#![feature(plugin, step_by)] #![plugin(clippy)] use std::collections::*; struct Unrelated(Vec); impl Unrelated { fn next(&self) -> std::slice::Iter { self.0.iter() } fn iter(&self) -> std::slice::Iter { self.0.iter() } } #[deny(needless_range_loop, explicit_iter_loop, iter_next_loop, reverse_range_loop, explicit_counter_loop)] #[deny(unused_collect)] #[allow(linkedlist,shadow_unrelated,unnecessary_mut_passed)] fn main() { let mut vec = vec![1, 2, 3, 4]; let vec2 = vec![1, 2, 3, 4]; for i in 0..vec.len() { //~ERROR the loop variable `i` is only used to index `vec`. println!("{}", vec[i]); } for i in 0..vec.len() { //~ERROR the loop variable `i` is used to index `vec`. println!("{} {}", vec[i], i); } for i in 0..vec.len() { // not an error, indexing more than one variable println!("{} {}", vec[i], vec2[i]); } for i in 5..vec.len() { // not an error, not starting with 0 println!("{}", vec[i]); } for i in 10..0 { //~ERROR this range is empty so this for loop will never run println!("{}", i); } for i in 5..5 { //~ERROR this range is empty so this for loop will never run println!("{}", i); } for i in 0..10 { // not an error, the start index is less than the end index println!("{}", i); } for i in (10..0).rev() { // not an error, this is an established idiom for looping backwards on a range println!("{}", i); } for i in (10..0).map(|x| x * 2) { // not an error, it can't be known what arbitrary methods do to a range println!("{}", i); } // testing that the empty range lint folds constants for i in 10..5+4 { //~ERROR this range is empty so this for loop will never run println!("{}", i); } for i in (5+2)..(3-1) { //~ERROR this range is empty so this for loop will never run println!("{}", i); } for i in (5+2)..(8-1) { //~ERROR this range is empty so this for loop will never run println!("{}", i); } for i in (2*2)..(2*3) { // no error, 4..6 is fine println!("{}", i); } for i in (10..8).step_by(-1) { println!("{}", i); } let x = 42; for i in x..10 { // no error, not constant-foldable println!("{}", i); } /* for i in (10..0).map(|x| x * 2) { println!("{}", i); }*/ for _v in vec.iter() { } //~ERROR it is more idiomatic to loop over `&vec` for _v in vec.iter_mut() { } //~ERROR it is more idiomatic to loop over `&mut vec` for _v in &vec { } // these are fine for _v in &mut vec { } // these are fine for _v in [1, 2, 3].iter() { } //~ERROR it is more idiomatic to loop over `&[ for _v in (&mut [1, 2, 3]).iter() { } // no error for _v in [0; 32].iter() {} //~ERROR it is more idiomatic to loop over `&[ for _v in [0; 33].iter() {} // no error let ll: LinkedList<()> = LinkedList::new(); for _v in ll.iter() { } //~ERROR it is more idiomatic to loop over `&ll` let vd: VecDeque<()> = VecDeque::new(); for _v in vd.iter() { } //~ERROR it is more idiomatic to loop over `&vd` let bh: BinaryHeap<()> = BinaryHeap::new(); for _v in bh.iter() { } //~ERROR it is more idiomatic to loop over `&bh` let hm: HashMap<(), ()> = HashMap::new(); for _v in hm.iter() { } //~ERROR it is more idiomatic to loop over `&hm` let bt: BTreeMap<(), ()> = BTreeMap::new(); for _v in bt.iter() { } //~ERROR it is more idiomatic to loop over `&bt` let hs: HashSet<()> = HashSet::new(); for _v in hs.iter() { } //~ERROR it is more idiomatic to loop over `&hs` let bs: BTreeSet<()> = BTreeSet::new(); for _v in bs.iter() { } //~ERROR it is more idiomatic to loop over `&bs` for _v in vec.iter().next() { } //~ERROR you are iterating over `Iterator::next()` let u = Unrelated(vec![]); for _v in u.next() { } // no error for _v in u.iter() { } // no error let mut out = vec![]; vec.iter().map(|x| out.push(x)).collect::>(); //~ERROR you are collect()ing an iterator let _y = vec.iter().map(|x| out.push(x)).collect::>(); // this is fine // Loop with explicit counter variable let mut _index = 0; for _v in &vec { _index += 1 } //~ERROR the variable `_index` is used as a loop counter let mut _index = 1; _index = 0; for _v in &vec { _index += 1 } //~ERROR the variable `_index` is used as a loop counter let mut _index; _index = 0; for _v in &vec { _index += 1 } //~ERROR the variable `_index` is used as a loop counter for _v in &vec { _index += 1 } // But this does not warn // Potential false positives let mut _index = 0; _index = 1; for _v in &vec { _index += 1 } let mut _index = 0; _index += 1; for _v in &vec { _index += 1 } let mut _index = 0; if true { _index = 1 } for _v in &vec { _index += 1 } let mut _index = 0; let mut _index = 1; for _v in &vec { _index += 1 } let mut _index = 0; for _v in &vec { _index += 1; _index += 1 } let mut _index = 0; for _v in &vec { _index *= 2; _index += 1 } let mut _index = 0; for _v in &vec { _index = 1; _index += 1 } let mut _index = 0; for _v in &vec { let mut _index = 0; _index += 1 } let mut _index = 0; for _v in &vec { _index += 1; _index = 0; } let mut _index = 0; for _v in &vec { for _x in 0..1 { _index += 1; }; _index += 1 } let mut _index = 0; for x in &vec { if *x == 1 { _index += 1 } } let mut _index = 0; if true { _index = 1 }; for _v in &vec { _index += 1 } let mut _index = 1; if false { _index = 0 }; for _v in &vec { _index += 1 } let mut _index = 0; { let mut _x = &mut _index; } for _v in &vec { _index += 1 } }