use rustc::lint::*; use rustc_front::hir::*; use reexport::*; use rustc_front::intravisit::{Visitor, walk_expr, walk_block, walk_decl}; use rustc::middle::ty; use rustc::middle::def::Def; use consts::{constant_simple, Constant}; use rustc::front::map::Node::NodeBlock; use std::borrow::Cow; use std::collections::{HashSet, HashMap}; use utils::{snippet, span_lint, get_parent_expr, match_trait_method, match_type, in_external_macro, expr_block, span_help_and_lint, is_integer_literal, get_enclosing_block}; use utils::{HASHMAP_PATH, VEC_PATH, LL_PATH, OPTION_PATH, RESULT_PATH}; /// **What it does:** This lint checks for looping over the range of `0..len` of some collection just to get the values by index. It is `Warn` by default. /// /// **Why is this bad?** Just iterating the collection itself makes the intent more clear and is probably faster. /// /// **Known problems:** None /// /// **Example:** /// ``` /// for i in 0..vec.len() { /// println!("{}", vec[i]); /// } /// ``` declare_lint!{ pub NEEDLESS_RANGE_LOOP, Warn, "for-looping over a range of indices where an iterator over items would do" } /// **What it does:** This lint checks for loops on `x.iter()` where `&x` will do, and suggest the latter. It is `Warn` by default. /// /// **Why is this bad?** Readability. /// /// **Known problems:** False negatives. We currently only warn on some known types. /// /// **Example:** `for x in y.iter() { .. }` (where y is a `Vec` or slice) declare_lint!{ pub EXPLICIT_ITER_LOOP, Warn, "for-looping over `_.iter()` or `_.iter_mut()` when `&_` or `&mut _` would do" } /// **What it does:** This lint checks for loops on `x.next()`. It is `Warn` by default. /// /// **Why is this bad?** `next()` returns either `Some(value)` if there was a value, or `None` otherwise. The insidious thing is that `Option<_>` implements `IntoIterator`, so that possibly one value will be iterated, leading to some hard to find bugs. No one will want to write such code [except to win an Underhanded Rust Contest](https://www.reddit.com/r/rust/comments/3hb0wm/underhanded_rust_contest/cu5yuhr). /// /// **Known problems:** None /// /// **Example:** `for x in y.next() { .. }` declare_lint!{ pub ITER_NEXT_LOOP, Warn, "for-looping over `_.next()` which is probably not intended" } /// **What it does:** This lint checks for `for` loops over `Option` values. It is `Warn` by default. /// /// **Why is this bad?** Readability. This is more clearly expressed as an `if let`. /// /// **Known problems:** None /// /// **Example:** `for x in option { .. }`. This should be `if let Some(x) = option { .. }`. declare_lint!{ pub FOR_LOOP_OVER_OPTION, Warn, "for-looping over an `Option`, which is more clearly expressed as an `if let`" } /// **What it does:** This lint checks for `for` loops over `Result` values. It is `Warn` by default. /// /// **Why is this bad?** Readability. This is more clearly expressed as an `if let`. /// /// **Known problems:** None /// /// **Example:** `for x in result { .. }`. This should be `if let Ok(x) = result { .. }`. declare_lint!{ pub FOR_LOOP_OVER_RESULT, Warn, "for-looping over a `Result`, which is more clearly expressed as an `if let`" } /// **What it does:** This lint detects `loop + match` combinations that are easier written as a `while let` loop. It is `Warn` by default. /// /// **Why is this bad?** The `while let` loop is usually shorter and more readable /// /// **Known problems:** Sometimes the wrong binding is displayed (#383) /// /// **Example:** /// /// ``` /// loop { /// let x = match y { /// Some(x) => x, /// None => break, /// } /// // .. do something with x /// } /// // is easier written as /// while let Some(x) = y { /// // .. do something with x /// } /// ``` declare_lint!{ pub WHILE_LET_LOOP, Warn, "`loop { if let { ... } else break }` can be written as a `while let` loop" } /// **What it does:** This lint checks for using `collect()` on an iterator without using the result. It is `Warn` by default. /// /// **Why is this bad?** It is more idiomatic to use a `for` loop over the iterator instead. /// /// **Known problems:** None /// /// **Example:** `vec.iter().map(|x| /* some operation returning () */).collect::>();` declare_lint!{ pub UNUSED_COLLECT, Warn, "`collect()`ing an iterator without using the result; this is usually better \ written as a for loop" } /// **What it does:** This lint checks for loops over ranges `x..y` where both `x` and `y` are constant and `x` is greater or equal to `y`, unless the range is reversed or has a negative `.step_by(_)`. It is `Warn` by default. /// /// **Why is it bad?** Such loops will either be skipped or loop until wrap-around (in debug code, this may `panic!()`). Both options are probably not intended. /// /// **Known problems:** The lint cannot catch loops over dynamically defined ranges. Doing this would require simulating all possible inputs and code paths through the program, which would be complex and error-prone. /// /// **Examples**: `for x in 5..10-5 { .. }` (oops, stray `-`) declare_lint!{ pub REVERSE_RANGE_LOOP, Warn, "Iterating over an empty range, such as `10..0` or `5..5`" } /// **What it does:** This lint checks `for` loops over slices with an explicit counter and suggests the use of `.enumerate()`. It is `Warn` by default. /// /// **Why is it bad?** Not only is the version using `.enumerate()` more readable, the compiler is able to remove bounds checks which can lead to faster code in some instances. /// /// **Known problems:** None. /// /// **Example:** `for i in 0..v.len() { foo(v[i]); }` or `for i in 0..v.len() { bar(i, v[i]); }` declare_lint!{ pub EXPLICIT_COUNTER_LOOP, Warn, "for-looping with an explicit counter when `_.enumerate()` would do" } /// **What it does:** This lint checks for empty `loop` expressions. It is `Warn` by default. /// /// **Why is this bad?** Those busy loops burn CPU cycles without doing anything. Think of the environment and either block on something or at least make the thread sleep for some microseconds. /// /// **Known problems:** None /// /// **Example:** `loop {}` declare_lint!{ pub EMPTY_LOOP, Warn, "empty `loop {}` detected" } /// **What it does:** This lint checks for `while let` expressions on iterators. It is `Warn` by default. /// /// **Why is this bad?** Readability. A simple `for` loop is shorter and conveys the intent better. /// /// **Known problems:** None /// /// **Example:** `while let Some(val) = iter() { .. }` declare_lint!{ pub WHILE_LET_ON_ITERATOR, Warn, "using a while-let loop instead of a for loop on an iterator" } #[derive(Copy, Clone)] pub struct LoopsPass; impl LintPass for LoopsPass { fn get_lints(&self) -> LintArray { lint_array!(NEEDLESS_RANGE_LOOP, EXPLICIT_ITER_LOOP, ITER_NEXT_LOOP, WHILE_LET_LOOP, UNUSED_COLLECT, REVERSE_RANGE_LOOP, EXPLICIT_COUNTER_LOOP, EMPTY_LOOP, WHILE_LET_ON_ITERATOR) } } impl LateLintPass for LoopsPass { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let Some((pat, arg, body)) = recover_for_loop(expr) { check_for_loop(cx, pat, arg, body, expr); } // check for `loop { if let {} else break }` that could be `while let` // (also matches an explicit "match" instead of "if let") // (even if the "match" or "if let" is used for declaration) if let ExprLoop(ref block, _) = expr.node { // also check for empty `loop {}` statements if block.stmts.is_empty() && block.expr.is_none() { span_lint(cx, EMPTY_LOOP, expr.span, "empty `loop {}` detected. You may want to either use `panic!()` or add \ `std::thread::sleep(..);` to the loop body."); } // extract the expression from the first statement (if any) in a block let inner_stmt_expr = extract_expr_from_first_stmt(block); // or extract the first expression (if any) from the block if let Some(inner) = inner_stmt_expr.or_else(|| extract_first_expr(block)) { if let ExprMatch(ref matchexpr, ref arms, ref source) = inner.node { // collect the remaining statements below the match let mut other_stuff = block.stmts .iter() .skip(1) .map(|stmt| format!("{}", snippet(cx, stmt.span, ".."))) .collect::>(); if inner_stmt_expr.is_some() { // if we have a statement which has a match, if let Some(ref expr) = block.expr { // then collect the expression (without semicolon) below it other_stuff.push(format!("{}", snippet(cx, expr.span, ".."))); } } // ensure "if let" compatible match structure match *source { MatchSource::Normal | MatchSource::IfLetDesugar{..} => { if arms.len() == 2 && arms[0].pats.len() == 1 && arms[0].guard.is_none() && arms[1].pats.len() == 1 && arms[1].guard.is_none() && is_break_expr(&arms[1].body) { if in_external_macro(cx, expr.span) { return; } let loop_body = if inner_stmt_expr.is_some() { // FIXME: should probably be an ellipsis // tabbing and newline is probably a bad idea, especially for large blocks Cow::Owned(format!("{{\n {}\n}}", other_stuff.join("\n "))) } else { expr_block(cx, &arms[0].body, Some(other_stuff.join("\n ")), "..") }; span_help_and_lint(cx, WHILE_LET_LOOP, expr.span, "this loop could be written as a `while let` loop", &format!("try\nwhile let {} = {} {}", snippet(cx, arms[0].pats[0].span, ".."), snippet(cx, matchexpr.span, ".."), loop_body)); } } _ => (), } } } } if let ExprMatch(ref match_expr, ref arms, MatchSource::WhileLetDesugar) = expr.node { let pat = &arms[0].pats[0].node; if let (&PatEnum(ref path, Some(ref pat_args)), &ExprMethodCall(method_name, _, ref method_args)) = (pat, &match_expr.node) { let iter_expr = &method_args[0]; if let Some(lhs_constructor) = path.segments.last() { if method_name.node.as_str() == "next" && match_trait_method(cx, match_expr, &["core", "iter", "Iterator"]) && lhs_constructor.identifier.name.as_str() == "Some" && !is_iterator_used_after_while_let(cx, iter_expr) { let iterator = snippet(cx, method_args[0].span, "_"); let loop_var = snippet(cx, pat_args[0].span, "_"); span_help_and_lint(cx, WHILE_LET_ON_ITERATOR, expr.span, "this loop could be written as a `for` loop", &format!("try\nfor {} in {} {{...}}", loop_var, iterator)); } } } } } fn check_stmt(&mut self, cx: &LateContext, stmt: &Stmt) { if let StmtSemi(ref expr, _) = stmt.node { if let ExprMethodCall(ref method, _, ref args) = expr.node { if args.len() == 1 && method.node.as_str() == "collect" && match_trait_method(cx, expr, &["core", "iter", "Iterator"]) { span_lint(cx, UNUSED_COLLECT, expr.span, &format!("you are collect()ing an iterator and throwing away the result. Consider \ using an explicit for loop to exhaust the iterator")); } } } } } fn check_for_loop(cx: &LateContext, pat: &Pat, arg: &Expr, body: &Expr, expr: &Expr) { check_for_loop_range(cx, pat, arg, body, expr); check_for_loop_reverse_range(cx, arg, expr); check_for_loop_arg(cx, pat, arg, expr); check_for_loop_explicit_counter(cx, arg, body, expr); } /// Check for looping over a range and then indexing a sequence with it. /// The iteratee must be a range literal. fn check_for_loop_range(cx: &LateContext, pat: &Pat, arg: &Expr, body: &Expr, expr: &Expr) { if let ExprRange(Some(ref l), ref r) = arg.node { // the var must be a single name if let PatIdent(_, ref ident, _) = pat.node { let mut visitor = VarVisitor { cx: cx, var: ident.node.name, indexed: HashSet::new(), nonindex: false, }; walk_expr(&mut visitor, body); // linting condition: we only indexed one variable if visitor.indexed.len() == 1 { let indexed = visitor.indexed .into_iter() .next() .expect("Len was nonzero, but no contents found"); let starts_at_zero = is_integer_literal(l, 0); let skip: Cow<_> = if starts_at_zero { "".into() } else { format!(".skip({})", snippet(cx, l.span, "..")).into() }; let take: Cow<_> = if let Some(ref r) = *r { if !is_len_call(&r, &indexed) { format!(".take({})", snippet(cx, r.span, "..")).into() } else { "".into() } } else { "".into() }; if visitor.nonindex { span_lint(cx, NEEDLESS_RANGE_LOOP, expr.span, &format!("the loop variable `{}` is used to index `{}`. \ Consider using `for ({}, item) in {}.iter().enumerate(){}{}` or similar iterators", ident.node.name, indexed, ident.node.name, indexed, take, skip)); } else { let repl = if starts_at_zero && take.is_empty() { format!("&{}", indexed) } else { format!("{}.iter(){}{}", indexed, take, skip) }; span_lint(cx, NEEDLESS_RANGE_LOOP, expr.span, &format!("the loop variable `{}` is only used to index `{}`. \ Consider using `for item in {}` or similar iterators", ident.node.name, indexed, repl)); } } } } } fn is_len_call(expr: &Expr, var: &Name) -> bool { if_let_chain! {[ let ExprMethodCall(method, _, ref len_args) = expr.node, len_args.len() == 1, method.node.as_str() == "len", let ExprPath(_, ref path) = len_args[0].node, path.segments.len() == 1, &path.segments[0].identifier.name == var ], { return true; }} false } fn check_for_loop_reverse_range(cx: &LateContext, arg: &Expr, expr: &Expr) { // if this for loop is iterating over a two-sided range... if let ExprRange(Some(ref start_expr), Some(ref stop_expr)) = arg.node { // ...and both sides are compile-time constant integers... if let Some(start_idx @ Constant::Int(..)) = constant_simple(start_expr) { if let Some(stop_idx @ Constant::Int(..)) = constant_simple(stop_expr) { // ...and the start index is greater than the stop index, // this loop will never run. This is often confusing for developers // who think that this will iterate from the larger value to the // smaller value. if start_idx > stop_idx { span_help_and_lint(cx, REVERSE_RANGE_LOOP, expr.span, "this range is empty so this for loop will never run", &format!("Consider using `({}..{}).rev()` if you are attempting to iterate \ over this range in reverse", stop_idx, start_idx)); } else if start_idx == stop_idx { // if they are equal, it's also problematic - this loop // will never run. span_lint(cx, REVERSE_RANGE_LOOP, expr.span, "this range is empty so this for loop will never run"); } } } } } fn check_for_loop_arg(cx: &LateContext, pat: &Pat, arg: &Expr, expr: &Expr) { let mut next_loop_linted = false; // whether or not ITER_NEXT_LOOP lint was used if let ExprMethodCall(ref method, _, ref args) = arg.node { // just the receiver, no arguments if args.len() == 1 { let method_name = method.node; // check for looping over x.iter() or x.iter_mut(), could use &x or &mut x if method_name.as_str() == "iter" || method_name.as_str() == "iter_mut" { if is_ref_iterable_type(cx, &args[0]) { let object = snippet(cx, args[0].span, "_"); span_lint(cx, EXPLICIT_ITER_LOOP, expr.span, &format!("it is more idiomatic to loop over `&{}{}` instead of `{}.{}()`", if method_name.as_str() == "iter_mut" { "mut " } else { "" }, object, object, method_name)); } } else if method_name.as_str() == "next" && match_trait_method(cx, arg, &["core", "iter", "Iterator"]) { span_lint(cx, ITER_NEXT_LOOP, expr.span, "you are iterating over `Iterator::next()` which is an Option; this will compile but is \ probably not what you want"); next_loop_linted = true; } } } if !next_loop_linted { check_arg_type(cx, pat, arg); } } /// Check for `for` loops over `Option`s and `Results` fn check_arg_type(cx: &LateContext, pat: &Pat, arg: &Expr) { let ty = cx.tcx.expr_ty(arg); if match_type(cx, ty, &OPTION_PATH) { span_help_and_lint( cx, FOR_LOOP_OVER_OPTION, arg.span, &format!("for loop over `{0}`, which is an `Option`. This is more readably written as \ an `if let` statement.", snippet(cx, arg.span, "_")), &format!("consider replacing `for {0} in {1}` with `if let Some({0}) = {1}`", snippet(cx, pat.span, "_"), snippet(cx, arg.span, "_")) ); } else if match_type(cx, ty, &RESULT_PATH) { span_help_and_lint( cx, FOR_LOOP_OVER_RESULT, arg.span, &format!("for loop over `{0}`, which is a `Result`. This is more readably written as \ an `if let` statement.", snippet(cx, arg.span, "_")), &format!("consider replacing `for {0} in {1}` with `if let Ok({0}) = {1}`", snippet(cx, pat.span, "_"), snippet(cx, arg.span, "_")) ); } } fn check_for_loop_explicit_counter(cx: &LateContext, arg: &Expr, body: &Expr, expr: &Expr) { // Look for variables that are incremented once per loop iteration. let mut visitor = IncrementVisitor { cx: cx, states: HashMap::new(), depth: 0, done: false, }; walk_expr(&mut visitor, body); // For each candidate, check the parent block to see if // it's initialized to zero at the start of the loop. let map = &cx.tcx.map; let parent_scope = map.get_enclosing_scope(expr.id).and_then(|id| map.get_enclosing_scope(id)); if let Some(parent_id) = parent_scope { if let NodeBlock(block) = map.get(parent_id) { for (id, _) in visitor.states.iter().filter(|&(_, v)| *v == VarState::IncrOnce) { let mut visitor2 = InitializeVisitor { cx: cx, end_expr: expr, var_id: *id, state: VarState::IncrOnce, name: None, depth: 0, past_loop: false, }; walk_block(&mut visitor2, block); if visitor2.state == VarState::Warn { if let Some(name) = visitor2.name { span_lint(cx, EXPLICIT_COUNTER_LOOP, expr.span, &format!("the variable `{0}` is used as a loop counter. Consider using `for ({0}, \ item) in {1}.enumerate()` or similar iterators", name, snippet(cx, arg.span, "_"))); } } } } } } /// Recover the essential nodes of a desugared for loop: /// `for pat in arg { body }` becomes `(pat, arg, body)`. fn recover_for_loop(expr: &Expr) -> Option<(&Pat, &Expr, &Expr)> { if_let_chain! { [ let ExprMatch(ref iterexpr, ref arms, _) = expr.node, let ExprCall(_, ref iterargs) = iterexpr.node, iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none(), let ExprLoop(ref block, _) = arms[0].body.node, block.stmts.is_empty(), let Some(ref loopexpr) = block.expr, let ExprMatch(_, ref innerarms, MatchSource::ForLoopDesugar) = loopexpr.node, innerarms.len() == 2 && innerarms[0].pats.len() == 1, let PatEnum(_, Some(ref somepats)) = innerarms[0].pats[0].node, somepats.len() == 1 ], { return Some((&somepats[0], &iterargs[0], &innerarms[0].body)); } } None } struct VarVisitor<'v, 't: 'v> { cx: &'v LateContext<'v, 't>, // context reference var: Name, // var name to look for as index indexed: HashSet, // indexed variables nonindex: bool, // has the var been used otherwise? } impl<'v, 't> Visitor<'v> for VarVisitor<'v, 't> { fn visit_expr(&mut self, expr: &'v Expr) { if let ExprPath(None, ref path) = expr.node { if path.segments.len() == 1 && path.segments[0].identifier.name == self.var { // we are referencing our variable! now check if it's as an index if_let_chain! { [ let Some(parexpr) = get_parent_expr(self.cx, expr), let ExprIndex(ref