//! Codegen of intrinsics. This includes `extern "rust-intrinsic"`, `extern "platform-intrinsic"` //! and LLVM intrinsics that have symbol names starting with `llvm.`. mod cpuid; mod llvm; mod simd; pub(crate) use cpuid::codegen_cpuid_call; pub(crate) use llvm::codegen_llvm_intrinsic_call; use crate::prelude::*; use rustc_middle::ty::print::with_no_trimmed_paths; macro intrinsic_pat { (_) => { _ }, ($name:ident) => { stringify!($name) }, ($name:literal) => { stringify!($name) }, ($x:ident . $($xs:tt).*) => { concat!(stringify!($x), ".", intrinsic_pat!($($xs).*)) } } macro intrinsic_arg { (o $fx:expr, $arg:ident) => { $arg }, (c $fx:expr, $arg:ident) => { codegen_operand($fx, $arg) }, (v $fx:expr, $arg:ident) => { codegen_operand($fx, $arg).load_scalar($fx) } } macro intrinsic_substs { ($substs:expr, $index:expr,) => {}, ($substs:expr, $index:expr, $first:ident $(,$rest:ident)*) => { let $first = $substs.type_at($index); intrinsic_substs!($substs, $index+1, $($rest),*); } } macro intrinsic_match { ($fx:expr, $intrinsic:expr, $substs:expr, $args:expr, _ => $unknown:block; $( $($($name:tt).*)|+ $(if $cond:expr)?, $(<$($subst:ident),*>)? ($($a:ident $arg:ident),*) $content:block; )*) => { let _ = $substs; // Silence warning when substs is unused. match $intrinsic { $( $(intrinsic_pat!($($name).*))|* $(if $cond)? => { #[allow(unused_parens, non_snake_case)] { $( intrinsic_substs!($substs, 0, $($subst),*); )? if let [$($arg),*] = $args { let ($($arg,)*) = ( $(intrinsic_arg!($a $fx, $arg),)* ); #[warn(unused_parens, non_snake_case)] { $content } } else { bug!("wrong number of args for intrinsic {:?}", $intrinsic); } } } )* _ => $unknown, } } } macro call_intrinsic_match { ($fx:expr, $intrinsic:expr, $substs:expr, $ret:expr, $destination:expr, $args:expr, $( $name:ident($($arg:ident),*) -> $ty:ident => $func:ident, )*) => { match $intrinsic { $( stringify!($name) => { assert!($substs.is_noop()); if let [$(ref $arg),*] = *$args { let ($($arg,)*) = ( $(codegen_operand($fx, $arg),)* ); let res = $fx.easy_call(stringify!($func), &[$($arg),*], $fx.tcx.types.$ty); $ret.write_cvalue($fx, res); if let Some((_, dest)) = $destination { let ret_block = $fx.get_block(dest); $fx.bcx.ins().jump(ret_block, &[]); return; } else { unreachable!(); } } else { bug!("wrong number of args for intrinsic {:?}", $intrinsic); } } )* _ => {} } } } macro atomic_binop_return_old($fx:expr, $op:ident<$T:ident>($ptr:ident, $src:ident) -> $ret:ident) { crate::atomic_shim::lock_global_lock($fx); let clif_ty = $fx.clif_type($T).unwrap(); let old = $fx.bcx.ins().load(clif_ty, MemFlags::new(), $ptr, 0); let new = $fx.bcx.ins().$op(old, $src); $fx.bcx.ins().store(MemFlags::new(), new, $ptr, 0); $ret.write_cvalue($fx, CValue::by_val(old, $fx.layout_of($T))); crate::atomic_shim::unlock_global_lock($fx); } macro atomic_minmax($fx:expr, $cc:expr, <$T:ident> ($ptr:ident, $src:ident) -> $ret:ident) { crate::atomic_shim::lock_global_lock($fx); // Read old let clif_ty = $fx.clif_type($T).unwrap(); let old = $fx.bcx.ins().load(clif_ty, MemFlags::new(), $ptr, 0); // Compare let is_eq = $fx.bcx.ins().icmp(IntCC::SignedGreaterThan, old, $src); let new = $fx.bcx.ins().select(is_eq, old, $src); // Write new $fx.bcx.ins().store(MemFlags::new(), new, $ptr, 0); let ret_val = CValue::by_val(old, $ret.layout()); $ret.write_cvalue($fx, ret_val); crate::atomic_shim::unlock_global_lock($fx); } macro validate_atomic_type($fx:ident, $intrinsic:ident, $span:ident, $ty:expr) { match $ty.kind() { ty::Uint(_) | ty::Int(_) => {} _ => { $fx.tcx.sess.span_err( $span, &format!( "`{}` intrinsic: expected basic integer type, found `{:?}`", $intrinsic, $ty ), ); // Prevent verifier error crate::trap::trap_unreachable($fx, "compilation should not have succeeded"); return; } } } macro validate_simd_type($fx:ident, $intrinsic:ident, $span:ident, $ty:expr) { if !$ty.is_simd() { $fx.tcx.sess.span_err($span, &format!("invalid monomorphization of `{}` intrinsic: expected SIMD input type, found non-SIMD `{}`", $intrinsic, $ty)); // Prevent verifier error crate::trap::trap_unreachable($fx, "compilation should not have succeeded"); return; } } fn lane_type_and_count<'tcx>( tcx: TyCtxt<'tcx>, layout: TyAndLayout<'tcx>, ) -> (TyAndLayout<'tcx>, u16) { assert!(layout.ty.is_simd()); let lane_count = match layout.fields { rustc_target::abi::FieldsShape::Array { stride: _, count } => u16::try_from(count).unwrap(), _ => unreachable!("lane_type_and_count({:?})", layout), }; let lane_layout = layout .field( &ty::layout::LayoutCx { tcx, param_env: ParamEnv::reveal_all(), }, 0, ) .unwrap(); (lane_layout, lane_count) } pub(crate) fn clif_vector_type<'tcx>(tcx: TyCtxt<'tcx>, layout: TyAndLayout<'tcx>) -> Option { let (element, count) = match &layout.abi { Abi::Vector { element, count } => (element.clone(), *count), _ => unreachable!(), }; match scalar_to_clif_type(tcx, element).by(u16::try_from(count).unwrap()) { // Cranelift currently only implements icmp for 128bit vectors. Some(vector_ty) if vector_ty.bits() == 128 => Some(vector_ty), _ => None, } } fn simd_for_each_lane<'tcx, M: Module>( fx: &mut FunctionCx<'_, 'tcx, M>, val: CValue<'tcx>, ret: CPlace<'tcx>, f: impl Fn( &mut FunctionCx<'_, 'tcx, M>, TyAndLayout<'tcx>, TyAndLayout<'tcx>, Value, ) -> CValue<'tcx>, ) { let layout = val.layout(); let (lane_layout, lane_count) = lane_type_and_count(fx.tcx, layout); let (ret_lane_layout, ret_lane_count) = lane_type_and_count(fx.tcx, ret.layout()); assert_eq!(lane_count, ret_lane_count); for lane_idx in 0..lane_count { let lane_idx = mir::Field::new(lane_idx.try_into().unwrap()); let lane = val.value_field(fx, lane_idx).load_scalar(fx); let res_lane = f(fx, lane_layout, ret_lane_layout, lane); ret.place_field(fx, lane_idx).write_cvalue(fx, res_lane); } } fn simd_pair_for_each_lane<'tcx, M: Module>( fx: &mut FunctionCx<'_, 'tcx, M>, x: CValue<'tcx>, y: CValue<'tcx>, ret: CPlace<'tcx>, f: impl Fn( &mut FunctionCx<'_, 'tcx, M>, TyAndLayout<'tcx>, TyAndLayout<'tcx>, Value, Value, ) -> CValue<'tcx>, ) { assert_eq!(x.layout(), y.layout()); let layout = x.layout(); let (lane_layout, lane_count) = lane_type_and_count(fx.tcx, layout); let (ret_lane_layout, ret_lane_count) = lane_type_and_count(fx.tcx, ret.layout()); assert_eq!(lane_count, ret_lane_count); for lane in 0..lane_count { let lane = mir::Field::new(lane.try_into().unwrap()); let x_lane = x.value_field(fx, lane).load_scalar(fx); let y_lane = y.value_field(fx, lane).load_scalar(fx); let res_lane = f(fx, lane_layout, ret_lane_layout, x_lane, y_lane); ret.place_field(fx, lane).write_cvalue(fx, res_lane); } } fn bool_to_zero_or_max_uint<'tcx>( fx: &mut FunctionCx<'_, 'tcx, impl Module>, layout: TyAndLayout<'tcx>, val: Value, ) -> CValue<'tcx> { let ty = fx.clif_type(layout.ty).unwrap(); let int_ty = match ty { types::F32 => types::I32, types::F64 => types::I64, ty => ty, }; let val = fx.bcx.ins().bint(int_ty, val); let mut res = fx.bcx.ins().ineg(val); if ty.is_float() { res = fx.bcx.ins().bitcast(ty, res); } CValue::by_val(res, layout) } macro simd_cmp { ($fx:expr, $cc:ident($x:ident, $y:ident) -> $ret:ident) => { let vector_ty = clif_vector_type($fx.tcx, $x.layout()); if let Some(vector_ty) = vector_ty { let x = $x.load_scalar($fx); let y = $y.load_scalar($fx); let val = $fx.bcx.ins().icmp(IntCC::$cc, x, y); // HACK This depends on the fact that icmp for vectors represents bools as 0 and !0, not 0 and 1. let val = $fx.bcx.ins().raw_bitcast(vector_ty, val); $ret.write_cvalue($fx, CValue::by_val(val, $ret.layout())); } else { simd_pair_for_each_lane( $fx, $x, $y, $ret, |fx, lane_layout, res_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.kind() { ty::Uint(_) | ty::Int(_) => fx.bcx.ins().icmp(IntCC::$cc, x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; bool_to_zero_or_max_uint(fx, res_lane_layout, res_lane) }, ); } }, ($fx:expr, $cc_u:ident|$cc_s:ident($x:ident, $y:ident) -> $ret:ident) => { // FIXME use vector icmp when possible simd_pair_for_each_lane( $fx, $x, $y, $ret, |fx, lane_layout, res_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.kind() { ty::Uint(_) => fx.bcx.ins().icmp(IntCC::$cc_u, x_lane, y_lane), ty::Int(_) => fx.bcx.ins().icmp(IntCC::$cc_s, x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; bool_to_zero_or_max_uint(fx, res_lane_layout, res_lane) }, ); }, } macro simd_int_binop { ($fx:expr, $op:ident($x:ident, $y:ident) -> $ret:ident) => { simd_int_binop!($fx, $op|$op($x, $y) -> $ret); }, ($fx:expr, $op_u:ident|$op_s:ident($x:ident, $y:ident) -> $ret:ident) => { simd_pair_for_each_lane( $fx, $x, $y, $ret, |fx, lane_layout, ret_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.kind() { ty::Uint(_) => fx.bcx.ins().$op_u(x_lane, y_lane), ty::Int(_) => fx.bcx.ins().$op_s(x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; CValue::by_val(res_lane, ret_lane_layout) }, ); }, } macro simd_int_flt_binop { ($fx:expr, $op:ident|$op_f:ident($x:ident, $y:ident) -> $ret:ident) => { simd_int_flt_binop!($fx, $op|$op|$op_f($x, $y) -> $ret); }, ($fx:expr, $op_u:ident|$op_s:ident|$op_f:ident($x:ident, $y:ident) -> $ret:ident) => { simd_pair_for_each_lane( $fx, $x, $y, $ret, |fx, lane_layout, ret_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.kind() { ty::Uint(_) => fx.bcx.ins().$op_u(x_lane, y_lane), ty::Int(_) => fx.bcx.ins().$op_s(x_lane, y_lane), ty::Float(_) => fx.bcx.ins().$op_f(x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; CValue::by_val(res_lane, ret_lane_layout) }, ); }, } macro simd_flt_binop($fx:expr, $op:ident($x:ident, $y:ident) -> $ret:ident) { simd_pair_for_each_lane( $fx, $x, $y, $ret, |fx, lane_layout, ret_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.kind() { ty::Float(_) => fx.bcx.ins().$op(x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; CValue::by_val(res_lane, ret_lane_layout) }, ); } pub(crate) fn codegen_intrinsic_call<'tcx>( fx: &mut FunctionCx<'_, 'tcx, impl Module>, instance: Instance<'tcx>, args: &[mir::Operand<'tcx>], destination: Option<(CPlace<'tcx>, BasicBlock)>, span: Span, ) { let def_id = instance.def_id(); let substs = instance.substs; let intrinsic = fx.tcx.item_name(def_id).as_str(); let intrinsic = &intrinsic[..]; let ret = match destination { Some((place, _)) => place, None => { // Insert non returning intrinsics here match intrinsic { "abort" => { trap_abort(fx, "Called intrinsic::abort."); } "unreachable" => { trap_unreachable(fx, "[corruption] Called intrinsic::unreachable."); } "transmute" => { crate::base::codegen_panic(fx, "Transmuting to uninhabited type.", span); } _ => unimplemented!("unsupported instrinsic {}", intrinsic), } return; } }; if intrinsic.starts_with("simd_") { self::simd::codegen_simd_intrinsic_call(fx, instance, args, ret, span); let ret_block = fx.get_block(destination.expect("SIMD intrinsics don't diverge").1); fx.bcx.ins().jump(ret_block, &[]); return; } let usize_layout = fx.layout_of(fx.tcx.types.usize); call_intrinsic_match! { fx, intrinsic, substs, ret, destination, args, expf32(flt) -> f32 => expf, expf64(flt) -> f64 => exp, exp2f32(flt) -> f32 => exp2f, exp2f64(flt) -> f64 => exp2, sqrtf32(flt) -> f32 => sqrtf, sqrtf64(flt) -> f64 => sqrt, powif32(a, x) -> f32 => __powisf2, // compiler-builtins powif64(a, x) -> f64 => __powidf2, // compiler-builtins powf32(a, x) -> f32 => powf, powf64(a, x) -> f64 => pow, logf32(flt) -> f32 => logf, logf64(flt) -> f64 => log, log2f32(flt) -> f32 => log2f, log2f64(flt) -> f64 => log2, log10f32(flt) -> f32 => log10f, log10f64(flt) -> f64 => log10, fabsf32(flt) -> f32 => fabsf, fabsf64(flt) -> f64 => fabs, fmaf32(x, y, z) -> f32 => fmaf, fmaf64(x, y, z) -> f64 => fma, copysignf32(x, y) -> f32 => copysignf, copysignf64(x, y) -> f64 => copysign, // rounding variants // FIXME use clif insts floorf32(flt) -> f32 => floorf, floorf64(flt) -> f64 => floor, ceilf32(flt) -> f32 => ceilf, ceilf64(flt) -> f64 => ceil, truncf32(flt) -> f32 => truncf, truncf64(flt) -> f64 => trunc, roundf32(flt) -> f32 => roundf, roundf64(flt) -> f64 => round, // trigonometry sinf32(flt) -> f32 => sinf, sinf64(flt) -> f64 => sin, cosf32(flt) -> f32 => cosf, cosf64(flt) -> f64 => cos, tanf32(flt) -> f32 => tanf, tanf64(flt) -> f64 => tan, } intrinsic_match! { fx, intrinsic, substs, args, _ => { fx.tcx.sess.span_fatal(span, &format!("unsupported intrinsic {}", intrinsic)); }; assume, (c _a) {}; likely | unlikely, (c a) { ret.write_cvalue(fx, a); }; breakpoint, () { fx.bcx.ins().debugtrap(); }; copy | copy_nonoverlapping, (v src, v dst, v count) { let elem_size: u64 = fx.layout_of(elem_ty).size.bytes(); let elem_size = fx .bcx .ins() .iconst(fx.pointer_type, elem_size as i64); assert_eq!(args.len(), 3); let byte_amount = fx.bcx.ins().imul(count, elem_size); if intrinsic.contains("nonoverlapping") { // FIXME emit_small_memcpy fx.bcx.call_memcpy(fx.cx.module.target_config(), dst, src, byte_amount); } else { // FIXME emit_small_memmove fx.bcx.call_memmove(fx.cx.module.target_config(), dst, src, byte_amount); } }; // NOTE: the volatile variants have src and dst swapped volatile_copy_memory | volatile_copy_nonoverlapping_memory, (v dst, v src, v count) { let elem_size: u64 = fx.layout_of(elem_ty).size.bytes(); let elem_size = fx .bcx .ins() .iconst(fx.pointer_type, elem_size as i64); assert_eq!(args.len(), 3); let byte_amount = fx.bcx.ins().imul(count, elem_size); // FIXME make the copy actually volatile when using emit_small_mem{cpy,move} if intrinsic.contains("nonoverlapping") { // FIXME emit_small_memcpy fx.bcx.call_memcpy(fx.cx.module.target_config(), dst, src, byte_amount); } else { // FIXME emit_small_memmove fx.bcx.call_memmove(fx.cx.module.target_config(), dst, src, byte_amount); } }; discriminant_value, (c ptr) { let pointee_layout = fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty); let val = CValue::by_ref(Pointer::new(ptr.load_scalar(fx)), pointee_layout); let discr = crate::discriminant::codegen_get_discriminant(fx, val, ret.layout()); ret.write_cvalue(fx, discr); }; size_of_val, (c ptr) { let layout = fx.layout_of(T); let size = if layout.is_unsized() { let (_ptr, info) = ptr.load_scalar_pair(fx); let (size, _align) = crate::unsize::size_and_align_of_dst(fx, layout, info); size } else { fx .bcx .ins() .iconst(fx.pointer_type, layout.size.bytes() as i64) }; ret.write_cvalue(fx, CValue::by_val(size, usize_layout)); }; min_align_of_val, (c ptr) { let layout = fx.layout_of(T); let align = if layout.is_unsized() { let (_ptr, info) = ptr.load_scalar_pair(fx); let (_size, align) = crate::unsize::size_and_align_of_dst(fx, layout, info); align } else { fx .bcx .ins() .iconst(fx.pointer_type, layout.align.abi.bytes() as i64) }; ret.write_cvalue(fx, CValue::by_val(align, usize_layout)); }; _ if intrinsic.starts_with("unchecked_") || intrinsic == "exact_div", (c x, c y) { // FIXME trap on overflow let bin_op = match intrinsic { "unchecked_add" => BinOp::Add, "unchecked_sub" => BinOp::Sub, "unchecked_div" | "exact_div" => BinOp::Div, "unchecked_rem" => BinOp::Rem, "unchecked_shl" => BinOp::Shl, "unchecked_shr" => BinOp::Shr, _ => unreachable!("intrinsic {}", intrinsic), }; let res = crate::num::codegen_int_binop(fx, bin_op, x, y); ret.write_cvalue(fx, res); }; _ if intrinsic.ends_with("_with_overflow"), (c x, c y) { assert_eq!(x.layout().ty, y.layout().ty); let bin_op = match intrinsic { "add_with_overflow" => BinOp::Add, "sub_with_overflow" => BinOp::Sub, "mul_with_overflow" => BinOp::Mul, _ => unreachable!("intrinsic {}", intrinsic), }; let res = crate::num::codegen_checked_int_binop( fx, bin_op, x, y, ); ret.write_cvalue(fx, res); }; _ if intrinsic.starts_with("wrapping_"), (c x, c y) { assert_eq!(x.layout().ty, y.layout().ty); let bin_op = match intrinsic { "wrapping_add" => BinOp::Add, "wrapping_sub" => BinOp::Sub, "wrapping_mul" => BinOp::Mul, _ => unreachable!("intrinsic {}", intrinsic), }; let res = crate::num::codegen_int_binop( fx, bin_op, x, y, ); ret.write_cvalue(fx, res); }; _ if intrinsic.starts_with("saturating_"), (c lhs, c rhs) { assert_eq!(lhs.layout().ty, rhs.layout().ty); let bin_op = match intrinsic { "saturating_add" => BinOp::Add, "saturating_sub" => BinOp::Sub, _ => unreachable!("intrinsic {}", intrinsic), }; let signed = type_sign(T); let checked_res = crate::num::codegen_checked_int_binop( fx, bin_op, lhs, rhs, ); let (val, has_overflow) = checked_res.load_scalar_pair(fx); let clif_ty = fx.clif_type(T).unwrap(); // `select.i8` is not implemented by Cranelift. let has_overflow = fx.bcx.ins().uextend(types::I32, has_overflow); let (min, max) = type_min_max_value(&mut fx.bcx, clif_ty, signed); let val = match (intrinsic, signed) { ("saturating_add", false) => fx.bcx.ins().select(has_overflow, max, val), ("saturating_sub", false) => fx.bcx.ins().select(has_overflow, min, val), ("saturating_add", true) => { let rhs = rhs.load_scalar(fx); let rhs_ge_zero = fx.bcx.ins().icmp_imm(IntCC::SignedGreaterThanOrEqual, rhs, 0); let sat_val = fx.bcx.ins().select(rhs_ge_zero, max, min); fx.bcx.ins().select(has_overflow, sat_val, val) } ("saturating_sub", true) => { let rhs = rhs.load_scalar(fx); let rhs_ge_zero = fx.bcx.ins().icmp_imm(IntCC::SignedGreaterThanOrEqual, rhs, 0); let sat_val = fx.bcx.ins().select(rhs_ge_zero, min, max); fx.bcx.ins().select(has_overflow, sat_val, val) } _ => unreachable!(), }; let res = CValue::by_val(val, fx.layout_of(T)); ret.write_cvalue(fx, res); }; rotate_left, (v x, v y) { let layout = fx.layout_of(T); let res = fx.bcx.ins().rotl(x, y); ret.write_cvalue(fx, CValue::by_val(res, layout)); }; rotate_right, (v x, v y) { let layout = fx.layout_of(T); let res = fx.bcx.ins().rotr(x, y); ret.write_cvalue(fx, CValue::by_val(res, layout)); }; // The only difference between offset and arith_offset is regarding UB. Because Cranelift // doesn't have UB both are codegen'ed the same way offset | arith_offset, (c base, v offset) { let pointee_ty = base.layout().ty.builtin_deref(true).unwrap().ty; let pointee_size = fx.layout_of(pointee_ty).size.bytes(); let ptr_diff = fx.bcx.ins().imul_imm(offset, pointee_size as i64); let base_val = base.load_scalar(fx); let res = fx.bcx.ins().iadd(base_val, ptr_diff); ret.write_cvalue(fx, CValue::by_val(res, base.layout())); }; transmute, (c from) { ret.write_cvalue_transmute(fx, from); }; write_bytes | volatile_set_memory, (c dst, v val, v count) { let pointee_ty = dst.layout().ty.builtin_deref(true).unwrap().ty; let pointee_size = fx.layout_of(pointee_ty).size.bytes(); let count = fx.bcx.ins().imul_imm(count, pointee_size as i64); let dst_ptr = dst.load_scalar(fx); // FIXME make the memset actually volatile when switching to emit_small_memset // FIXME use emit_small_memset fx.bcx.call_memset(fx.cx.module.target_config(), dst_ptr, val, count); }; ctlz | ctlz_nonzero, (v arg) { // FIXME trap on `ctlz_nonzero` with zero arg. let res = if T == fx.tcx.types.u128 || T == fx.tcx.types.i128 { // FIXME verify this algorithm is correct let (lsb, msb) = fx.bcx.ins().isplit(arg); let lsb_lz = fx.bcx.ins().clz(lsb); let msb_lz = fx.bcx.ins().clz(msb); let msb_is_zero = fx.bcx.ins().icmp_imm(IntCC::Equal, msb, 0); let lsb_lz_plus_64 = fx.bcx.ins().iadd_imm(lsb_lz, 64); let res = fx.bcx.ins().select(msb_is_zero, lsb_lz_plus_64, msb_lz); fx.bcx.ins().uextend(types::I128, res) } else { fx.bcx.ins().clz(arg) }; let res = CValue::by_val(res, fx.layout_of(T)); ret.write_cvalue(fx, res); }; cttz | cttz_nonzero, (v arg) { // FIXME trap on `cttz_nonzero` with zero arg. let res = if T == fx.tcx.types.u128 || T == fx.tcx.types.i128 { // FIXME verify this algorithm is correct let (lsb, msb) = fx.bcx.ins().isplit(arg); let lsb_tz = fx.bcx.ins().ctz(lsb); let msb_tz = fx.bcx.ins().ctz(msb); let lsb_is_zero = fx.bcx.ins().icmp_imm(IntCC::Equal, lsb, 0); let msb_tz_plus_64 = fx.bcx.ins().iadd_imm(msb_tz, 64); let res = fx.bcx.ins().select(lsb_is_zero, msb_tz_plus_64, lsb_tz); fx.bcx.ins().uextend(types::I128, res) } else { fx.bcx.ins().ctz(arg) }; let res = CValue::by_val(res, fx.layout_of(T)); ret.write_cvalue(fx, res); }; ctpop, (v arg) { let res = fx.bcx.ins().popcnt(arg); let res = CValue::by_val(res, fx.layout_of(T)); ret.write_cvalue(fx, res); }; bitreverse, (v arg) { let res = fx.bcx.ins().bitrev(arg); let res = CValue::by_val(res, fx.layout_of(T)); ret.write_cvalue(fx, res); }; bswap, (v arg) { // FIXME(CraneStation/cranelift#794) add bswap instruction to cranelift fn swap(bcx: &mut FunctionBuilder<'_>, v: Value) -> Value { match bcx.func.dfg.value_type(v) { types::I8 => v, // https://code.woboq.org/gcc/include/bits/byteswap.h.html types::I16 => { let tmp1 = bcx.ins().ishl_imm(v, 8); let n1 = bcx.ins().band_imm(tmp1, 0xFF00); let tmp2 = bcx.ins().ushr_imm(v, 8); let n2 = bcx.ins().band_imm(tmp2, 0x00FF); bcx.ins().bor(n1, n2) } types::I32 => { let tmp1 = bcx.ins().ishl_imm(v, 24); let n1 = bcx.ins().band_imm(tmp1, 0xFF00_0000); let tmp2 = bcx.ins().ishl_imm(v, 8); let n2 = bcx.ins().band_imm(tmp2, 0x00FF_0000); let tmp3 = bcx.ins().ushr_imm(v, 8); let n3 = bcx.ins().band_imm(tmp3, 0x0000_FF00); let tmp4 = bcx.ins().ushr_imm(v, 24); let n4 = bcx.ins().band_imm(tmp4, 0x0000_00FF); let or_tmp1 = bcx.ins().bor(n1, n2); let or_tmp2 = bcx.ins().bor(n3, n4); bcx.ins().bor(or_tmp1, or_tmp2) } types::I64 => { let tmp1 = bcx.ins().ishl_imm(v, 56); let n1 = bcx.ins().band_imm(tmp1, 0xFF00_0000_0000_0000u64 as i64); let tmp2 = bcx.ins().ishl_imm(v, 40); let n2 = bcx.ins().band_imm(tmp2, 0x00FF_0000_0000_0000u64 as i64); let tmp3 = bcx.ins().ishl_imm(v, 24); let n3 = bcx.ins().band_imm(tmp3, 0x0000_FF00_0000_0000u64 as i64); let tmp4 = bcx.ins().ishl_imm(v, 8); let n4 = bcx.ins().band_imm(tmp4, 0x0000_00FF_0000_0000u64 as i64); let tmp5 = bcx.ins().ushr_imm(v, 8); let n5 = bcx.ins().band_imm(tmp5, 0x0000_0000_FF00_0000u64 as i64); let tmp6 = bcx.ins().ushr_imm(v, 24); let n6 = bcx.ins().band_imm(tmp6, 0x0000_0000_00FF_0000u64 as i64); let tmp7 = bcx.ins().ushr_imm(v, 40); let n7 = bcx.ins().band_imm(tmp7, 0x0000_0000_0000_FF00u64 as i64); let tmp8 = bcx.ins().ushr_imm(v, 56); let n8 = bcx.ins().band_imm(tmp8, 0x0000_0000_0000_00FFu64 as i64); let or_tmp1 = bcx.ins().bor(n1, n2); let or_tmp2 = bcx.ins().bor(n3, n4); let or_tmp3 = bcx.ins().bor(n5, n6); let or_tmp4 = bcx.ins().bor(n7, n8); let or_tmp5 = bcx.ins().bor(or_tmp1, or_tmp2); let or_tmp6 = bcx.ins().bor(or_tmp3, or_tmp4); bcx.ins().bor(or_tmp5, or_tmp6) } types::I128 => { let (lo, hi) = bcx.ins().isplit(v); let lo = swap(bcx, lo); let hi = swap(bcx, hi); bcx.ins().iconcat(hi, lo) } ty => unreachable!("bswap {}", ty), } }; let res = CValue::by_val(swap(&mut fx.bcx, arg), fx.layout_of(T)); ret.write_cvalue(fx, res); }; assert_inhabited | assert_zero_valid | assert_uninit_valid, () { let layout = fx.layout_of(T); if layout.abi.is_uninhabited() { with_no_trimmed_paths(|| crate::base::codegen_panic( fx, &format!("attempted to instantiate uninhabited type `{}`", T), span, )); return; } if intrinsic == "assert_zero_valid" && !layout.might_permit_raw_init(fx, /*zero:*/ true).unwrap() { with_no_trimmed_paths(|| crate::base::codegen_panic( fx, &format!("attempted to zero-initialize type `{}`, which is invalid", T), span, )); return; } if intrinsic == "assert_uninit_valid" && !layout.might_permit_raw_init(fx, /*zero:*/ false).unwrap() { with_no_trimmed_paths(|| crate::base::codegen_panic( fx, &format!