: @crate_ctxt) -> TypeRef { return T_box(cx, T_i8()); } fn T_opaque_box_ptr(cx: @crate_ctxt) -> TypeRef { return T_box_ptr(T_opaque_box(cx)); } fn T_unique(cx: @crate_ctxt, t: TypeRef) -> TypeRef { return T_struct(vec::append(T_box_header_fields(cx), ~[t])); } fn T_unique_ptr(t: TypeRef) -> TypeRef { return llvm::LLVMPointerType(t, gc_box_addrspace); } fn T_port(cx: @crate_ctxt, _t: TypeRef) -> TypeRef { return T_struct(~[cx.int_type]); // Refcount } fn T_chan(cx: @crate_ctxt, _t: TypeRef) -> TypeRef { return T_struct(~[cx.int_type]); // Refcount } fn T_taskptr(cx: @crate_ctxt) -> TypeRef { return T_ptr(cx.task_type); } // This type must never be used directly; it must always be cast away. fn T_typaram(tn: type_names) -> TypeRef { let s = ~"typaram"; match name_has_type(tn, s) { Some(t) => return t, _ => () } let t = T_i8(); associate_type(tn, s, t); return t; } fn T_typaram_ptr(tn: type_names) -> TypeRef { return T_ptr(T_typaram(tn)); } fn T_opaque_cbox_ptr(cx: @crate_ctxt) -> TypeRef { // closures look like boxes (even when they are fn~ or fn&) // see trans_closure.rs return T_opaque_box_ptr(cx); } fn T_enum_discrim(cx: @crate_ctxt) -> TypeRef { return cx.int_type; } fn T_opaque_enum(cx: @crate_ctxt) -> TypeRef { let s = ~"opaque_enum"; match name_has_type(cx.tn, s) { Some(t) => return t, _ => () } let t = T_struct(~[T_enum_discrim(cx), T_i8()]); associate_type(cx.tn, s, t); return t; } fn T_opaque_enum_ptr(cx: @crate_ctxt) -> TypeRef { return T_ptr(T_opaque_enum(cx)); } fn T_captured_tydescs(cx: @crate_ctxt, n: uint) -> TypeRef { return T_struct(vec::from_elem::(n, T_ptr(cx.tydesc_type))); } fn T_opaque_trait(cx: @crate_ctxt) -> TypeRef { T_struct(~[T_ptr(cx.tydesc_type), T_opaque_box_ptr(cx)]) } fn T_opaque_port_ptr() -> TypeRef { return T_ptr(T_i8()); } fn T_opaque_chan_ptr() -> TypeRef { return T_ptr(T_i8()); } // LLVM constant constructors. fn C_null(t: TypeRef) -> ValueRef { return llvm::LLVMConstNull(t); } fn C_integral(t: TypeRef, u: u64, sign_extend: Bool) -> ValueRef { return llvm::LLVMConstInt(t, u, sign_extend); } fn C_floating(s: ~str, t: TypeRef) -> ValueRef { return str::as_c_str(s, |buf| llvm::LLVMConstRealOfString(t, buf)); } fn C_nil() -> ValueRef { // NB: See comment above in T_void(). return C_integral(T_i1(), 0u64, False); } fn C_bool(b: bool) -> ValueRef { C_integral(T_bool(), if b { 1u64 } else { 0u64 }, False) } fn C_i32(i: i32) -> ValueRef { return C_integral(T_i32(), i as u64, True); } fn C_i64(i: i64) -> ValueRef { return C_integral(T_i64(), i as u64, True); } fn C_int(cx: @crate_ctxt, i: int) -> ValueRef { return C_integral(cx.int_type, i as u64, True); } fn C_uint(cx: @crate_ctxt, i: uint) -> ValueRef { return C_integral(cx.int_type, i as u64, False); } fn C_u8(i: uint) -> ValueRef { return C_integral(T_i8(), i as u64, False); } // This is a 'c-like' raw string, which differs from // our boxed-and-length-annotated strings. fn C_cstr(cx: @crate_ctxt, s: ~str) -> ValueRef { match cx.const_cstr_cache.find(s) { Some(llval) => return llval, None => () } let sc = do str::as_c_str(s) |buf| { llvm::LLVMConstString(buf, str::len(s) as c_uint, False) }; let g = str::as_c_str(fmt!("str%u", cx.names(~"str")), |buf| llvm::LLVMAddGlobal(cx.llmod, val_ty(sc), buf)); llvm::LLVMSetInitializer(g, sc); llvm::LLVMSetGlobalConstant(g, True); lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage); cx.const_cstr_cache.insert(s, g); return g; } fn C_estr_slice(cx: @crate_ctxt, s: ~str) -> ValueRef { let cs = llvm::LLVMConstPointerCast(C_cstr(cx, s), T_ptr(T_i8())); C_struct(~[cs, C_uint(cx, str::len(s) + 1u /* +1 for null */)]) } // Returns a Plain Old LLVM String: fn C_postr(s: ~str) -> ValueRef { return do str::as_c_str(s) |buf| { llvm::LLVMConstString(buf, str::len(s) as c_uint, False) }; } fn C_zero_byte_arr(size: uint) -> ValueRef unsafe { let mut i = 0u; let mut elts: ~[ValueRef] = ~[]; while i < size { vec::push(elts, C_u8(0u)); i += 1u; } return llvm::LLVMConstArray(T_i8(), vec::unsafe::to_ptr(elts), elts.len() as c_uint); } fn C_struct(elts: &[ValueRef]) -> ValueRef { do vec::as_buf(elts) |ptr, len| { llvm::LLVMConstStruct(ptr, len as c_uint, False) } } fn C_named_struct(T: TypeRef, elts: &[ValueRef]) -> ValueRef { do vec::as_buf(elts) |ptr, len| { llvm::LLVMConstNamedStruct(T, ptr, len as c_uint) } } fn C_array(ty: TypeRef, elts: ~[ValueRef]) -> ValueRef unsafe { return llvm::LLVMConstArray(ty, vec::unsafe::to_ptr(elts), elts.len() as c_uint); } fn C_bytes(bytes: ~[u8]) -> ValueRef unsafe { return llvm::LLVMConstString( unsafe::reinterpret_cast(&vec::unsafe::to_ptr(bytes)), bytes.len() as c_uint, True); } fn C_bytes_plus_null(bytes: ~[u8]) -> ValueRef unsafe { return llvm::LLVMConstString( unsafe::reinterpret_cast(&vec::unsafe::to_ptr(bytes)), bytes.len() as c_uint, False); } fn C_shape(ccx: @crate_ctxt, bytes: ~[u8]) -> ValueRef { let llshape = C_bytes_plus_null(bytes); let llglobal = str::as_c_str(fmt!("shape%u", ccx.names(~"shape")), |buf| { llvm::LLVMAddGlobal(ccx.llmod, val_ty(llshape), buf) }); llvm::LLVMSetInitializer(llglobal, llshape); llvm::LLVMSetGlobalConstant(llglobal, True); lib::llvm::SetLinkage(llglobal, lib::llvm::InternalLinkage); return llvm::LLVMConstPointerCast(llglobal, T_ptr(T_i8())); } fn get_param(fndecl: ValueRef, param: uint) -> ValueRef { llvm::LLVMGetParam(fndecl, param as c_uint) } // Used to identify cached monomorphized functions and vtables enum mono_param_id { mono_precise(ty::t, Option<~[mono_id]>), mono_any, mono_repr(uint /* size */, uint /* align */), } type mono_id_ = {def: ast::def_id, params: ~[mono_param_id]}; type mono_id = @mono_id_; impl mono_param_id: cmp::Eq { pure fn eq(&&other: mono_param_id) -> bool { match (self, other) { (mono_precise(ty_a, ids_a), mono_precise(ty_b, ids_b)) => { ty_a == ty_b && ids_a == ids_b } (mono_any, mono_any) => true, (mono_repr(size_a, align_a), mono_repr(size_b, align_b)) => { size_a == size_b && align_a == align_b } (mono_precise(*), _) => false, (mono_any, _) => false, (mono_repr(*), _) => false } } pure fn ne(&&other: mono_param_id) -> bool { !self.eq(other) } } impl mono_id_: cmp::Eq { pure fn eq(&&other: mono_id_) -> bool { return self.def == other.def && self.params == other.params; } pure fn ne(&&other: mono_id_) -> bool { !self.eq(other) } } pure fn hash_mono_id(mi: &mono_id) -> uint { let mut h = syntax::ast_util::hash_def(&mi.def); for vec::each(mi.params) |param| { h = h * match param { mono_precise(ty, vts) => { let mut h = ty::type_id(ty); do option::iter(vts) |vts| { for vec::each(vts) |vt| { h += hash_mono_id(&vt); } } h } mono_any => 1u, mono_repr(sz, align) => sz * (align + 2u) } } h } fn umax(cx: block, a: ValueRef, b: ValueRef) -> ValueRef { let cond = build::ICmp(cx, lib::llvm::IntULT, a, b); return build::Select(cx, cond, b, a); } fn umin(cx: block, a: ValueRef, b: ValueRef) -> ValueRef { let cond = build::ICmp(cx, lib::llvm::IntULT, a, b); return build::Select(cx, cond, a, b); } fn align_to(cx: block, off: ValueRef, align: ValueRef) -> ValueRef { let mask = build::Sub(cx, align, C_int(cx.ccx(), 1)); let bumped = build::Add(cx, off, mask); return build::And(cx, bumped, build::Not(cx, mask)); } fn path_str(sess: session::session, p: path) -> ~str { let mut r = ~"", first = true; for vec::each(p) |e| { match e { ast_map::path_name(s) | ast_map::path_mod(s) => { if first { first = false; } else { r += ~"::"; } r += sess.str_of(s); } } } r } fn node_id_type(bcx: block, id: ast::node_id) -> ty::t { let tcx = bcx.tcx(); let t = ty::node_id_to_type(tcx, id); match bcx.fcx.param_substs { Some(substs) => ty::subst_tps(tcx, substs.tys, t), _ => { assert !ty::type_has_params(t); t } } } fn expr_ty(bcx: block, ex: @ast::expr) -> ty::t { node_id_type(bcx, ex.id) } fn node_id_type_params(bcx: block, id: ast::node_id) -> ~[ty::t] { let tcx = bcx.tcx(); let params = ty::node_id_to_type_params(tcx, id); match bcx.fcx.param_substs { Some(substs) => { vec::map(params, |t| ty::subst_tps(tcx, substs.tys, t)) } _ => params } } fn dummy_substs(tps: ~[ty::t]) -> ty::substs { {self_r: Some(ty::re_bound(ty::br_self)), self_ty: None, tps: tps} } fn struct_field(index: uint) -> [uint]/3 { //! The GEPi sequence to access a field of a record/struct. [0, 0, index] } fn struct_dtor() -> [uint]/2 { //! The GEPi sequence to access the dtor of a struct. [0, 1] } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //