//! A bunch of methods and structures more or less related to resolving imports. use crate::diagnostics::{import_candidates, DiagnosticMode, Suggestion}; use crate::Determinacy::{self, *}; use crate::Namespace::*; use crate::{module_to_string, names_to_string, ImportSuggestion}; use crate::{ AmbiguityError, AmbiguityErrorMisc, AmbiguityKind, BindingKey, ModuleKind, ResolutionError, Resolver, Segment, }; use crate::{Finalize, Module, ModuleOrUniformRoot, ParentScope, PerNS, ScopeSet}; use crate::{NameBinding, NameBindingKind, PathResult}; use rustc_ast::NodeId; use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::intern::Interned; use rustc_errors::{pluralize, struct_span_err, Applicability, MultiSpan}; use rustc_hir::def::{self, DefKind, PartialRes}; use rustc_middle::metadata::ModChild; use rustc_middle::metadata::Reexport; use rustc_middle::span_bug; use rustc_middle::ty; use rustc_session::lint::builtin::{ AMBIGUOUS_GLOB_REEXPORTS, PUB_USE_OF_PRIVATE_EXTERN_CRATE, UNUSED_IMPORTS, }; use rustc_session::lint::BuiltinLintDiagnostics; use rustc_span::edit_distance::find_best_match_for_name; use rustc_span::hygiene::LocalExpnId; use rustc_span::symbol::{kw, Ident, Symbol}; use rustc_span::Span; use smallvec::SmallVec; use std::cell::Cell; use std::{mem, ptr}; type Res = def::Res; /// Contains data for specific kinds of imports. #[derive(Clone)] pub(crate) enum ImportKind<'a> { Single { /// `source` in `use prefix::source as target`. source: Ident, /// `target` in `use prefix::source as target`. target: Ident, /// Bindings to which `source` refers to. source_bindings: PerNS, Determinacy>>>, /// Bindings introduced by `target`. target_bindings: PerNS>>>, /// `true` for `...::{self [as target]}` imports, `false` otherwise. type_ns_only: bool, /// Did this import result from a nested import? ie. `use foo::{bar, baz};` nested: bool, /// The ID of the `UseTree` that imported this `Import`. /// /// In the case where the `Import` was expanded from a "nested" use tree, /// this id is the ID of the leaf tree. For example: /// /// ```ignore (pacify the merciless tidy) /// use foo::bar::{a, b} /// ``` /// /// If this is the import for `foo::bar::a`, we would have the ID of the `UseTree` /// for `a` in this field. id: NodeId, }, Glob { is_prelude: bool, // The visibility of the greatest re-export. // n.b. `max_vis` is only used in `finalize_import` to check for re-export errors. max_vis: Cell>, id: NodeId, }, ExternCrate { source: Option, target: Ident, id: NodeId, }, MacroUse, MacroExport, } /// Manually implement `Debug` for `ImportKind` because the `source/target_bindings` /// contain `Cell`s which can introduce infinite loops while printing. impl<'a> std::fmt::Debug for ImportKind<'a> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { use ImportKind::*; match self { Single { ref source, ref target, ref source_bindings, ref target_bindings, ref type_ns_only, ref nested, ref id, } => f .debug_struct("Single") .field("source", source) .field("target", target) // Ignore the nested bindings to avoid an infinite loop while printing. .field( "source_bindings", &source_bindings.clone().map(|b| b.into_inner().map(|_| format_args!(".."))), ) .field( "target_bindings", &target_bindings.clone().map(|b| b.into_inner().map(|_| format_args!(".."))), ) .field("type_ns_only", type_ns_only) .field("nested", nested) .field("id", id) .finish(), Glob { ref is_prelude, ref max_vis, ref id } => f .debug_struct("Glob") .field("is_prelude", is_prelude) .field("max_vis", max_vis) .field("id", id) .finish(), ExternCrate { ref source, ref target, ref id } => f .debug_struct("ExternCrate") .field("source", source) .field("target", target) .field("id", id) .finish(), MacroUse => f.debug_struct("MacroUse").finish(), MacroExport => f.debug_struct("MacroExport").finish(), } } } /// One import. #[derive(Debug, Clone)] pub(crate) struct Import<'a> { pub kind: ImportKind<'a>, /// Node ID of the "root" use item -- this is always the same as `ImportKind`'s `id` /// (if it exists) except in the case of "nested" use trees, in which case /// it will be the ID of the root use tree. e.g., in the example /// ```ignore (incomplete code) /// use foo::bar::{a, b} /// ``` /// this would be the ID of the `use foo::bar` `UseTree` node. /// In case of imports without their own node ID it's the closest node that can be used, /// for example, for reporting lints. pub root_id: NodeId, /// Span of the entire use statement. pub use_span: Span, /// Span of the entire use statement with attributes. pub use_span_with_attributes: Span, /// Did the use statement have any attributes? pub has_attributes: bool, /// Span of this use tree. pub span: Span, /// Span of the *root* use tree (see `root_id`). pub root_span: Span, pub parent_scope: ParentScope<'a>, pub module_path: Vec, /// The resolution of `module_path`. pub imported_module: Cell>>, pub vis: Cell>, pub used: Cell, } impl<'a> Import<'a> { pub(crate) fn is_glob(&self) -> bool { matches!(self.kind, ImportKind::Glob { .. }) } pub(crate) fn is_nested(&self) -> bool { match self.kind { ImportKind::Single { nested, .. } => nested, _ => false, } } pub(crate) fn expect_vis(&self) -> ty::Visibility { self.vis.get().expect("encountered cleared import visibility") } pub(crate) fn id(&self) -> Option { match self.kind { ImportKind::Single { id, .. } | ImportKind::Glob { id, .. } | ImportKind::ExternCrate { id, .. } => Some(id), ImportKind::MacroUse | ImportKind::MacroExport => None, } } fn simplify(&self, r: &Resolver<'_, '_>) -> Reexport { let to_def_id = |id| r.local_def_id(id).to_def_id(); match self.kind { ImportKind::Single { id, .. } => Reexport::Single(to_def_id(id)), ImportKind::Glob { id, .. } => Reexport::Glob(to_def_id(id)), ImportKind::ExternCrate { id, .. } => Reexport::ExternCrate(to_def_id(id)), ImportKind::MacroUse => Reexport::MacroUse, ImportKind::MacroExport => Reexport::MacroExport, } } } /// Records information about the resolution of a name in a namespace of a module. #[derive(Clone, Default, Debug)] pub(crate) struct NameResolution<'a> { /// Single imports that may define the name in the namespace. /// Imports are arena-allocated, so it's ok to use pointers as keys. pub single_imports: FxHashSet>>, /// The least shadowable known binding for this name, or None if there are no known bindings. pub binding: Option<&'a NameBinding<'a>>, pub shadowed_glob: Option<&'a NameBinding<'a>>, } impl<'a> NameResolution<'a> { /// Returns the binding for the name if it is known or None if it not known. pub(crate) fn binding(&self) -> Option<&'a NameBinding<'a>> { self.binding.and_then(|binding| { if !binding.is_glob_import() || self.single_imports.is_empty() { Some(binding) } else { None } }) } pub(crate) fn add_single_import(&mut self, import: &'a Import<'a>) { self.single_imports.insert(Interned::new_unchecked(import)); } } /// An error that may be transformed into a diagnostic later. Used to combine multiple unresolved /// import errors within the same use tree into a single diagnostic. #[derive(Debug, Clone)] struct UnresolvedImportError { span: Span, label: Option, note: Option, suggestion: Option, candidates: Option>, } // Reexports of the form `pub use foo as bar;` where `foo` is `extern crate foo;` // are permitted for backward-compatibility under a deprecation lint. fn pub_use_of_private_extern_crate_hack(import: &Import<'_>, binding: &NameBinding<'_>) -> bool { match (&import.kind, &binding.kind) { ( ImportKind::Single { .. }, NameBindingKind::Import { import: Import { kind: ImportKind::ExternCrate { .. }, .. }, .. }, ) => import.expect_vis().is_public(), _ => false, } } impl<'a, 'tcx> Resolver<'a, 'tcx> { /// Given a binding and an import that resolves to it, /// return the corresponding binding defined by the import. pub(crate) fn import( &self, binding: &'a NameBinding<'a>, import: &'a Import<'a>, ) -> &'a NameBinding<'a> { let import_vis = import.expect_vis().to_def_id(); let vis = if binding.vis.is_at_least(import_vis, self.tcx) || pub_use_of_private_extern_crate_hack(import, binding) { import_vis } else { binding.vis }; if let ImportKind::Glob { ref max_vis, .. } = import.kind { if vis == import_vis || max_vis.get().map_or(true, |max_vis| vis.is_at_least(max_vis, self.tcx)) { max_vis.set(Some(vis.expect_local())) } } self.arenas.alloc_name_binding(NameBinding { kind: NameBindingKind::Import { binding, import, used: Cell::new(false) }, ambiguity: None, span: import.span, vis, expansion: import.parent_scope.expansion, }) } /// Define the name or return the existing binding if there is a collision. pub(crate) fn try_define( &mut self, module: Module<'a>, key: BindingKey, binding: &'a NameBinding<'a>, ) -> Result<(), &'a NameBinding<'a>> { let res = binding.res(); self.check_reserved_macro_name(key.ident, res); self.set_binding_parent_module(binding, module); self.update_resolution(module, key, |this, resolution| { if let Some(old_binding) = resolution.binding { if res == Res::Err && old_binding.res() != Res::Err { // Do not override real bindings with `Res::Err`s from error recovery. return Ok(()); } match (old_binding.is_glob_import(), binding.is_glob_import()) { (true, true) => { if res != old_binding.res() { resolution.binding = Some(this.ambiguity( AmbiguityKind::GlobVsGlob, old_binding, binding, )); } else if !old_binding.vis.is_at_least(binding.vis, this.tcx) { // We are glob-importing the same item but with greater visibility. resolution.binding = Some(binding); } } (old_glob @ true, false) | (old_glob @ false, true) => { let (glob_binding, nonglob_binding) = if old_glob { (old_binding, binding) } else { (binding, old_binding) }; if glob_binding.res() != nonglob_binding.res() && key.ns == MacroNS && nonglob_binding.expansion != LocalExpnId::ROOT { resolution.binding = Some(this.ambiguity( AmbiguityKind::GlobVsExpanded, nonglob_binding, glob_binding, )); } else { resolution.binding = Some(nonglob_binding); } resolution.shadowed_glob = Some(glob_binding); } (false, false) => { return Err(old_binding); } } } else { resolution.binding = Some(binding); } Ok(()) }) } fn ambiguity( &self, kind: AmbiguityKind, primary_binding: &'a NameBinding<'a>, secondary_binding: &'a NameBinding<'a>, ) -> &'a NameBinding<'a> { self.arenas.alloc_name_binding(NameBinding { ambiguity: Some((secondary_binding, kind)), ..primary_binding.clone() }) } // Use `f` to mutate the resolution of the name in the module. // If the resolution becomes a success, define it in the module's glob importers. fn update_resolution(&mut self, module: Module<'a>, key: BindingKey, f: F) -> T where F: FnOnce(&mut Resolver<'a, 'tcx>, &mut NameResolution<'a>) -> T, { // Ensure that `resolution` isn't borrowed when defining in the module's glob importers, // during which the resolution might end up getting re-defined via a glob cycle. let (binding, t) = { let resolution = &mut *self.resolution(module, key).borrow_mut(); let old_binding = resolution.binding(); let t = f(self, resolution); match resolution.binding() { _ if old_binding.is_some() => return t, None => return t, Some(binding) => match old_binding { Some(old_binding) if ptr::eq(old_binding, binding) => return t, _ => (binding, t), }, } }; // Define `binding` in `module`s glob importers. for import in module.glob_importers.borrow_mut().iter() { let mut ident = key.ident; let scope = match ident.span.reverse_glob_adjust(module.expansion, import.span) { Some(Some(def)) => self.expn_def_scope(def), Some(None) => import.parent_scope.module, None => continue, }; if self.is_accessible_from(binding.vis, scope) { let imported_binding = self.import(binding, import); let key = BindingKey { ident, ..key }; let _ = self.try_define(import.parent_scope.module, key, imported_binding); } } t } // Define a dummy resolution containing a `Res::Err` as a placeholder for a failed resolution, // also mark such failed imports as used to avoid duplicate diagnostics. fn import_dummy_binding(&mut self, import: &'a Import<'a>) { if let ImportKind::Single { target, ref target_bindings, .. } = import.kind { if target_bindings.iter().any(|binding| binding.get().is_some()) { return; // Has resolution, do not create the dummy binding } let dummy_binding = self.dummy_binding; let dummy_binding = self.import(dummy_binding, import); self.per_ns(|this, ns| { let key = this.new_key(target, ns); let _ = this.try_define(import.parent_scope.module, key, dummy_binding); }); self.record_use(target, dummy_binding, false); } else if import.imported_module.get().is_none() { import.used.set(true); if let Some(id) = import.id() { self.used_imports.insert(id); } } } // Import resolution // // This is a fixed-point algorithm. We resolve imports until our efforts // are stymied by an unresolved import; then we bail out of the current // module and continue. We terminate successfully once no more imports // remain or unsuccessfully when no forward progress in resolving imports // is made. /// Resolves all imports for the crate. This method performs the fixed- /// point iteration. pub(crate) fn resolve_imports(&mut self) { let mut prev_indeterminate_count = usize::MAX; let mut indeterminate_count = self.indeterminate_imports.len() * 3; while indeterminate_count < prev_indeterminate_count { prev_indeterminate_count = indeterminate_count; indeterminate_count = 0; for import in mem::take(&mut self.indeterminate_imports) { let import_indeterminate_count = self.resolve_import(&import); indeterminate_count += import_indeterminate_count; match import_indeterminate_count { 0 => self.determined_imports.push(import), _ => self.indeterminate_imports.push(import), } } } } pub(crate) fn finalize_imports(&mut self) { for module in self.arenas.local_modules().iter() { self.finalize_resolutions_in(module); } let mut seen_spans = FxHashSet::default(); let mut errors = vec![]; let mut prev_root_id: NodeId = NodeId::from_u32(0); let determined_imports = mem::take(&mut self.determined_imports); let indeterminate_imports = mem::take(&mut self.indeterminate_imports); for (is_indeterminate, import) in determined_imports .into_iter() .map(|i| (false, i)) .chain(indeterminate_imports.into_iter().map(|i| (true, i))) { let unresolved_import_error = self.finalize_import(import); // If this import is unresolved then create a dummy import // resolution for it so that later resolve stages won't complain. self.import_dummy_binding(import); if let Some(err) = unresolved_import_error { if let ImportKind::Single { source, ref source_bindings, .. } = import.kind { if source.name == kw::SelfLower { // Silence `unresolved import` error if E0429 is already emitted if let Err(Determined) = source_bindings.value_ns.get() { continue; } } } if prev_root_id.as_u32() != 0 && prev_root_id.as_u32() != import.root_id.as_u32() && !errors.is_empty() { // In the case of a new import line, throw a diagnostic message // for the previous line. self.throw_unresolved_import_error(errors); errors = vec![]; } if seen_spans.insert(err.span) { errors.push((import, err)); prev_root_id = import.root_id; } } else if is_indeterminate { let path = import_path_to_string( &import.module_path.iter().map(|seg| seg.ident).collect::>(), &import.kind, import.span, ); let err = UnresolvedImportError { span: import.span, label: None, note: None, suggestion: None, candidates: None, }; // FIXME: there should be a better way of doing this than // formatting this as a string then checking for `::` if path.contains("::") { errors.push((import, err)) } } } if !errors.is_empty() { self.throw_unresolved_import_error(errors); } } pub(crate) fn check_reexport_ambiguities( &mut self, exported_ambiguities: FxHashSet>>, ) { for module in self.arenas.local_modules().iter() { module.for_each_child(self, |this, ident, ns, binding| { if let NameBindingKind::Import { import, .. } = binding.kind && let Some((amb_binding, _)) = binding.ambiguity && binding.res() != Res::Err && exported_ambiguities.contains(&Interned::new_unchecked(binding)) { this.lint_buffer.buffer_lint_with_diagnostic( AMBIGUOUS_GLOB_REEXPORTS, import.root_id, import.root_span, "ambiguous glob re-exports", BuiltinLintDiagnostics::AmbiguousGlobReexports { name: ident.to_string(), namespace: ns.descr().to_string(), first_reexport_span: import.root_span, duplicate_reexport_span: amb_binding.span, }, ); } }); } } fn throw_unresolved_import_error(&self, errors: Vec<(&Import<'_>, UnresolvedImportError)>) { if errors.is_empty() { return; } /// Upper limit on the number of `span_label` messages. const MAX_LABEL_COUNT: usize = 10; let span = MultiSpan::from_spans(errors.iter().map(|(_, err)| err.span).collect()); let paths = errors .iter() .map(|(import, err)| { let path = import_path_to_string( &import.module_path.iter().map(|seg| seg.ident).collect::>(), &import.kind, err.span, ); format!("`{path}`") }) .collect::>(); let msg = format!("unresolved import{} {}", pluralize!(paths.len()), paths.join(", "),); let mut diag = struct_span_err!(self.tcx.sess, span, E0432, "{}", &msg); if let Some((_, UnresolvedImportError { note: Some(note), .. })) = errors.iter().last() { diag.note(note); } for (import, err) in errors.into_iter().take(MAX_LABEL_COUNT) { if let Some(label) = err.label { diag.span_label(err.span, label); } if let Some((suggestions, msg, applicability)) = err.suggestion { if suggestions.is_empty() { diag.help(&msg); continue; } diag.multipart_suggestion(&msg, suggestions, applicability); } if let Some(candidates) = &err.candidates { match &import.kind { ImportKind::Single { nested: false, source, target, .. } => import_candidates( self.tcx, &mut diag, Some(err.span), &candidates, DiagnosticMode::Import, (source != target) .then(|| format!(" as {target}")) .as_deref() .unwrap_or(""), ), ImportKind::Single { nested: true, source, target, .. } => { import_candidates( self.tcx, &mut diag, None, &candidates, DiagnosticMode::Normal, (source != target) .then(|| format!(" as {target}")) .as_deref() .unwrap_or(""), ); } _ => {} } } } diag.emit(); } /// Attempts to resolve the given import, returning: /// - `0` means its resolution is determined. /// - Other values mean that indeterminate exists under certain namespaces. /// /// Meanwhile, if resolve successful, the resolved bindings are written /// into the module. fn resolve_import(&mut self, import: &'a Import<'a>) -> usize { debug!( "(resolving import for module) resolving import `{}::...` in `{}`", Segment::names_to_string(&import.module_path), module_to_string(import.parent_scope.module).unwrap_or_else(|| "???".to_string()), ); let module = if let Some(module) = import.imported_module.get() { module } else { // For better failure detection, pretend that the import will // not define any names while resolving its module path. let orig_vis = import.vis.take(); let path_res = self.maybe_resolve_path(&import.module_path, None, &import.parent_scope); import.vis.set(orig_vis); match path_res { PathResult::Module(module) => module, PathResult::Indeterminate => return 3, PathResult::NonModule(..) | PathResult::Failed { .. } => return 0, } }; import.imported_module.set(Some(module)); let (source, target, source_bindings, target_bindings, type_ns_only) = match import.kind { ImportKind::Single { source, target, ref source_bindings, ref target_bindings, type_ns_only, .. } => (source, target, source_bindings, target_bindings, type_ns_only), ImportKind::Glob { .. } => { self.resolve_glob_import(import); return 0; } _ => unreachable!(), }; let mut indeterminate_count = 0; self.per_ns(|this, ns| { if !type_ns_only || ns == TypeNS { if let Err(Undetermined) = source_bindings[ns].get() { // For better failure detection, pretend that the import will // not define any names while resolving its module path. let orig_vis = import.vis.take(); let binding = this.resolve_ident_in_module( module, source, ns, &import.parent_scope, None, None, ); import.vis.set(orig_vis); source_bindings[ns].set(binding); } else { return; }; let parent = import.parent_scope.module; match source_bindings[ns].get() { Err(Undetermined) => indeterminate_count += 1, // Don't update the resolution, because it was never added. Err(Determined) if target.name == kw::Underscore => {} Ok(binding) if binding.is_importable() => { let imported_binding = this.import(binding, import); target_bindings[ns].set(Some(imported_binding)); this.define(parent, target, ns, imported_binding); } source_binding @ (Ok(..) | Err(Determined)) => { if source_binding.is_ok() { let msg = format!("`{}` is not directly importable", target); struct_span_err!(this.tcx.sess, import.span, E0253, "{}", &msg) .span_label(import.span, "cannot be imported directly") .emit(); } let key = this.new_key(target, ns); this.update_resolution(parent, key, |_, resolution| { resolution.single_imports.remove(&Interned::new_unchecked(import)); }); } } } }); indeterminate_count } /// Performs final import resolution, consistency checks and error reporting. /// /// Optionally returns an unresolved import error. This error is buffered and used to /// consolidate multiple unresolved import errors into a single diagnostic. fn finalize_import(&mut self, import: &'a Import<'a>) -> Option { let orig_vis = import.vis.take(); let ignore_binding = match &import.kind { ImportKind::Single { target_bindings, .. } => target_bindings[TypeNS].get(), _ => None, }; let prev_ambiguity_errors_len = self.ambiguity_errors.len(); let finalize = Finalize::with_root_span(import.root_id, import.span, import.root_span); let path_res = self.resolve_path( &import.module_path, None, &import.parent_scope, Some(finalize), ignore_binding, ); let no_ambiguity = self.ambiguity_errors.len() == prev_ambiguity_errors_len; import.vis.set(orig_vis); let module = match path_res { PathResult::Module(module) => { // Consistency checks, analogous to `finalize_macro_resolutions`. if let Some(initial_module) = import.imported_module.get() { if !ModuleOrUniformRoot::same_def(module, initial_module) && no_ambiguity { span_bug!(import.span, "inconsistent resolution for an import"); } } else if self.privacy_errors.is_empty() { let msg = "cannot determine resolution for the import"; let msg_note = "import resolution is stuck, try simplifying other imports"; self.tcx.sess.struct_span_err(import.span, msg).note(msg_note).emit(); } module } PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => { if no_ambiguity { assert!(import.imported_module.get().is_none()); self.report_error(span, ResolutionError::FailedToResolve { label, suggestion }); } return None; } PathResult::Failed { is_error_from_last_segment: true, span, label, suggestion } => { if no_ambiguity { assert!(import.imported_module.get().is_none()); let err = match self.make_path_suggestion( span, import.module_path.clone(), &import.parent_scope, ) { Some((suggestion, note)) => UnresolvedImportError { span, label: None, note, suggestion: Some(( vec![(span, Segment::names_to_string(&suggestion))], String::from("a similar path exists"), Applicability::MaybeIncorrect, )), candidates: None, }, None => UnresolvedImportError { span, label: Some(label), note: None, suggestion, candidates: None, }, }; return Some(err); } return None; } PathResult::NonModule(_) => { if no_ambiguity { assert!(import.imported_module.get().is_none()); } // The error was already reported earlier. return None; } PathResult::Indeterminate => unreachable!(), }; let (ident, target, source_bindings, target_bindings, type_ns_only, import_id) = match import.kind { ImportKind::Single { source, target, ref source_bindings, ref target_bindings, type_ns_only, id, .. } => (source, target, source_bindings, target_bindings, type_ns_only, id), ImportKind::Glob { is_prelude, ref max_vis, id } => { if import.module_path.len() <= 1 { // HACK(eddyb) `lint_if_path_starts_with_module` needs at least // 2 segments, so the `resolve_path` above won't trigger it. let mut full_path = import.module_path.clone(); full_path.push(Segment::from_ident(Ident::empty())); self.lint_if_path_starts_with_module(Some(finalize), &full_path, None); } if let ModuleOrUniformRoot::Module(module) = module { if ptr::eq(module, import.parent_scope.module) { // Importing a module into itself is not allowed. return Some(UnresolvedImportError { span: import.span, label: Some(String::from( "cannot glob-import a module into itself", )), note: None, suggestion: None, candidates: None, }); } } if !is_prelude && let Some(max_vis) = max_vis.get() && !max_vis.is_at_least(import.expect_vis(), self.tcx) { let msg = "glob import doesn't reexport anything because no candidate is public enough"; self.lint_buffer.buffer_lint(UNUSED_IMPORTS, id, import.span, msg); } return None; } _ => unreachable!(), }; let mut all_ns_err = true; self.per_ns(|this, ns| { if !type_ns_only || ns == TypeNS { let orig_vis = import.vis.take(); let binding = this.resolve_ident_in_module( module, ident, ns, &import.parent_scope, Some(Finalize { report_private: false, ..finalize }), target_bindings[ns].get(), ); import.vis.set(orig_vis); match binding { Ok(binding) => { // Consistency checks, analogous to `finalize_macro_resolutions`. let initial_binding = source_bindings[ns].get().map(|initial_binding| { all_ns_err = false; if let Some(target_binding) = target_bindings[ns].get() { if target.name == kw::Underscore && initial_binding.is_extern_crate() && !initial_binding.is_import() { this.record_use( ident, target_binding, import.module_path.is_empty(), ); } } initial_binding }); let res = binding.res(); if let Ok(initial_binding) = initial_binding { let initial_res = initial_binding.res(); if res != initial_res && this.ambiguity_errors.is_empty() { this.ambiguity_errors.push(AmbiguityError { kind: AmbiguityKind::Import, ident, b1: initial_binding, b2: binding, misc1: AmbiguityErrorMisc::None, misc2: AmbiguityErrorMisc::None, }); } } else if res != Res::Err && this.ambiguity_errors.is_empty() && this.privacy_errors.is_empty() { let msg = "cannot determine resolution for the import"; let msg_note = "import resolution is stuck, try simplifying other imports"; this.tcx.sess.struct_span_err(import.span, msg).note(msg_note).emit(); } } Err(..) => { // FIXME: This assert may fire if public glob is later shadowed by a private // single import (see test `issue-55884-2.rs`). In theory single imports should // always block globs, even if they are not yet resolved, so that this kind of // self-inconsistent resolution never happens. // Re-enable the assert when the issue is fixed. // assert!(result[ns].get().is_err()); } } } }); if all_ns_err { let mut all_ns_failed = true; self.per_ns(|this, ns| { if !type_ns_only || ns == TypeNS { let binding = this.resolve_ident_in_module( module, ident, ns, &import.parent_scope, Some(finalize), None, ); if binding.is_ok() { all_ns_failed = false; } } }); return if all_ns_failed { let resolutions = match module { ModuleOrUniformRoot::Module(module) => Some(self.resolutions(module).borrow()), _ => None, }; let resolutions = resolutions.as_ref().into_iter().flat_map(|r| r.iter()); let names = resolutions .filter_map(|(BindingKey { ident: i, .. }, resolution)| { if i.name == ident.name { return None; } // Never suggest the same name match *resolution.borrow() { NameResolution { binding: Some(name_binding), .. } => { match name_binding.kind { NameBindingKind::Import { binding, .. } => { match binding.kind { // Never suggest the name that has binding error // i.e., the name that cannot be previously resolved NameBindingKind::Res(Res::Err) => None, _ => Some(i.name), } } _ => Some(i.name), } } NameResolution { ref single_imports, .. } if single_imports.is_empty() => { None } _ => Some(i.name), } }) .collect::>(); let lev_suggestion = find_best_match_for_name(&names, ident.name, None).map(|suggestion| { ( vec![(ident.span, suggestion.to_string())], String::from("a similar name exists in the module"), Applicability::MaybeIncorrect, ) }); let (suggestion, note) = match self.check_for_module_export_macro(import, module, ident) { Some((suggestion, note)) => (suggestion.or(lev_suggestion), note), _ => (lev_suggestion, None), }; let label = match module { ModuleOrUniformRoot::Module(module) => { let module_str = module_to_string(module); if let Some(module_str) = module_str { format!