seqexpr, _) = parexpr.node, let ExprPath(None, ref seqvar) = seqexpr.node, seqvar.segments.len() == 1 ], { self.indexed.insert(seqvar.segments[0].identifier.name); return; // no need to walk further } } // we are not indexing anything, record that self.nonindex = true; return; } } walk_expr(self, expr); } } fn is_iterator_used_after_while_let(cx: &LateContext, iter_expr: &Expr) -> bool { let def_id = match var_def_id(cx, iter_expr) { Some(id) => id, None => return false, }; let mut visitor = VarUsedAfterLoopVisitor { cx: cx, def_id: def_id, iter_expr_id: iter_expr.id, past_while_let: false, var_used_after_while_let: false, }; if let Some(enclosing_block) = get_enclosing_block(cx, def_id) { walk_block(&mut visitor, enclosing_block); } visitor.var_used_after_while_let } struct VarUsedAfterLoopVisitor<'v, 't: 'v> { cx: &'v LateContext<'v, 't>, def_id: NodeId, iter_expr_id: NodeId, past_while_let: bool, var_used_after_while_let: bool, } impl<'v, 't> Visitor<'v> for VarUsedAfterLoopVisitor<'v, 't> { fn visit_expr(&mut self, expr: &'v Expr) { if self.past_while_let { if Some(self.def_id) == var_def_id(self.cx, expr) { self.var_used_after_while_let = true; } } else if self.iter_expr_id == expr.id { self.past_while_let = true; } walk_expr(self, expr); } } /// Return true if the type of expr is one that provides IntoIterator impls /// for &T and &mut T, such as Vec. fn is_ref_iterable_type(cx: &LateContext, e: &Expr) -> bool { // no walk_ptrs_ty: calling iter() on a reference can make sense because it // will allow further borrows afterwards let ty = cx.tcx.expr_ty(e); is_iterable_array(ty) || match_type(cx, ty, &VEC_PATH) || match_type(cx, ty, &LL_PATH) || match_type(cx, ty, &HASHMAP_PATH) || match_type(cx, ty, &["std", "collections", "hash", "set", "HashSet"]) || match_type(cx, ty, &["collections", "vec_deque", "VecDeque"]) || match_type(cx, ty, &["collections", "binary_heap", "BinaryHeap"]) || match_type(cx, ty, &["collections", "btree", "map", "BTreeMap"]) || match_type(cx, ty, &["collections", "btree", "set", "BTreeSet"]) } fn is_iterable_array(ty: ty::Ty) -> bool { // IntoIterator is currently only implemented for array sizes <= 32 in rustc match ty.sty { ty::TyArray(_, 0...32) => true, _ => false, } } /// If a block begins with a statement (possibly a `let` binding) and has an expression, return it. fn extract_expr_from_first_stmt(block: &Block) -> Option<&Expr> { if block.stmts.is_empty() { return None; } if let StmtDecl(ref decl, _) = block.stmts[0].node { if let DeclLocal(ref local) = decl.node { if let Some(ref expr) = local.init { Some(expr) } else { None } } else { None } } else { None } } /// If a block begins with an expression (with or without semicolon), return it. fn extract_first_expr(block: &Block) -> Option<&Expr> { match block.expr { Some(ref expr) => Some(expr), None if !block.stmts.is_empty() => { match block.stmts[0].node { StmtExpr(ref expr, _) | StmtSemi(ref expr, _) => Some(expr), _ => None, } } _ => None, } } /// Return true if expr contains a single break expr (maybe within a block). fn is_break_expr(expr: &Expr) -> bool { match expr.node { ExprBreak(None) => true, // there won't be a `let = break` and so we can safely ignore the StmtDecl case ExprBlock(ref b) => { match extract_first_expr(b) { Some(ref subexpr) => is_break_expr(subexpr), None => false, } } _ => false, } } // To trigger the EXPLICIT_COUNTER_LOOP lint, a variable must be // incremented exactly once in the loop body, and initialized to zero // at the start of the loop. #[derive(PartialEq)] enum VarState { Initial, // Not examined yet IncrOnce, // Incremented exactly once, may be a loop counter Declared, // Declared