// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Operations and constants for `uint` use iter; use sys; pub use self::generated::*; uint_module!(uint, int, ::int::bits) /// /// Divide two numbers, return the result, rounded up. /// /// # Arguments /// /// * x - an integer /// * y - an integer distinct from 0u /// /// # Return value /// /// The smallest integer `q` such that `x/y <= q`. /// pub fn div_ceil(x: uint, y: uint) -> uint { let div = x / y; if x % y == 0u { div } else { div + 1u } } /// /// Divide two numbers, return the result, rounded to the closest integer. /// /// # Arguments /// /// * x - an integer /// * y - an integer distinct from 0u /// /// # Return value /// /// The integer `q` closest to `x/y`. /// pub fn div_round(x: uint, y: uint) -> uint { let div = x / y; if x % y * 2u < y { div } else { div + 1u } } /// /// Divide two numbers, return the result, rounded down. /// /// Note: This is the same function as `div`. /// /// # Arguments /// /// * x - an integer /// * y - an integer distinct from 0u /// /// # Return value /// /// The smallest integer `q` such that `x/y <= q`. This /// is either `x/y` or `x/y + 1`. /// pub fn div_floor(x: uint, y: uint) -> uint { return x / y; } /// /// Iterate over the range [`lo`..`hi`), or stop when requested /// /// # Arguments /// /// * lo - The integer at which to start the loop (included) /// * hi - The integer at which to stop the loop (excluded) /// * it - A block to execute with each consecutive integer of the range. /// Return `true` to continue, `false` to stop. /// /// # Return value /// /// `true` If execution proceeded correctly, `false` if it was interrupted, /// that is if `it` returned `false` at any point. /// pub fn iterate(lo: uint, hi: uint, it: &fn(uint) -> bool) -> bool { let mut i = lo; while i < hi { if (!it(i)) { return false; } i += 1u; } return true; } impl iter::Times for uint { #[inline(always)] /// /// A convenience form for basic iteration. Given a uint `x`, /// `for x.times { ... }` executes the given block x times. /// /// Equivalent to `for uint::range(0, x) |_| { ... }`. /// /// Not defined on all integer types to permit unambiguous /// use with integer literals of inferred integer-type as /// the self-value (eg. `for 100.times { ... }`). /// fn times(&self, it: &fn() -> bool) -> bool { let mut i = *self; while i > 0 { if !it() { return false; } i -= 1; } return true; } } /// Returns the smallest power of 2 greater than or equal to `n` #[inline(always)] pub fn next_power_of_two(n: uint) -> uint { let halfbits: uint = sys::size_of::() * 4u; let mut tmp: uint = n - 1u; let mut shift: uint = 1u; while shift <= halfbits { tmp |= tmp >> shift; shift <<= 1u; } return tmp + 1u; } #[test] fn test_next_power_of_two() { assert!((next_power_of_two(0u) == 0u)); assert!((next_power_of_two(1u) == 1u)); assert!((next_power_of_two(2u) == 2u)); assert!((next_power_of_two(3u) == 4u)); assert!((next_power_of_two(4u) == 4u)); assert!((next_power_of_two(5u) == 8u)); assert!((next_power_of_two(6u) == 8u)); assert!((next_power_of_two(7u) == 8u)); assert!((next_power_of_two(8u) == 8u)); assert!((next_power_of_two(9u) == 16u)); assert!((next_power_of_two(10u) == 16u)); assert!((next_power_of_two(11u) == 16u)); assert!((next_power_of_two(12u) == 16u)); assert!((next_power_of_two(13u) == 16u)); assert!((next_power_of_two(14u) == 16u)); assert!((next_power_of_two(15u) == 16u)); assert!((next_power_of_two(16u) == 16u)); assert!((next_power_of_two(17u) == 32u)); assert!((next_power_of_two(18u) == 32u)); assert!((next_power_of_two(19u) == 32u)); assert!((next_power_of_two(20u) == 32u)); assert!((next_power_of_two(21u) == 32u)); assert!((next_power_of_two(22u) == 32u)); assert!((next_power_of_two(23u) == 32u)); assert!((next_power_of_two(24u) == 32u)); assert!((next_power_of_two(25u) == 32u)); assert!((next_power_of_two(26u) == 32u)); assert!((next_power_of_two(27u) == 32u)); assert!((next_power_of_two(28u) == 32u)); assert!((next_power_of_two(29u) == 32u)); assert!((next_power_of_two(30u) == 32u)); assert!((next_power_of_two(31u) == 32u)); assert!((next_power_of_two(32u) == 32u)); assert!((next_power_of_two(33u) == 64u)); assert!((next_power_of_two(34u) == 64u)); assert!((next_power_of_two(35u) == 64u)); assert!((next_power_of_two(36u) == 64u)); assert!((next_power_of_two(37u) == 64u)); assert!((next_power_of_two(38u) == 64u)); assert!((next_power_of_two(39u) == 64u)); } #[test] fn test_overflows() { use uint; assert!((uint::max_value > 0u)); assert!((uint::min_value <= 0u)); assert!((uint::min_value + uint::max_value + 1u == 0u)); } #[test] fn test_div() { assert!((div_floor(3u, 4u) == 0u)); assert!((div_ceil(3u, 4u) == 1u)); assert!((div_round(3u, 4u) == 1u)); } #[test] pub fn test_times() { use iter::Times; let ten = 10 as uint; let mut accum = 0; for ten.times { accum += 1; } assert!((accum == 10)); }