("no `{}` in `{}`", ident, module_str) } else { format!("no `{}` in the root", ident) } } _ => { if !ident.is_path_segment_keyword() { format!("no external crate `{}`", ident) } else { // HACK(eddyb) this shows up for `self` & `super`, which // should work instead - for now keep the same error message. format!("no `{}` in the root", ident) } } }; let parent_suggestion = self.lookup_import_candidates(ident, TypeNS, &import.parent_scope, |_| true); Some(UnresolvedImportError { span: import.span, label: Some(label), note, suggestion, candidates: if !parent_suggestion.is_empty() { Some(parent_suggestion) } else { None }, }) } else { // `resolve_ident_in_module` reported a privacy error. None }; } let mut reexport_error = None; let mut any_successful_reexport = false; let mut crate_private_reexport = false; self.per_ns(|this, ns| { if let Ok(binding) = source_bindings[ns].get() { if !binding.vis.is_at_least(import.expect_vis(), this.tcx) { reexport_error = Some((ns, binding)); if let ty::Visibility::Restricted(binding_def_id) = binding.vis { if binding_def_id.is_top_level_module() { crate_private_reexport = true; } } } else { any_successful_reexport = true; } } }); // All namespaces must be re-exported with extra visibility for an error to occur. if !any_successful_reexport { let (ns, binding) = reexport_error.unwrap(); if pub_use_of_private_extern_crate_hack(import, binding) { let msg = format!( "extern crate `{}` is private, and cannot be \ re-exported (error E0365), consider declaring with \ `pub`", ident ); self.lint_buffer.buffer_lint( PUB_USE_OF_PRIVATE_EXTERN_CRATE, import_id, import.span, &msg, ); } else { let error_msg = if crate_private_reexport { format!( "`{}` is only public within the crate, and cannot be re-exported outside", ident ) } else { format!("`{}` is private, and cannot be re-exported", ident) }; if ns == TypeNS { let label_msg = if crate_private_reexport { format!("re-export of crate public `{}`", ident) } else { format!("re-export of private `{}`", ident) }; struct_span_err!(self.tcx.sess, import.span, E0365, "{}", error_msg) .span_label(import.span, label_msg) .note(&format!("consider declaring type or module `{}` with `pub`", ident)) .emit(); } else { let mut err = struct_span_err!(self.tcx.sess, import.span, E0364, "{error_msg}"); match binding.kind { NameBindingKind::Res(Res::Def(DefKind::Macro(_), def_id)) // exclude decl_macro if self.get_macro_by_def_id(def_id).macro_rules => { err.span_help( binding.span, "consider adding a `#[macro_export]` to the macro in the imported module", ); } _ => { err.span_note( import.span, &format!( "consider marking `{ident}` as `pub` in the imported module" ), ); } } err.emit(); } } } if import.module_path.len() <= 1 { // HACK(eddyb) `lint_if_path_starts_with_module` needs at least // 2 segments, so the `resolve_path` above won't trigger it. let mut full_path = import.module_path.clone(); full_path.push(Segment::from_ident(ident)); self.per_ns(|this, ns| { if let Ok(binding) = source_bindings[ns].get() { this.lint_if_path_starts_with_module(Some(finalize), &full_path, Some(binding)); } }); } // Record what this import resolves to for later uses in documentation, // this may resolve to either a value or a type, but for documentation // purposes it's good enough to just favor one over the other. self.per_ns(|this, ns| { if let Ok(binding) = source_bindings[ns].get() { this.import_res_map.entry(import_id).or_default()[ns] = Some(binding.res()); } }); self.check_for_redundant_imports(ident, import, source_bindings, target_bindings, target); debug!("(resolving single import) successfully resolved import"); None } fn check_for_redundant_imports( &mut self, ident: Ident, import: &'a Import<'a>, source_bindings: &PerNS, Determinacy>>>, target_bindings: &PerNS>>>, target: Ident, ) { // This function is only called for single imports. let ImportKind::Single { id, .. } = import.kind else { unreachable!