but not (yet) initialized to zero Warn, DontWarn, } // Scan a for loop for variables that are incremented exactly once. struct IncrementVisitor<'v, 't: 'v> { cx: &'v LateContext<'v, 't>, // context reference states: HashMap, // incremented variables depth: u32, // depth of conditional expressions done: bool, } impl<'v, 't> Visitor<'v> for IncrementVisitor<'v, 't> { fn visit_expr(&mut self, expr: &'v Expr) { if self.done { return; } // If node is a variable if let Some(def_id) = var_def_id(self.cx, expr) { if let Some(parent) = get_parent_expr(self.cx, expr) { let state = self.states.entry(def_id).or_insert(VarState::Initial); match parent.node { ExprAssignOp(op, ref lhs, ref rhs) => { if lhs.id == expr.id { if op.node == BiAdd && is_integer_literal(rhs, 1) { *state = match *state { VarState::Initial if self.depth == 0 => VarState::IncrOnce, _ => VarState::DontWarn, }; } else { // Assigned some other value *state = VarState::DontWarn; } } } ExprAssign(ref lhs, _) if lhs.id == expr.id => *state = VarState::DontWarn, ExprAddrOf(mutability, _) if mutability == MutMutable => *state = VarState::DontWarn, _ => (), } } } else if is_loop(expr) { self.states.clear(); self.done = true; return; } else if is_conditional(expr) { self.depth += 1; walk_expr(self, expr); self.depth -= 1; return; } walk_expr(self, expr); } } // Check whether a variable is initialized to zero at the start of a loop. struct InitializeVisitor<'v, 't: 'v> { cx: &'v LateContext<'v, 't>, // context reference end_expr: &'v Expr, // the for loop. Stop scanning here. var_id: NodeId, state: VarState, name: Option, depth: u32, // depth of conditional expressions past_loop: bool, } impl<'v, 't> Visitor<'v> for InitializeVisitor<'v, 't> { fn visit_decl(&mut self, decl: &'v Decl) { // Look for declarations of the variable if let DeclLocal(ref local) = decl.node { if local.pat.id == self.var_id { if let PatIdent(_, ref ident, _) = local.pat.node { self.name = Some(ident.node.name); self.state = if let Some(ref init) = local.init { if is_integer_literal(init, 0) { VarState::Warn } else { VarState::Declared } } else { VarState::Declared } } } } walk_decl(self, decl); } fn visit_expr(&mut self, expr: &'v Expr) { if self.state == VarState::DontWarn { return; } if expr == self.end_expr { self.past_loop = true; return; } // No need to visit expressions before the variable is // declared if self.state == VarState::IncrOnce { return; } // If node is the desired variable, see how it's used if var_def_id(self.cx, expr) == Some(self.var_id) { if let Some(parent) = get_parent_expr(self.cx, expr) { match parent.node { ExprAssignOp(_, ref lhs, _) if lhs.id == expr.id => { self.state = VarState::DontWarn; } ExprAssign(ref lhs, ref rhs) if lhs.id == expr.id => { self.state = if is_integer_literal(rhs, 0) && self.depth == 0 { VarState::Warn } else { VarState::DontWarn } } ExprAddrOf(mutability, _) if mutability == MutMutable => self.state = VarState::DontWarn, _ => (), } } if self.past_loop { self.state = VarState::DontWarn; return; } } else if !self.past_loop && is_loop(expr) { self.state = VarState::DontWarn; return; } else if is_conditional(expr) { self.depth += 1; walk_expr(self, expr); self.depth -= 1; return; } walk_expr(self, expr); } } fn var_def_id(cx: &LateContext, expr: &Expr) -> Option { if let Some(path_res) = cx.tcx.def_map.borrow().get(&expr.id) { if let Def::Local(_, node_id) = path_res.base_def { return Some(node_id); } } None } fn is_loop(expr: &Expr) -> bool { match expr.node { ExprLoop(..) | ExprWhile(..) => true, _ => false, } } fn is_conditional(expr: &Expr) -> bool { match expr.node { ExprIf(..) | ExprMatch(..) => true, _ => false, } }