// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_camel_case_types, non_snake_case)] //! Code that is useful in various trans modules. use llvm; use llvm::{ValueRef, ContextRef, TypeKind}; use llvm::{True, False, Bool, OperandBundleDef}; use rustc::hir::def_id::DefId; use rustc::hir::map::DefPathData; use rustc::middle::lang_items::LangItem; use base; use builder::Builder; use consts; use declare; use machine; use monomorphize; use type_::Type; use value::Value; use rustc::ty::{self, Ty, TyCtxt}; use rustc::ty::layout::{Layout, LayoutTyper}; use rustc::ty::subst::{Subst, Substs}; use rustc::hir; use libc::{c_uint, c_char}; use std::iter; use syntax::attr; use syntax::symbol::InternedString; use syntax_pos::Span; pub use context::{CrateContext, SharedCrateContext}; pub fn type_is_fat_ptr<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool { if let Layout::FatPointer { .. } = *ccx.layout_of(ty) { true } else { false } } pub fn type_is_immediate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool { let layout = ccx.layout_of(ty); match *layout { Layout::CEnum { .. } | Layout::Scalar { .. } | Layout::Vector { .. } => true, Layout::FatPointer { .. } => false, Layout::Array { .. } | Layout::Univariant { .. } | Layout::General { .. } | Layout::UntaggedUnion { .. } | Layout::RawNullablePointer { .. } | Layout::StructWrappedNullablePointer { .. } => { !layout.is_unsized() && layout.size(ccx).bytes() == 0 } } } /// Returns Some([a, b]) if the type has a pair of fields with types a and b. pub fn type_pair_fields<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> Option<[Ty<'tcx>; 2]> { match ty.sty { ty::TyAdt(adt, substs) => { assert_eq!(adt.variants.len(), 1); let fields = &adt.variants[0].fields; if fields.len() != 2 { return None; } Some([monomorphize::field_ty(ccx.tcx(), substs, &fields[0]), monomorphize::field_ty(ccx.tcx(), substs, &fields[1])]) } ty::TyClosure(def_id, substs) => { let mut tys = substs.upvar_tys(def_id, ccx.tcx()); tys.next().and_then(|first_ty| tys.next().and_then(|second_ty| { if tys.next().is_some() { None } else { Some([first_ty, second_ty]) } })) } ty::TyTuple(tys, _) => { if tys.len() != 2 { return None; } Some([tys[0], tys[1]]) } _ => None } } /// Returns true if the type is represented as a pair of immediates. pub fn type_is_imm_pair<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool { match *ccx.layout_of(ty) { Layout::FatPointer { .. } => true, Layout::Univariant { ref variant, .. } => { // There must be only 2 fields. if variant.offsets.len() != 2 { return false; } match type_pair_fields(ccx, ty) { Some([a, b]) => { type_is_immediate(ccx, a) && type_is_immediate(ccx, b) } None => false } } _ => false } } /// Identify types which have size zero at runtime. pub fn type_is_zero_size<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool { let layout = ccx.layout_of(ty); !layout.is_unsized() && layout.size(ccx).bytes() == 0 } /* * A note on nomenclature of linking: "extern", "foreign", and "upcall". * * An "extern" is an LLVM symbol we wind up emitting an undefined external * reference to. This means "we don't have the thing in this compilation unit, * please make sure you link it in at runtime". This could be a reference to * C code found in a C library, or rust code found in a rust crate. * * Most "externs" are implicitly declared (automatically) as a result of a * user declaring an extern _module_ dependency; this causes the rust driver * to locate an extern crate, scan its compilation metadata, and emit extern * declarations for any symbols used by the declaring crate. * * A "foreign" is an extern that references C (or other non-rust ABI) code. * There is no metadata to scan for extern references