("attempted to leave type `{}` uninitialized, which is invalid", T), span, )); return; } }; volatile_load | unaligned_volatile_load, (c ptr) { // Cranelift treats loads as volatile by default // FIXME ignore during stack2reg optimization // FIXME correctly handle unaligned_volatile_load let inner_layout = fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty); let val = CValue::by_ref(Pointer::new(ptr.load_scalar(fx)), inner_layout); ret.write_cvalue(fx, val); }; volatile_store | unaligned_volatile_store, (v ptr, c val) { // Cranelift treats stores as volatile by default // FIXME ignore during stack2reg optimization // FIXME correctly handle unaligned_volatile_store let dest = CPlace::for_ptr(Pointer::new(ptr), val.layout()); dest.write_cvalue(fx, val); }; size_of | pref_align_of | min_align_of | needs_drop | type_id | type_name | variant_count, () { let const_val = fx.tcx.const_eval_instance(ParamEnv::reveal_all(), instance, None).unwrap(); let val = crate::constant::codegen_const_value( fx, const_val, ret.layout().ty, ); ret.write_cvalue(fx, val); }; ptr_offset_from, (v ptr, v base) { let isize_layout = fx.layout_of(fx.tcx.types.isize); let pointee_size: u64 = fx.layout_of(T).size.bytes(); let diff = fx.bcx.ins().isub(ptr, base); // FIXME this can be an exact division. let val = CValue::by_val(fx.bcx.ins().sdiv_imm(diff, pointee_size as i64), isize_layout); ret.write_cvalue(fx, val); }; ptr_guaranteed_eq, (c a, c b) { let val = crate::num::codegen_ptr_binop(fx, BinOp::Eq, a, b); ret.write_cvalue(fx, val); }; ptr_guaranteed_ne, (c a, c b) { let val = crate::num::codegen_ptr_binop(fx, BinOp::Ne, a, b); ret.write_cvalue(fx, val); }; caller_location, () { let caller_location = fx.get_caller_location(span); ret.write_cvalue(fx, caller_location); }; _ if intrinsic.starts_with("atomic_fence"), () { crate::atomic_shim::lock_global_lock(fx); crate::atomic_shim::unlock_global_lock(fx); }; _ if intrinsic.starts_with("atomic_singlethreadfence"), () { crate::atomic_shim::lock_global_lock(fx); crate::atomic_shim::unlock_global_lock(fx); }; _ if intrinsic.starts_with("atomic_load"), (c ptr) { crate::atomic_shim::lock_global_lock(fx); let inner_layout = fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty); validate_atomic_type!(fx, intrinsic, span, inner_layout.ty); let val = CValue::by_ref(Pointer::new(ptr.load_scalar(fx)), inner_layout); ret.write_cvalue(fx, val); crate::atomic_shim::unlock_global_lock(fx); }; _ if intrinsic.starts_with("atomic_store"), (v ptr, c val) { validate_atomic_type!(fx, intrinsic, span, val.layout().ty); crate::atomic_shim::lock_global_lock(fx); let dest = CPlace::for_ptr(Pointer::new(ptr), val.layout()); dest.write_cvalue(fx, val); crate::atomic_shim::unlock_global_lock(fx); }; _ if intrinsic.starts_with("atomic_xchg"), (v ptr, c src) { validate_atomic_type!(fx, intrinsic, span, T); crate::atomic_shim::lock_global_lock(fx); // Read old let clif_ty = fx.clif_type(T).unwrap(); let old = fx.bcx.ins().load(clif_ty, MemFlags::new(), ptr, 0); ret.write_cvalue(fx, CValue::by_val(old, fx.layout_of(T))); // Write new let dest = CPlace::for_ptr(Pointer::new(ptr), src.layout()); dest.write_cvalue(fx, src); crate::atomic_shim::unlock_global_lock(fx); }; _ if intrinsic.starts_with("atomic_cxchg"), (v ptr, c test_old, c new) { // both atomic_cxchg_* and atomic_cxchgweak_* validate_atomic_type!(fx, intrinsic, span, T); let test_old = test_old.load_scalar(fx); let new = new.load_scalar(fx); crate::atomic_shim::lock_global_lock(fx); // Read old let clif_ty = fx.clif_type(T).unwrap(); let old = fx.bcx.ins().load(clif_ty, MemFlags::new(), ptr, 0); // Compare let is_eq = fx.bcx.ins().icmp(IntCC::Equal, old, test_old); let new = fx.bcx.ins().select(is_eq, new, old); // Keep old if not equal to test_old // Write new fx.bcx.ins().store(MemFlags::new(), new, ptr, 0); let ret_val = CValue::by_val_pair(old, fx.bcx.ins().bint(types::I8, is_eq), ret.layout()); ret.write_cvalue(fx, ret_val); crate::atomic_shim::unlock_global_lock(fx); }; _ if intrinsic.starts_with("atomic_xadd"), (v ptr, c amount) { validate_atomic_type!(fx, intrinsic, span, ret.layout().ty); let amount = amount.load_scalar(fx); atomic_binop_return_old! (fx, iadd(ptr, amount) -> ret); }; _ if intrinsic.starts_with("atomic_xsub"), (v ptr, c amount) { validate_atomic_type!