// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::link::mangle_exported_name; use driver::session; use lib::llvm::ValueRef; use middle::trans::base::{set_inline_hint_if_appr, set_inline_hint}; use middle::trans::base::{trans_enum_variant,push_ctxt}; use middle::trans::base::{trans_fn, decl_internal_cdecl_fn}; use middle::trans::base::{get_item_val, no_self}; use middle::trans::base; use middle::trans::common::*; use middle::trans::datum; use middle::trans::foreign; use middle::trans::machine; use middle::trans::meth; use middle::trans::type_of::type_of_fn_from_ty; use middle::trans::type_of; use middle::trans::type_use; use middle::ty; use middle::ty::{FnSig}; use middle::typeck; use util::ppaux::{Repr,ty_to_str}; use syntax::ast; use syntax::ast_map; use syntax::ast_map::path_name; use syntax::ast_util::local_def; use syntax::opt_vec; use syntax::abi::AbiSet; pub fn monomorphic_fn(ccx: @mut CrateContext, fn_id: ast::def_id, real_substs: &ty::substs, vtables: Option, self_vtable: Option, ref_id: Option) -> (ValueRef, bool) { debug!("monomorphic_fn(\ fn_id=%s, \ real_substs=%s, \ vtables=%s, \ self_vtable=%s, \ ref_id=%?)", fn_id.repr(ccx.tcx), real_substs.repr(ccx.tcx), vtables.repr(ccx.tcx), self_vtable.repr(ccx.tcx), ref_id); assert!(real_substs.tps.iter().all(|t| !ty::type_needs_infer(*t))); let _icx = push_ctxt("monomorphic_fn"); let mut must_cast = false; let do_normalize = |t: &ty::t| { match normalize_for_monomorphization(ccx.tcx, *t) { Some(t) => { must_cast = true; t } None => *t } }; let psubsts = @param_substs { tys: real_substs.tps.map(|x| do_normalize(x)), vtables: vtables, self_ty: real_substs.self_ty.map(|x| do_normalize(x)), self_vtable: self_vtable }; for real_substs.tps.iter().advance |s| { assert!(!ty::type_has_params(*s)); } for psubsts.tys.iter().advance |s| { assert!(!ty::type_has_params(*s)); } let param_uses = type_use::type_uses_for(ccx, fn_id, psubsts.tys.len()); let hash_id = make_mono_id(ccx, fn_id, &*psubsts, Some(param_uses)); if hash_id.params.iter().any( |p| match *p { mono_precise(_, _) => false, _ => true }) { must_cast = true; } debug!("monomorphic_fn(\ fn_id=%s, \ psubsts=%s, \ hash_id=%?)", fn_id.repr(ccx.tcx), psubsts.repr(ccx.tcx), hash_id); match ccx.monomorphized.find(&hash_id) { Some(&val) => { debug!("leaving monomorphic fn %s", ty::item_path_str(ccx.tcx, fn_id)); return (val, must_cast); } None => () } let tpt = ty::lookup_item_type(ccx.tcx, fn_id); let llitem_ty = tpt.ty; // We need to do special handling of the substitutions if we are // calling a static provided method. This is sort of unfortunate. let mut is_static_provided = None; let map_node = session::expect( ccx.sess, ccx.tcx.items.find_copy(&fn_id.node), || fmt!("While monomorphizing %?, couldn't find it in the item map \ (may have attempted to monomorphize an item \ defined in a different crate?)", fn_id)); // Get the path so that we can create a symbol let (pt, name, span) = match map_node { ast_map::node_item(i, pt) => (pt, i.ident, i.span), ast_map::node_variant(ref v, enm, pt) => (pt, (*v).node.name, enm.span), ast_map::node_method(m, _, pt) => (pt, m.ident, m.span), ast_map::node_foreign_item(i, abis, _, pt) if abis.is_intrinsic() => (pt, i.ident, i.span), ast_map::node_foreign_item(*) => { // Foreign externs don't have to be monomorphized. return (get_item_val(ccx, fn_id.node), true); } ast_map::node_trait_method(@ast::provided(m), _, pt) => { // If this is a static provided method, indicate that // and stash the number of params on the method. if m.explicit_self.node == ast::sty_static { is_static_provided = Some(m.generics.ty_params.len()); } (pt, m.ident, m.span) } ast_map::node_trait_method(@ast::required(_), _, _) => { ccx.tcx.sess.bug("Can't monomorphize a required trait method") } ast_map::node_expr(*) => { ccx.tcx.sess.bug("Can't monomorphize an expr") } ast_map::node_stmt(*) => { ccx.tcx.sess.bug("Can't monomorphize a stmt") } ast_map::node_arg(*) => ccx.tcx.sess.bug("Can't monomorphize an arg"), ast_map::node_block(*) => { ccx.tcx.sess.bug("Can't monomorphize a block") } ast_map::node_local(*) => { ccx.tcx.sess.bug("Can't monomorphize a local") } ast_map::node_callee_scope(*) => { ccx.tcx.sess.bug("Can't monomorphize a callee-scope") } ast_map::node_struct_ctor(_, i, pt) => (pt, i.ident, i.span) }; debug!