so in these cases either * a header-digester like bindgen, or manual function prototypes, have to * serve as declarators. So these are usually given explicitly as prototype * declarations, in rust code, with ABI attributes on them noting which ABI to * link via. * * An "upcall" is a foreign call generated by the compiler (not corresponding * to any user-written call in the code) into the runtime library, to perform * some helper task such as bringing a task to life, allocating memory, etc. * */ /// A structure representing an active landing pad for the duration of a basic /// block. /// /// Each `Block` may contain an instance of this, indicating whether the block /// is part of a landing pad or not. This is used to make decision about whether /// to emit `invoke` instructions (e.g. in a landing pad we don't continue to /// use `invoke`) and also about various function call metadata. /// /// For GNU exceptions (`landingpad` + `resume` instructions) this structure is /// just a bunch of `None` instances (not too interesting), but for MSVC /// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data. /// When inside of a landing pad, each function call in LLVM IR needs to be /// annotated with which landing pad it's a part of. This is accomplished via /// the `OperandBundleDef` value created for MSVC landing pads. pub struct Funclet { cleanuppad: ValueRef, operand: OperandBundleDef, } impl Funclet { pub fn new(cleanuppad: ValueRef) -> Funclet { Funclet { cleanuppad: cleanuppad, operand: OperandBundleDef::new("funclet", &[cleanuppad]), } } pub fn cleanuppad(&self) -> ValueRef { self.cleanuppad } pub fn bundle(&self) -> &OperandBundleDef { &self.operand } } pub fn val_ty(v: ValueRef) -> Type { unsafe { Type::from_ref(llvm::LLVMTypeOf(v)) } } // LLVM constant constructors. pub fn C_null(t: Type) -> ValueRef { unsafe { llvm::LLVMConstNull(t.to_ref()) } } pub fn C_undef(t: Type) -> ValueRef { unsafe { llvm::LLVMGetUndef(t.to_ref()) } } pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef { unsafe { llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool) } } pub fn C_big_integral(t: Type, u: u128) -> ValueRef { unsafe { let words = [u as u64, u.wrapping_shr(64) as u64]; llvm::LLVMConstIntOfArbitraryPrecision(t.to_ref(), 2, words.as_ptr()) } } pub fn C_floating_f64(f: f64, t: Type) -> ValueRef { unsafe { llvm::LLVMConstReal(t.to_ref(), f) } } pub fn C_nil(ccx: &CrateContext) -> ValueRef { C_struct(ccx, &[], false) } pub fn C_bool(ccx: &CrateContext, val: bool) -> ValueRef { C_integral(Type::i1(ccx), val as u64, false) } pub fn C_i32(ccx: &CrateContext, i: i32) -> ValueRef { C_integral(Type::i32(ccx), i as u64, true) } pub fn C_u32(ccx: &CrateContext, i: u32) -> ValueRef { C_integral(Type::i32(ccx), i as u64, false) } pub fn C_u64(ccx: &CrateContext, i: u64) -> ValueRef { C_integral(Type::i64(ccx), i, false) } pub fn C_uint(ccx: &CrateContext, i: I) -> ValueRef { let v = i.as_u64(); let bit_size = machine::llbitsize_of_real(ccx, ccx.int_type()); if bit_size < 64 { // make sure it doesn't overflow assert!(v < (1< i64; } pub trait AsU64 { fn as_u64(self) -> u64; } // FIXME: remove the intptr conversions, because they // are host-architecture-dependent impl AsI64 for i64 { fn as_i64(self) -> i64 { self as i64 }} impl AsI64 for i32 { fn as_i64(self) -> i64 { self as i64 }} impl AsI64 for isize { fn as_i64(self) -> i64 { self as i64 }} impl AsU64 for u64 { fn as_u64(self) -> u64 { self as u64 }} impl AsU64 for u32 { fn as_u64(self) -> u64 { self as u64 }} impl AsU64 for usize { fn as_u64(self) -> u64 { self as u64 }} pub fn C_u8(ccx: &CrateContext, i: u8) -> ValueRef { C_integral(Type::i8(ccx), i as u64, false) } // This is a 'c-like' raw string, which differs from // our boxed-and-length-annotated strings. pub fn C_cstr(cx: &CrateContext, s: InternedString, null_terminated: bool) -> ValueRef { unsafe { if let Some(&llval) = cx.const_cstr_cache().borrow().get(&s) { return llval; } let sc = llvm::LLVMConstStringInContext(cx.llcx(), s.as_ptr() as *const c_char, s.len() as c_uint, !null_terminated as Bool); let sym = cx.generate_local_symbol_name("str"); let g = declare::define_global(cx, &sym[..], val_ty(sc)).unwrap_or_else(||{ bug!