(fx, intrinsic, span, ret.layout().ty); let amount = amount.load_scalar(fx); atomic_binop_return_old! (fx, isub(ptr, amount) -> ret); }; _ if intrinsic.starts_with("atomic_and"), (v ptr, c src) { validate_atomic_type!(fx, intrinsic, span, ret.layout().ty); let src = src.load_scalar(fx); atomic_binop_return_old! (fx, band(ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_nand"), (v ptr, c src) { validate_atomic_type!(fx, intrinsic, span, T); let src = src.load_scalar(fx); crate::atomic_shim::lock_global_lock(fx); let clif_ty = fx.clif_type(T).unwrap(); let old = fx.bcx.ins().load(clif_ty, MemFlags::new(), ptr, 0); let and = fx.bcx.ins().band(old, src); let new = fx.bcx.ins().bnot(and); fx.bcx.ins().store(MemFlags::new(), new, ptr, 0); ret.write_cvalue(fx, CValue::by_val(old, fx.layout_of(T))); crate::atomic_shim::unlock_global_lock(fx); }; _ if intrinsic.starts_with("atomic_or"), (v ptr, c src) { validate_atomic_type!(fx, intrinsic, span, ret.layout().ty); let src = src.load_scalar(fx); atomic_binop_return_old! (fx, bor(ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_xor"), (v ptr, c src) { validate_atomic_type!(fx, intrinsic, span, ret.layout().ty); let src = src.load_scalar(fx); atomic_binop_return_old! (fx, bxor(ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_max"), (v ptr, c src) { validate_atomic_type!(fx, intrinsic, span, ret.layout().ty); let src = src.load_scalar(fx); atomic_minmax!(fx, IntCC::SignedGreaterThan, (ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_umax"), (v ptr, c src) { validate_atomic_type!(fx, intrinsic, span, ret.layout().ty); let src = src.load_scalar(fx); atomic_minmax!(fx, IntCC::UnsignedGreaterThan, (ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_min"), (v ptr, c src) { validate_atomic_type!(fx, intrinsic, span, ret.layout().ty); let src = src.load_scalar(fx); atomic_minmax!(fx, IntCC::SignedLessThan, (ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_umin"), (v ptr, c src) { validate_atomic_type!(fx, intrinsic, span, ret.layout().ty); let src = src.load_scalar(fx); atomic_minmax!(fx, IntCC::UnsignedLessThan, (ptr, src) -> ret); }; minnumf32, (v a, v b) { let val = fx.bcx.ins().fmin(a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32)); ret.write_cvalue(fx, val); }; minnumf64, (v a, v b) { let val = fx.bcx.ins().fmin(a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64)); ret.write_cvalue(fx, val); }; maxnumf32, (v a, v b) { let val = fx.bcx.ins().fmax(a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32)); ret.write_cvalue(fx, val); }; maxnumf64, (v a, v b) { let val = fx.bcx.ins().fmax(a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64)); ret.write_cvalue(fx, val); }; try, (v f, v data, v _catch_fn) { // FIXME once unwinding is supported, change this to actually catch panics let f_sig = fx.bcx.func.import_signature(Signature { call_conv: CallConv::triple_default(fx.triple()), params: vec![AbiParam::new(fx.bcx.func.dfg.value_type(data))], returns: vec![], }); fx.bcx.ins().call_indirect(f_sig, f, &[data]); let ret_val = CValue::const_val(fx, ret.layout(), 0); ret.write_cvalue(fx, ret_val); }; fadd_fast | fsub_fast | fmul_fast | fdiv_fast | frem_fast, (c x, c y) { let res = crate::num::codegen_float_binop(fx, match intrinsic { "fadd_fast" => BinOp::Add, "fsub_fast" => BinOp::Sub, "fmul_fast" => BinOp::Mul, "fdiv_fast" => BinOp::Div, "frem_fast" => BinOp::Rem, _ => unreachable!(), }, x, y); ret.write_cvalue(fx, res); }; float_to_int_unchecked, (v f) { let res = crate::cast::clif_int_or_float_cast( fx, f, false, fx.clif_type(ret.layout().ty).unwrap(), type_sign(ret.layout().ty), ); ret.write_cvalue(fx, CValue::by_val(res, ret.layout())); }; } if let Some((_, dest)) = destination { let ret_block = fx.get_block(dest); fx.bcx.ins().jump(ret_block, &[]); } else { trap_unreachable(fx, "[corruption] Diverging intrinsic returned."); } }