("monomorphic_fn about to subst into %s", llitem_ty.repr(ccx.tcx)); let mono_ty = match is_static_provided { None => ty::subst_tps(ccx.tcx, psubsts.tys, psubsts.self_ty, llitem_ty), Some(num_method_ty_params) => { // Static default methods are a little unfortunate, in // that the "internal" and "external" type of them differ. // Internally, the method body can refer to Self, but the // externally visable type of the method has a type param // inserted in between the trait type params and the // method type params. The substs that we are given are // the proper substs *internally* to the method body, so // we have to use those when compiling it. // // In order to get the proper substitution to use on the // type of the method, we pull apart the substitution and // stick a substitution for the self type in. // This is a bit unfortunate. let idx = psubsts.tys.len() - num_method_ty_params; let substs = (psubsts.tys.slice(0, idx) + &[psubsts.self_ty.get()] + psubsts.tys.tailn(idx)); debug!("static default: changed substitution to %s", substs.repr(ccx.tcx)); ty::subst_tps(ccx.tcx, substs, None, llitem_ty) } }; let llfty = type_of_fn_from_ty(ccx, mono_ty); ccx.stats.n_monos += 1; let depth = match ccx.monomorphizing.find(&fn_id) { Some(&d) => d, None => 0 }; // Random cut-off -- code that needs to instantiate the same function // recursively more than thirty times can probably safely be assumed to be // causing an infinite expansion. if depth > 30 { ccx.sess.span_fatal( span, "overly deep expansion of inlined function"); } ccx.monomorphizing.insert(fn_id, depth + 1); let elt = path_name(gensym_name(ccx.sess.str_of(name))); let mut pt = (*pt).clone(); pt.push(elt); let s = mangle_exported_name(ccx, pt.clone(), mono_ty); debug!("monomorphize_fn mangled to %s", s); let mk_lldecl = || { let lldecl = decl_internal_cdecl_fn(ccx.llmod, s, llfty); ccx.monomorphized.insert(hash_id, lldecl); lldecl }; let lldecl = match map_node { ast_map::node_item(i@@ast::item { node: ast::item_fn(ref decl, _, _, _, ref body), _ }, _) => { let d = mk_lldecl(); set_inline_hint_if_appr(i.attrs, d); trans_fn(ccx, pt, decl, body, d, no_self, Some(psubsts), fn_id.node, []); d } ast_map::node_item(*) => { ccx.tcx.sess.bug("Can't monomorphize this kind of item") } ast_map::node_foreign_item(i, _, _, _) => { let d = mk_lldecl(); foreign::trans_intrinsic(ccx, d, i, pt, psubsts, i.attrs, ref_id); d } ast_map::node_variant(ref v, enum_item, _) => { let tvs = ty::enum_variants(ccx.tcx, local_def(enum_item.id)); let this_tv = *tvs.iter().find_(|tv| { tv.id.node == fn_id.node}).get(); let d = mk_lldecl(); set_inline_hint(d); match v.node.kind { ast::tuple_variant_kind(ref args) => { trans_enum_variant(ccx, enum_item.id, v, (*args).clone(), this_tv.disr_val, Some(psubsts), d); } ast::struct_variant_kind(_) => ccx.tcx.sess.bug("can't monomorphize struct variants"), } d } ast_map::node_method(mth, _, _) => { // XXX: What should the self type be here? let d = mk_lldecl(); set_inline_hint_if_appr(mth.attrs.clone(), d); meth::trans_method(ccx, pt, mth, Some(psubsts), d); d } ast_map::node_trait_method(@ast::provided(mth), _, pt) => { let d = mk_lldecl(); set_inline_hint_if_appr(mth.attrs.clone(), d); meth::trans_method(ccx, (*pt).clone(), mth, Some(psubsts), d); d } ast_map::node_struct_ctor(struct_def, _, _) => { let d = mk_lldecl(); set_inline_hint(d); base::trans_tuple_struct(ccx, struct_def.fields, struct_def.ctor_id.expect("ast-mapped tuple struct \ didn't have a ctor id"), Some(psubsts), d); d } // Ugh -- but this ensures any new variants won't be forgotten ast_map::node_expr(*) | ast_map::node_stmt(*) | ast_map::node_trait_method(*) | ast_map::node_arg(*) | ast_map::node_block(*) | ast_map::node_callee_scope(*) | ast_map::node_local(*) => { ccx.tcx.sess.bug(fmt!