("symbol `{}` is already defined", sym); }); llvm::LLVMSetInitializer(g, sc); llvm::LLVMSetGlobalConstant(g, True); llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage); cx.const_cstr_cache().borrow_mut().insert(s, g); g } } // NB: Do not use `do_spill_noroot` to make this into a constant string, or // you will be kicked off fast isel. See issue #4352 for an example of this. pub fn C_str_slice(cx: &CrateContext, s: InternedString) -> ValueRef { let len = s.len(); let cs = consts::ptrcast(C_cstr(cx, s, false), Type::i8p(cx)); C_named_struct(cx.str_slice_type(), &[cs, C_uint(cx, len)]) } pub fn C_struct(cx: &CrateContext, elts: &[ValueRef], packed: bool) -> ValueRef { C_struct_in_context(cx.llcx(), elts, packed) } pub fn C_struct_in_context(llcx: ContextRef, elts: &[ValueRef], packed: bool) -> ValueRef { unsafe { llvm::LLVMConstStructInContext(llcx, elts.as_ptr(), elts.len() as c_uint, packed as Bool) } } pub fn C_named_struct(t: Type, elts: &[ValueRef]) -> ValueRef { unsafe { llvm::LLVMConstNamedStruct(t.to_ref(), elts.as_ptr(), elts.len() as c_uint) } } pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef { unsafe { return llvm::LLVMConstArray(ty.to_ref(), elts.as_ptr(), elts.len() as c_uint); } } pub fn C_vector(elts: &[ValueRef]) -> ValueRef { unsafe { return llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint); } } pub fn C_bytes(cx: &CrateContext, bytes: &[u8]) -> ValueRef { C_bytes_in_context(cx.llcx(), bytes) } pub fn C_bytes_in_context(llcx: ContextRef, bytes: &[u8]) -> ValueRef { unsafe { let ptr = bytes.as_ptr() as *const c_char; return llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True); } } pub fn const_get_elt(v: ValueRef, us: &[c_uint]) -> ValueRef { unsafe { let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint); debug!("const_get_elt(v={:?}, us={:?}, r={:?})", Value(v), us, Value(r)); r } } pub fn const_to_uint(v: ValueRef) -> u64 { unsafe { llvm::LLVMConstIntGetZExtValue(v) } } fn is_const_integral(v: ValueRef) -> bool { unsafe { !llvm::LLVMIsAConstantInt(v).is_null() } } #[inline] fn hi_lo_to_u128(lo: u64, hi: u64) -> u128 { ((hi as u128) << 64) | (lo as u128) } pub fn const_to_opt_u128(v: ValueRef, sign_ext: bool) -> Option { unsafe { if is_const_integral(v) { let (mut lo, mut hi) = (0u64, 0u64); let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi as *mut u64, &mut lo as *mut u64); if success { Some(hi_lo_to_u128(lo, hi)) } else { None } } else { None } } } pub fn is_undef(val: ValueRef) -> bool { unsafe { llvm::LLVMIsUndef(val) != False } } #[allow(dead_code)] // potentially useful pub fn is_null(val: ValueRef) -> bool { unsafe { llvm::LLVMIsNull(val) != False } } pub fn langcall(tcx: TyCtxt, span: Option, msg: &str, li: LangItem) -> DefId { match tcx.lang_items.require(li) { Ok(id) => id, Err(s) => { let msg = format!