() }; // Skip if the import was produced by a macro. if import.parent_scope.expansion != LocalExpnId::ROOT { return; } // Skip if we are inside a named module (in contrast to an anonymous // module defined by a block). if let ModuleKind::Def(..) = import.parent_scope.module.kind { return; } let mut is_redundant = PerNS { value_ns: None, type_ns: None, macro_ns: None }; let mut redundant_span = PerNS { value_ns: None, type_ns: None, macro_ns: None }; self.per_ns(|this, ns| { if let Ok(binding) = source_bindings[ns].get() { if binding.res() == Res::Err { return; } match this.early_resolve_ident_in_lexical_scope( target, ScopeSet::All(ns, false), &import.parent_scope, None, false, target_bindings[ns].get(), ) { Ok(other_binding) => { is_redundant[ns] = Some( binding.res() == other_binding.res() && !other_binding.is_ambiguity(), ); redundant_span[ns] = Some((other_binding.span, other_binding.is_import())); } Err(_) => is_redundant[ns] = Some(false), } } }); if !is_redundant.is_empty() && is_redundant.present_items().all(|is_redundant| is_redundant) { let mut redundant_spans: Vec<_> = redundant_span.present_items().collect(); redundant_spans.sort(); redundant_spans.dedup(); self.lint_buffer.buffer_lint_with_diagnostic( UNUSED_IMPORTS, id, import.span, &format!("the item `{}` is imported redundantly", ident), BuiltinLintDiagnostics::RedundantImport(redundant_spans, ident), ); } } fn resolve_glob_import(&mut self, import: &'a Import<'a>) { // This function is only called for glob imports. let ImportKind::Glob { id, is_prelude, .. } = import.kind else { unreachable!() }; let ModuleOrUniformRoot::Module(module) = import.imported_module.get().unwrap() else { self.tcx.sess.span_err(import.span, "cannot glob-import all possible crates"); return; }; if module.is_trait() { self.tcx.sess.span_err(import.span, "items in traits are not importable"); return; } else if ptr::eq(module, import.parent_scope.module) { return; } else if is_prelude { self.prelude = Some(module); return; } // Add to module's glob_importers module.glob_importers.borrow_mut().push(import); // Ensure that `resolutions` isn't borrowed during `try_define`, // since it might get updated via a glob cycle. let bindings = self .resolutions(module) .borrow() .iter() .filter_map(|(key, resolution)| { resolution.borrow().binding().map(|binding| (*key, binding)) }) .collect::>(); for (mut key, binding) in bindings { let scope = match key.ident.span.reverse_glob_adjust(module.expansion, import.span) { Some(Some(def)) => self.expn_def_scope(def), Some(None) => import.parent_scope.module, None => continue, }; if self.is_accessible_from(binding.vis, scope) { let imported_binding = self.import(binding, import); let _ = self.try_define(import.parent_scope.module, key, imported_binding); } } // Record the destination of this import self.record_partial_res(id, PartialRes::new(module.res().unwrap())); } // Miscellaneous post-processing, including recording re-exports, // reporting conflicts, and reporting unresolved imports. fn finalize_resolutions_in(&mut self, module: Module<'a>) { // Since import resolution is finished, globs will not define any more names. *module.globs.borrow_mut() = Vec::new(); if let Some(def_id) = module.opt_def_id() { let mut non_reexports = Vec::new(); let mut reexports = Vec::new(); module.for_each_child(self, |this, ident, _, binding| { let res = binding.res().expect_non_local(); if !binding.is_import() { non_reexports.push(res.def_id().expect_local()); } else if res != def::Res::Err && !binding.is_ambiguity() { let mut reexport_chain = SmallVec::new(); let mut next_binding = binding; while let NameBindingKind::Import { binding, import, .. } = next_binding.kind { reexport_chain.push(import.simplify(this)); next_binding = binding; } reexports.push(ModChild { ident, res, vis: binding.vis, reexport_chain }); } }); // Should be fine because this code is only called for local modules. let def_id = def_id.expect_local(); if !non_reexports.is_empty() { self.module_children_non_reexports.insert(def_id, non_reexports); } if !reexports.is_empty() { self.module_children_reexports.insert(def_id, reexports); } } } } fn import_path_to_string(names: &[Ident], import_kind: &ImportKind<'_>, span: Span) -> String { let pos = names.iter().position(|p| span == p.span && p.name != kw::PathRoot); let global = !names.is_empty() && names[0].name == kw::PathRoot; if let Some(pos) = pos { let names = if global { &names[1..pos + 1] } else { &names[..pos + 1] }; names_to_string(&names.iter().map(|ident| ident.name).collect::>()) } else { let names = if global { &names[1..] } else { names }; if names.is_empty() { import_kind_to_string(import_kind) } else { format!( "{}::{}", names_to_string(&names.iter().map(|ident| ident.name).collect::>()), import_kind_to_string(import_kind), ) } } } fn import_kind_to_string(import_kind: &ImportKind<'_>) -> String { match import_kind { ImportKind::Single { source, .. } => source.to_string(), ImportKind::Glob { .. } => "*".to_string(), ImportKind::ExternCrate { .. } => "".to_string(), ImportKind::MacroUse => "#[macro_use]".to_string(), ImportKind::MacroExport => "#[macro_export]".to_string(), } }