("Can't monomorphize a %?", map_node)) } }; ccx.monomorphizing.insert(fn_id, depth); debug!("leaving monomorphic fn %s", ty::item_path_str(ccx.tcx, fn_id)); (lldecl, must_cast) } pub fn normalize_for_monomorphization(tcx: ty::ctxt, ty: ty::t) -> Option { // FIXME[mono] could do this recursively. is that worthwhile? (#2529) return match ty::get(ty).sty { ty::ty_box(*) => { Some(ty::mk_opaque_box(tcx)) } ty::ty_bare_fn(_) => { Some(ty::mk_bare_fn( tcx, ty::BareFnTy { purity: ast::impure_fn, abis: AbiSet::Rust(), sig: FnSig {bound_lifetime_names: opt_vec::Empty, inputs: ~[], output: ty::mk_nil()}})) } ty::ty_closure(ref fty) => { Some(normalized_closure_ty(tcx, fty.sigil)) } ty::ty_trait(_, _, ref store, _, _) => { let sigil = match *store { ty::UniqTraitStore => ast::OwnedSigil, ty::BoxTraitStore => ast::ManagedSigil, ty::RegionTraitStore(_) => ast::BorrowedSigil, }; // Traits have the same runtime representation as closures. Some(normalized_closure_ty(tcx, sigil)) } ty::ty_ptr(_) => { Some(ty::mk_uint()) } _ => { None } }; fn normalized_closure_ty(tcx: ty::ctxt, sigil: ast::Sigil) -> ty::t { ty::mk_closure( tcx, ty::ClosureTy { purity: ast::impure_fn, sigil: sigil, onceness: ast::Many, region: ty::re_static, bounds: ty::EmptyBuiltinBounds(), sig: ty::FnSig {bound_lifetime_names: opt_vec::Empty, inputs: ~[], output: ty::mk_nil()}}) } } pub fn make_mono_id(ccx: @mut CrateContext, item: ast::def_id, substs: ¶m_substs, param_uses: Option<@~[type_use::type_uses]>) -> mono_id { // FIXME (possibly #5801): Need a lot of type hints to get // .collect() to work. let substs_iter = substs.self_ty.iter().chain_(substs.tys.iter()); let precise_param_ids: ~[(ty::t, Option<@~[mono_id]>)] = match substs.vtables { Some(vts) => { debug!("make_mono_id vtables=%s substs=%s", vts.repr(ccx.tcx), substs.tys.repr(ccx.tcx)); let self_vtables = substs.self_vtable.map(|vtbl| @~[(*vtbl).clone()]); let vts_iter = self_vtables.iter().chain_(vts.iter()); vts_iter.zip(substs_iter).transform(|(vtable, subst)| { let v = vtable.map(|vt| meth::vtable_id(ccx, vt)); (*subst, if !v.is_empty() { Some(@v) } else { None }) }).collect() } None => substs_iter.transform(|subst| (*subst, None::<@~[mono_id]>)).collect() }; let param_ids = match param_uses { Some(ref uses) => { // param_uses doesn't include a use for the self type. // We just say it is fully used. let self_use = substs.self_ty.map(|_| type_use::use_repr|type_use::use_tydesc); let uses_iter = self_use.iter().chain_(uses.iter()); precise_param_ids.iter().zip(uses_iter).transform(|(id, uses)| { if ccx.sess.no_monomorphic_collapse() { match *id { (a, b) => mono_precise(a, b) } } else { match *id { (a, b@Some(_)) => mono_precise(a, b), (subst, None) => { if *uses == 0 { mono_any } else if *uses == type_use::use_repr && !ty::type_needs_drop(ccx.tcx, subst) { let llty = type_of::type_of(ccx, subst); let size = machine::llbitsize_of_real(ccx, llty); let align = machine::llalign_of_min(ccx, llty); let mode = datum::appropriate_mode(ccx.tcx, subst); let data_class = mono_data_classify(subst); debug!("make_mono_id: type %s -> size %u align %u mode %? class %?", ty_to_str(ccx.tcx, subst), size, align, mode, data_class); // Special value for nil to prevent problems // with undef return pointers. if size <= 8u && ty::type_is_nil(subst) { mono_repr(0u, 0u, data_class, mode) } else { mono_repr(size, align, data_class, mode) } } else { mono_precise(subst, None) } } } } }).collect() } None => { precise_param_ids.iter().transform(|x| { let (a, b) = *x; mono_precise(a, b) }).collect() } }; @mono_id_ {def: item, params: param_ids} }