("{} {}", msg, s); match span { Some(span) => tcx.sess.span_fatal(span, &msg[..]), None => tcx.sess.fatal(&msg[..]), } } } } // To avoid UB from LLVM, these two functions mask RHS with an // appropriate mask unconditionally (i.e. the fallback behavior for // all shifts). For 32- and 64-bit types, this matches the semantics // of Java. (See related discussion on #1877 and #10183.) pub fn build_unchecked_lshift<'a, 'tcx>( bcx: &Builder<'a, 'tcx>, lhs: ValueRef, rhs: ValueRef ) -> ValueRef { let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShl, lhs, rhs); // #1877, #10183: Ensure that input is always valid let rhs = shift_mask_rhs(bcx, rhs); bcx.shl(lhs, rhs) } pub fn build_unchecked_rshift<'a, 'tcx>( bcx: &Builder<'a, 'tcx>, lhs_t: Ty<'tcx>, lhs: ValueRef, rhs: ValueRef ) -> ValueRef { let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShr, lhs, rhs); // #1877, #10183: Ensure that input is always valid let rhs = shift_mask_rhs(bcx, rhs); let is_signed = lhs_t.is_signed(); if is_signed { bcx.ashr(lhs, rhs) } else { bcx.lshr(lhs, rhs) } } fn shift_mask_rhs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>, rhs: ValueRef) -> ValueRef { let rhs_llty = val_ty(rhs); bcx.and(rhs, shift_mask_val(bcx, rhs_llty, rhs_llty, false)) } pub fn shift_mask_val<'a, 'tcx>( bcx: &Builder<'a, 'tcx>, llty: Type, mask_llty: Type, invert: bool ) -> ValueRef { let kind = llty.kind(); match kind { TypeKind::Integer => { // i8/u8 can shift by at most 7, i16/u16 by at most 15, etc. let val = llty.int_width() - 1; if invert { C_integral(mask_llty, !val, true) } else { C_integral(mask_llty, val, false) } }, TypeKind::Vector => { let mask = shift_mask_val(bcx, llty.element_type(), mask_llty.element_type(), invert); bcx.vector_splat(mask_llty.vector_length(), mask) }, _ => bug!("shift_mask_val: expected Integer or Vector, found {:?}", kind), } } pub fn ty_fn_sig<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> ty::PolyFnSig<'tcx> { match ty.sty { ty::TyFnDef(..) | // Shims currently have type TyFnPtr. Not sure this should remain. ty::TyFnPtr(_) => ty.fn_sig(ccx.tcx()), ty::TyClosure(def_id, substs) => { let tcx = ccx.tcx(); let sig = tcx.fn_sig(def_id).subst(tcx, substs.substs); let env_region = ty::ReLateBound(ty::DebruijnIndex::new(1), ty::BrEnv); let env_ty = match tcx.closure_kind(def_id) { ty::ClosureKind::Fn => tcx.mk_imm_ref(tcx.mk_region(env_region), ty), ty::ClosureKind::FnMut => tcx.mk_mut_ref(tcx.mk_region(env_region), ty), ty::ClosureKind::FnOnce => ty, }; sig.map_bound(|sig| tcx.mk_fn_sig( iter::once(env_ty).chain(sig.inputs().iter().cloned()), sig.output(), sig.variadic, sig.unsafety, sig.abi )) } _ => bug!("unexpected type {:?} to ty_fn_sig", ty) } } pub fn requests_inline<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: &ty::Instance<'tcx> ) -> bool { if is_inline_instance(tcx, instance) { return true } if let ty::InstanceDef::DropGlue(..) = instance.def { // Drop glue wants to be instantiated at every translation // unit, but without an #[inline] hint. We should make this // available to normal end-users. return true } attr::requests_inline(&instance.def.attrs(tcx)[..]) } pub fn is_inline_instance<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: &ty::Instance<'tcx> ) -> bool { let def_id = match instance.def { ty::InstanceDef::Item(def_id) => def_id, ty::InstanceDef::DropGlue(_, Some(_)) => return false, _ => return true }; match tcx.def_key(def_id).disambiguated_data.data { DefPathData::StructCtor | DefPathData::EnumVariant(..) | DefPathData::ClosureExpr => true, _ => false } } /// Given a DefId and some Substs, produces the monomorphic item type. pub fn def_ty<'a, 'tcx>(shared: &SharedCrateContext<'a, 'tcx>, def_id: DefId, substs: &'tcx Substs<'tcx>) -> Ty<'tcx> { let ty = shared.tcx().type_of(def_id); shared.tcx().trans_apply_param_substs(substs, &ty) } /// Return the substituted type of an instance. pub fn instance_ty<'a, 'tcx>(shared: &SharedCrateContext<'a, 'tcx>, instance: &ty::Instance<'tcx>) -> Ty<'tcx> { let ty = instance.def.def_ty(shared.tcx()); shared.tcx().trans_apply_param_substs(instance.substs, &ty) }